首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In two species of turtle (Emys orbicularis and Testudo horsfieldi), retrograde and anterograde tracer techniques were used to study projections from the optic tectum to the nucleus rotundus (Rot) and to the dorsal lateral geniculate nucleus (GLd). The ipsilateral Rot received the most massive tectal projections, stemming from numerous neurons located in the stratum griseum centrale (SGC). These neurons varied in size and shape, many of them having a wide zone of dendritic arborization within both the (SGC) and the stratum griseum et fibrosum superficiale (SGFS). Projections from the tectum to the GLd were ipsilateral, were extremely scarce, and arose from a small number of neurons of various shapes situated in the SGFS; these cells were, as a rule, smaller than those projecting to the Rot. For the most part, these neurons were radially oriented, with rather restricted dendritic arborizations in the most superficial sublayers of the SGFS; smaller numbers of projection neurons were horizontally oriented, with long dendrites branching throughout the layer. Some neurons located in the stratum griseum periventriculare (SGP) projected to both the Rot and the GLd. Most of these neurons had dendritic arborizations within the retinorecipient zone of the SGFS. We were unable to rule out the possibility that some cells projecting to the GLd were situated in the SGC. Both the GLd and the main body of the Rot did not contain neurons projecting to the optic tectum. Thalamic neurons projecting to the tectum were observed in the ventral lateral geniculate nucleus, the intergeniculate leaflet and the interstitial nuclei of the tectothalamic tract, and the nucleus of the decussatio supraoptica ventralis. The question of whether variation in the laminar organization of the tectorotundal and tectogeniculate projection neurons in reptiles, birds, and mammals may be related to different degrees of differentiation of the tectal layers is discussed.  相似文献   

2.
The efferent connections and axonal and dendritic morphologies of periventricular neurons were examined in the optic tectum of rainbow trout to classify periventricular efferent neurons in salmonids. Among the target nuclei of tectal efferents, tracer injections to the following four structures labeled periventricular neurons: the area pretectalis pars dorsalis (APd), nucleus pretectalis superficialis pars magnocellularis (PSm), nucleus ventrolateralis of torus semicircularis (TS), and nucleus isthmi (NI). Two types of periventricular neurons were labeled by injections to the APd. One of them had an apical dendrite ramifying at the stratum fibrosum et griseum superficiale (SFGS), with an axon that bifurcated into two branches at the stratum griseum centrale (SGC), and the other had an apical dendrite ramifying at the SGC. Two types of periventricular neurons were labeled after injections to the TS. One of them had an apical dendrite ramifying at the boundary between the stratum opticum (SO) and the SFGS, and the other had dendritic branches restricted to the stratum album centrale or stratum periventriculare. Injections to the PSm and NI labeled periventricular neurons of the same type with an apical dendrite ramifying at the SO and a characteristic axon that split into superficial and deep branches projecting to the PSm and NI, respectively. This cell type also possessed axonal branches that terminated within the tectum. These results indicate that periventricular efferent neurons can be classified into at least five types that possess type-specific axonal and dendritic morphologies. We also describe other tectal neurons labeled by the present injections.  相似文献   

3.
Significant differences in stratification and size of the visual layers of the optic tectum were found between three clear-water minnows (Notropis amabilis, N. boops, Cyprinella venustas) and three turbid-water minnows (N. atherinoides, N. bairdi, and C. lutrensis). Correlations among a variety of neural structures suggested the importance of stratum marginale (SM), stratum opticum (SO), and stratum fibrosum et griseum superficiale (SFGS), stratum griseum centrale (SGC) and stratum periventriculare (SPV) in vision, of stratum album centrale (SAC) and SGC for olfaction, and of SPV for the processing of acoustico-lateral information.  相似文献   

