首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee LF  Cui X  Cui Z  Gimeno I  Lupiani B  Reddy SM 《Virus genes》2005,31(1):73-80
Marek’s disease virus (MDV), a highly cell-associated oncogenic chicken herpesvirus, causes Marek’s disease in domestic chickens. A unique phosphoprotein of MDV, pp38, has previously been associated with the maintenance of transformation in MDV-induced tumor cell lines. However, recently, the biological properties of a deletion mutant virus (rMd5Δpp38) revealed that pp38 is involved in early cytolytic infection in lymphocytes but not in the induction of tumors. Thus, pp38 is important for early cytolytic infection and not for transformation. The pp38 protein of the MDV serotype 1 vaccine strain CVI988/Rispens differs by one amino acid when compared to the pathogenic strains of MDV. Monoclonal antibody, H19, recognizes all serotype 1 MDV strains except CVI988/Rispens. Previous studies have also shown that the unique pp38 epitope in CVI988/Rispens induced high antibody response. In order to study the role of this epitope in the protective properties of CVI988/Rispens, we generated a mutant rMd5 virus in which the wild type pp38 gene has been substituted with that of CVI988/Rispens (rMd5/pp38CVI). The replication properties of rMd5/pp38CVI, both in vitro and in vivo, and tumor induction were examined. We found that the biological properties of rMd5/pp38CVI were similar to the wild type rMd5 virus with regards to in vivo replication, antibody response and tumor induction. This shows that the pp38 derived from CVI988/Rispens is not involved in protective properties as was previously suggested.  相似文献   

2.
Effect of native chicken interferon on MDV replication   总被引:7,自引:0,他引:7  
Marek's disease virus (MDV) is an oncogenic alphaherpesvirus. Its specific phosphorylated protein, pp38 has been implicated in MDV oncogenesis. In order to check whether the known anti-viral or anti-proliferative actions of interferon (IFN) are of importance in Marek's disease (MD), chicken embryo fibroblasts (CEFs) were infected with attenuated serotype-1 MDV strain CVI988, or with herpesvirus of turkeys (HVT). Different concentrations of native chicken IFN were added to the cell cultures, prior to their infection. After incubation, MDV plaques were counted. Analysis by flow cytometry for pp38 expression was performed by using three monoclonal antibodies (MAbs) and for HVT by using an anti-glycoprotein B (gB) MAb. Increasing IFN quantities caused a reduction in a stepwise manner of plaque numbers as well as a suppression of pp38 and gB expression in the CVI988- and HVT-infected cells, respectively.  相似文献   

3.
Xing Z  Xie Q  Morgan RW  Schat KA 《Acta virologica》1999,43(2-3):113-120
Monoclonal antibodies (MAbs) were prepared against ICP4 of Marek's disease virus (MDV). Mice were inoculated with ICP4 obtained from High-Five insect cells infected with a recombinant baculovirus expressing ICP4. MAbs were selected by enzyme-linked immunosorbent assay (ELISA) using MDV-infected and control chick kidney cells as antigens. One of the MAbs, 5H8, recognized an epitope toward the carboxyl terminus of ICP4 based on staining of reticuloendotheliosis virus-transformed cells transfected with full-length and truncated ICP4 constructs. This MAb recognized ICP4 in chicken embryo fibroblasts (CEFs) infected with MDV strains JM16 and HVT but not with SB-1 strain. Using Western blot analysis a protein of 155 kDa was detected in CEFs infected with JM16 and HVT strains.  相似文献   

4.
The use of the complete DNA sequence for the Marek's disease virus (MDV) serotype 1