4.
Anterograde tracing with horseradish peroxidase (HRP) was used to compare the organization of retinotectal projections in normal adult hamsters and in animals that sustained subcutaneous injections of the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) on the day of birth. Neonatal injection of this neurotoxin decreases the density of the serotoninergic (5-HT) innervation of the cerebral and cerebellar cortices, but increases the density of these fibers in the brainstem including the superior colliculus (SC). Analysis of tissue from the retinorecipient laminae of the SC by high-pressure liquid chromatography indicated that these lesions increased the amount of 5-HT in the adult SC by 47%. The increased serotoninergic innervation of SC was associated with a marked change in the distribution of the uncrossed retinotectal projection. In normal adult hamsters, fibers from the ipsilateral eye form dense clusters in the lowermost stratum griseum superficiale (SGS) and stratum opticum (SO). A small number of uncrossed fibers are also visible in the more caudal portions of these layers. In the animals that sustained neonatal 5,7-DHT injections, uncrossed retinotectal fibers formed a nearly continuous band in rostral SO and lower SGS, and numerous labeled fibers were present in the caudal SC, primarily in the SO. Neonatal treatment with 5,7-DHT also produced alterations in the crossed retinotectal pathway and in the crossed and uncrossed retinogeniculate projections. These results indicate that the 5-HT input to the developing brainstem may strongly influence the development of retinofugal projections. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Retinal projections were studied in four species of gymnotid fishes, Gymnotus carapo, Hypopomus artedi, Eigenmannia virescens and Sternopygus sp. with the aid of cobalt or HRP labelling and autoradiographic techniques. The optic tract gives off a small branch, the axial optic tract and then, after crossing in the midline, splits into a dorsomedial, dorsal and ventral fascicle. E. virescens and Sternopygus sp. display in addition an accessory optic tract. In all four species retinal projections are bilateral; ipsilateral projections, however, are extremely sparse. In all four species, the retinal fibres terminate bilaterally in the suprachiasmatic nucleus, dorsolateral optic nucleus of the thalamus and the optic nucleus of the posterior commissure; a bilateral retinotectal projection was only found in E. virescens and G. carapo. Retinal projections are only contralateral to the ventromedial nucleus of the thalamus, the central pretectal nucleus and the accessory optic nucleus. The contralateral retinotectal fibres terminate in the stratum fibrosum and griseum superficiale, and in the stratum album centrale and stratum periventriculare. A small accessory optic tract and nucleus were detected in E. virescens and Sternopygus sp. but not in G. carapo and H. artedi. The results indicate that the visual system of gymnotid fish is as simple as that of mormyrids. The poor visibility in the environment where these animals live and the additional sensory system which these animals possess may explain the poor development of the visual system.  相似文献   

6.
Developing chick retinotectal projections extend rostrally in the superficial stratum opticum of the tectum until they reach their appropriate target zone. They then penetrate, arborize, and form synapses within distinct tectal retinorecipient layers. In this study, we show that the polysialylated neural cell adhesion molecule is expressed both on the membrane of these developing projections and in the stratum opticum and retinorecipient layers during the period of optic innervation. On this basis, the role of polysialic acid was analyzed with respect to both trajectory and arborization in the tectum, using confocal imaging of DiI-labeled retinotectal fibers in whole-mount tecta of embryos pretreated with a polysialic acid-specific degrading enzyme, endoneuraminidase N. The removal of polysialic acid caused several distinct abnormalities, including random dorsal/ventral meandering of fibers in the stratum opticum, a distorted branching and extension of arbors in the retinorecipient layers, and inappropriate synaptic vesicle accumulation in pretarget areas. These findings indicate that the unique ability of polysialic acid to regulate different types of cell interactions is an essential component of axon behavior during multiple steps of tectal target innervation.  相似文献   

7.
This paper is a sequel to a previous report, using quail/chick chimeras with partial tectal transplants, in which a tangential invasion of host (chick) tectal territories by cells originating in the quail graft was demonstrated. The cells displaying this secondary tangential migration appeared restricted to two strata (stratum griseum centrale (SGC) and stratum griseum et fibrosum superficiale (SGFS)). Here we describe the morphology of the tangentially displaced neurons, as well as their overall distribution in the host tectal lobe, by means of an antibody that specifically recognizes quail cells, staining them in a Golgi-like manner. Neurons that migrated into the SGC are identified as multipolar projection neurons, typical of this stratum. The majority of cells that migrated into the SGFS correspond to horizontal neurons, as was also corroborated by observations in Golgi-impregnated material. These horizontal cells are concentrated in laminae b, d and f, where their processes form well delimited axonal plexuses. In confirmation of previous results, SGC neurons have a limited range of migration, whereas SGFS cells translocate across much longer distances. In reconstructions of appropriate cases, a remarkable polarity was noted. Significant invasion of chick tectum by quail cells mostly occurred in the rostral half of the host tectum. The long-range migration of superficial horizontal cells frequently reached, but did not cross, the rostral tectal boundary. Conversely, tangential migration in the caudal half of the host tectum was scarce and coincided with a typical arrangement of quail-derived radial columns interdigited with chick-derived columns. These findings are discussed in relation to existing data on immature neuronal populations, molecular marker distribution and polarity of the avian optic tectum.  相似文献   

8.
The organisation of the neural projections from the optic tectum and pretectal nuclei complex, n. subpretectalis / n. interstitio-pretecto-subpretectalis (SP/IPS), to the nucleus rotundus (Rt) in chicks was studied by using retrograde tracing techniques. After the injection of fluorescent retrograde tracers, rhodamine-conjugated latex microspheres, fluorescein-conjugated latex microspheres, True Blue, Fluoro-Gold, or rhodamine B isothiocyanate, into different regions of Rt and its middorsal extension, the nucleus triangularis (T), the distribution of retrogradely labelled neuronal cell bodies in the tectum and pretectal nuclei was assessed. Both the ipsilateral and contralateral tectorotundal projections were found to be organised topographically in as much as different sublaminas of the stratum griseum centrale (SGC) project in an orderly manner to Rt and T. The deepest stratum of SGC overlapping into the stratum album centrale projects to T. Deep SGC projects to the dorsal Rt and superficial SGC to the ventral Rt. A band running through the centre of Rt receives input from the central sublamina of SGC, and the caudal central Rt receives input from a deeper sublamina than does the rostral central Rt. The SP/IPS projects to the ipsilateral Rt only and the projection order is dorsal SP to dorsal Rt, ventral SP to ventral Rt and middle SP to the central band of Rt. The neurones in IPS and the nucleus of the tractus tectothalamicus project to T. Thus, Rt and T receive topographically both tecto- (excitatory) and SP/IPS- (inhibitory) projections. The possible functional implications for parallel information processing in these projections are discussed. J. Comp. Neurol. 394:171–185, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Extracellular iontophoretic injections of horseradish peroxidase and Golgi preparations were used to study the distribution and morphology of intrinsic neurons of the garter snake optic tectum. Four morphologically distinct classes of neurons were identified. The type A neuron is found throughout the retinorecipient tectal layers. It has a large, fusiform soma and infrequently branching dendrites that radiate in the horizontal plane and are studded with varicose appendages. An axon arises from the soma or proximal dendrite and gives rise to widely spreading branches that overlap the cell's dendritic field. The type B neuron has a small, spherical soma in sublayer b of the stratum fibrosum et griseum superficiale. Thick, varicose dendrites ascend from the soma and form a bushy arbor in the overlying sublayer a. A thin axon descends vertically from the soma and arborizes in vertical alignment with the cell's dendritic field in sublayer c of the stratum fibrosum et griseum superficiale and the upper third of the stratum griseum centrale. The type C neuron is a bipolar cell with a small, vertically fusiform soma situated at the upper border of the stratum griseum centrale. Thin, sparsely branching dendrites extend vertically into the superficial and central gray layers. An axon arises from the soma and courses ventrally into the stratum griseum centrale where it gives rise to a plexus of widely spreading branches that extend medially from the cell's dendritic field. The type D neuron is a small, stellate cell with a spherical soma and fine, appendage-laden dendrites that are restricted to the stratum griseum centrale. The axon of the type D cell courses in the central gray where it gives rise to widely spreading branches that extend laterally from the cell's dendritic field.  相似文献   

10.
Tectal projection neurons to the retinopetal nucleus in the filefish   总被引:1,自引:0,他引:1  
Following horseradish peroxidase (HRP) injections into the preoptic retinopetal nucleus (PRN), neurons in the ipsilateral optic tectum were labeled retrogradely. Labeled neurons exhibited a 'Golgi-like' appearance, somata of these neurons were pyriform or round, and most of them were located in the stratum album centrale (SAC) or the stratum periventriculare (SPV). These neurons had a long apical dendrite, which ramified in the upper-half of SGC into horizontally arborized dendritic fields. The main trunk of the apical dendrites also gave off several branches in the stratum fibrosum et griseum superficiale (SFGS) and reached the stratum opticum (SO). These neurons resemble the 'large pyriform neurons' of Vanegas et al. (Vanegas, H., Laufer, M. and Amat, J., The optic tectum of a perciform teleost. I. General configuration and cytoarchitecture, J. Comp. Neurol., 154 (1974) 43-60) except that in the tecto-PRN neurons the axons originates from the apical dendritic shaft at or near the level of the SAC. Judging from their dendritic patterns, the tectal neurons projecting indirectly to the retina may receive non-retinal inputs besides the retinal input.  相似文献   

11.
Neuroanatomical tracing of retinal axons and axonal terminals with the fluorescent dye, DiI, was combined with immunohistochemical characterization of radial glial cells in the developing chick retinotectal system. Emphasis was placed on the mode of the tectal innervation by individual retinal axons and on the distribution and fate of the tectal radial glial cells and their spatial relation to retinal axons. It was obvious from fluorescent images obtained from anterogradely filled axons that these axons deserted the superficial stratum opticum (SO) to penetrate the stratum griseum et fibrosum superficiale (SGFS) by making right-angled turns within the SO. Frequently, axons which had invaded the SGFS were bifurcated and had a superficial branch which remained within the SO. Terminal axonal arborization occurred at various depths within the SGFS. Characterization of the tectal glial cells and their radial fibers by means of the anti-filament antibody, R5, and post-mortem staining with the fluorescent dye, DiI, revealed the following. (a) At least from day E8 to P1, tectal glial fibers traversed all tectal layers from the periventricular location of their somata to the superficial interface between SO and pia mater. In this interface they enlarged and formed characteristic endfeet. (b) Glial endfeet covered the whole tectal surface. They showed at early ages anterior-posterior differences having a higher density in the posterior tectum. These differences disappeared at embryonic day E13. (c) After innervation, glial endfeet of the anterior tectal third were arranged in rows parallel to the retinal fibers within the SO. This arrangement was not observed in eyeless embryos. (d) Radial glial fibers could be stained with R5 from day E8 to late embryonic stages throughout their entire length. (e) At the first posthatching days, only the segments of the radial glial fibers restricted to the thickness of the SO were R5-positive, although the fibers still traversed throughout the depth of the tectum. The results are discussed in context to the genesis of the retinotectal projection.  相似文献   

12.
Fiber connections of the torus longitudinalis (TL) and target(s) of toral recipient tectal neurons (pyramidal cells) in the optic tectum were examined by tract-tracing methods in holocentrids. Injections into the stratum marginale (SM) labeled neurons in the stratum opticum and stratum fibrosum et griseum superficiale (SFGS). They had superficial spiny dendrites, with a fan-shaped branching pattern in SM and a thick basal dendrite that gave rise to bushy horizontal branches at the boundary between the SFGS and the stratum griseum centrale (SGC), where an axon and a thin dendrite arose. The axon terminated in a middle cellular layer of the SGC, and the thin dendrite ramified slightly deeper to this cellular layer. The SM injections also labeled cells in the ipsilateral TL. Injections into either the lateral or the medial part of TL labeled terminals in the ipsilateral SM and neurons in the bilateral nucleus paracommissuralis (NPC) and nucleus subvalvularis and ipsilateral nucleus subeminentialis. Only medial TL injections labeled cells in the ipsilateral SGC. These neurons had a basal dendrite that branched in the middle cellular layer of SGC, suggesting that they receive inputs from the pyramidal cells and project back to the TL to form a closed circuit. Only lateral TL injections labeled terminals in the corpus cerebelli. A visual telencephalic portion projects to the NPC and sublayers of SGC, where dendrites of the pyramidal cells and SGC neurons ramify. The present results therefore suggest that the TL and SM are components of an intricate circuitry that exerts telencephalic descending visual influence on the optic tectum and corpus cerebelli.  相似文献   

13.
Glutamate was immunohistochemically localized in the goldfish retina and tectum at the light and electron microscopic (E.M.) levels using double affinity purified antisera against glutaraldehyde conjugated L-glutamate. In retina, glutamate-immunoreactivity (Glu+) was observed in cone inner segments, cone pedicles, bipolar cells, a small number of amacrine cells and the majority of cells in the ganglion cell layer. The latter were shown to be ganglion cells by simultaneous retrograde labeling. Centrally, Glu+ was observed in axons in the optic nerve and tract, and in stratum opticum and stratum fibrosum et griseum superficialis (SFGS) of the tectum. The Glu+ in the optic pathway disappeared four days after optic denervation and was restored by regeneration without affecting the Glu+ of intrinsic tectal neurons. In tectum, Glu+ was also observed in torus longitudinalis granule cells, toral terminals in stratum marginale, some pyramidal neurons in the SFGS, multipolar and fusiform neurons in stratum griseum centrale, large multipolar and pyriform projection neurons in stratum album centrale, and many periventricular neurons. Glu+ was also localized within unidentified puncta throughout the tectum and within radially oriented dendrites of periventricular neurons. At the E.M. level, a variety of Glu+ terminals were observed. Glu+ toral terminals formed axospinous synapses with dendritic spines of pyramidal neurons. Ultrastructurally identifiable Glu+ putative optic terminals formed synapses with either Glu+ or Glu- dendritic profiles, and with Glu- vesicle-containing profiles, presumed to be GABAergic. These findings are consistent with the hypothesis that a number of intrinsic and projection neurons in the goldfish retinotectal system, including most ganglion cells, may use glutamate as a neurotransmitter.  相似文献   

14.
The retinotectal projections in the mouse were analyzed with injections of horseradish peroxidase into the superior colliculus and of radioactive amino acids into the eye. At least 70% of the ganglion cells, and possibly all of them, were found to project to the superior colliculus, including ganglion cells of all sizes. Small injections revealed that ganglion cells of different sizes terminate at different levels in the superior colliculus. The small ganglion cells that form the vast majority of all cells project predominantly to the upper stratum griseum superficiale. A small population of mainly medium-sized and large ganglion cells project to the deep stratum griseum superficiale and to the stratum opticum. The ipsilateral projection is restricted to the deep stratum griseum superficiale and stratum opticum and consists predominantly of medium-sized and large ganglion cells.  相似文献   

15.
Retinal projections were studied using Fink-Heimer and radioautographic methods in Polypterus senegalus, a species which is representative of a small group of African fresh-water bony fish often considered to be very primitive.The large optic nerve showed partial decussation at the chiasm. Two major contralateral tracts were observed: the axillary and marginal optic tracts, with the latter being subdivided posteriorly into the tractus opticus medialis and tractus opticus lateralis. The retina projected onto the: (1) hypothalamus (area optica postoptica); (2) thalamus (nucleus opticus dorsolateralis thalimi, nucleus dorsomedialis thalami, corpus geniculatum laterale, area optica dorsolateralis thalami, area optica ventrolateralis thalami); (3) pretectum (nuclei commissurae posterioris, pretectalis ventralis, pretectalis dorsalis); and (4) optic tectum (stratum marginale, stratum opticum, stratum griseum et fibrosum superficiale, stratum griseum et album centrale, stratum griseum et fibrosum periventriculare). Ipsilateral retinal projections were demonstrated to the same 4 levels and more precisely to the nucleus opticus dorsolateralis thalami, area optica dorsolaterale thalami, nucleus commissurae posterioris, stratum marginale and stratum griseum et album centrale. The existence of a retinal projection to the mesencephalic tegmentum is discussed.Comparing the primary optic system of Polypterus with that of other jawed vertebrates, and particularly with that of other bony fish, indicated that this species possesses a combination of characteristics which are both actinopterygian and sarcopterygian. The phylogenetic significance of this mozaic anatomical arrangement is discussed.  相似文献   

16.
Tectal neurons previously known to receive retinofugal input were herein shown to project to the nucleus prethalamicus. Following HRP injections into the nucleus prethalamicus, pyriform neurons in the stratum periventiculare and stratum album centrale, and fusiform neurons in the stratum griseum centrale, were retrogradely labeled. Because the labeled types of neurons have been characterized as the main visual receptive neurons of the optic tectum, and because the nucleus prethalamicus of teleosts projects to the telencephalon, this nucleus can now be considered homologous to the nucleus rotondus of reptiles and birds and to the nucleus lateralis postterior-pulvinar complex of mammals, that is, it provides a relay for retinotectal visual input to the telencephalon. Orthogradely labeled terminals as well as retrogradely labeled neurons were also found in the dorsal area of the telencephalon. The tecto-prethalamotelencephalic projections are only ipsilateral.  相似文献   

17.
Tectal neurons previously known to receive retinofugal input were herein shown to project to the nucleus prethalamicus. Following HRP injections into the nucleus prethalamicus, pyriform neurons in the stratum periventiculare and stratum album centrale, and fusiform neurons in the stratum griseum centrale, were retrogradely labeled. Because the labeled types of neurons have been characterized as the main visual receptive neurons of the optic tectum, and because the nucleus prethalamicus of teleosts projects to the telencephalon, this nucleus can now be considered homologous to the nucleus rotondus of reptiles and birds and to the nucleus lateralis postterior-pulvinar complex of mammals, that is, it provides a relay for retinotectal visual input to the telencephalon. Orthogradely labeled terminals as well as retrogradely labeled neurons were also found in the dorsal area of the telencephalon. The tecto-prethalamotelencephalic projections are only ipsilateral.  相似文献   

18.
The possibility of retinotopic organization of bilateral retinotectal projection was studied by fotal retinal lesions followed by the Fink-Heimer technique. This work in Discoglossus pictus (Amphibia, Anura) shows two types of direct visual projections: a contralateral projection within the tectal layer 9 and a bilateral projection on tectal layer F of Potter (1969). The ipsilateral projection within tectal layer 9, earlier described after enucleation (Picouet et Clairambault, 1977), is not observed here. We discuss about reasons we failed to reveal it. Although appearing to be grossly in accord with data of literature, the retinotopic pattern of "classical" retinotectal projection (on layer 9) of Discoglossus presents some differences as the overlap of quadratic retinal projections. The anatomical tectal retinotopy appears less precise that physiologic retinotopy. The bilateral projections on layer F are characterised by medial (and specially medioposterior) location and the complete absence of retinotopy. All lesions in different parts of retina lead degeneration which take place in a series of distinct loci in the dorsal layer F. We discuss about a possible participation of axial optic tract to this projection.  相似文献   

19.
The distribution of calretinin-like immunopositive cells and fibers in the optic tectum of the tench (Tinca tinca) was studied by using a polyclonal antibody and the avidin-biotin-peroxidase technique. A clear laminated pattern of calretinin-like immunoreactivity was observed. The stratum periventriculare demonstrated a large number of strongly labeled cells whereas in the strata album centrale and griseum centrale, and at the boundary between the strata griseum centrale and fibrosum et griseum superficiale, some scarce, weakly immunostained cells were observed. No immunoreactive cells were seen in the strata fibrosum et griseum superficiale, opticum and marginale. Cells belonging to neuronal types X and XIV, previously characterized using Golgi impregnation, were found to be calretinin-like immunoreactive. Most calretinin-like immunopositive fibers were found in the strata fibrosum et griseum superficiale and opticum with a distribution pattern similar to retinotectal axons in these layers. In agreement with previous biochemical studies, our data suggest that, by contrast to all other classes of vertebrates, instead of calretinin and calbindin D-28k, only one protein is present in teleosts. Nevertheless, the calretinin-like immunostaining pattern in the teleost optic tectum was more complex than that previously described for calbindin D-28k. When compared to the calretinin-immunostaining in the rat superior colliculus, it is evident the presence in both amniotes and anamniotes of calretinin-immunopositive retinotectal axons. However, the distribution patterns of intrinsic calretinin-immunoreactive cells were different. Immunolabeled cells have been described in all layers of the superior colliculus, whereas the cells containing calretinin were restricted to the three deep strata of the tench optic tectum, a more similar distribution to what has been reported in the chick optic tectum.  相似文献   

20.
In the superior colliculus of normal rodents the crossed retinal projection overlaps the uncrossed projection. The present study describes an abnormal laminar distribution and binocular segregation of the retinotectal afferents induced after the experimental enlargement of the uncrossed retinotectal pathway in pigmented rats. Intraocular injections of anterograde tracers were used to investigate the topographic and laminar organization of retinotectal projections in adult rats given unilateral optic tract lesions at birth. These lesions are known to increase the number of ipsilaterally projecting ganglion cells in the opposite retina. The uncrossed retinal projection to the remaining superior colliculus forms an abnormal band of terminal labeling at the superficial half of the stratum griseum superficiale, markedly different from the laminar distribution of this pathway in unoperated controls. This abnormal uncrossed projection has its maximum density at the rostrolateral quadrant of the tectum. Within this region, the crossed retinotectal projection retracts from the surface of the superior colliculus, leading to partial binocular segregation. The results suggest that both the laminar distribution and the experimental binocular segregation of retinotectal afferents depend on the balance of the densities of the converging pathways from both eyes in the superior colliculus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号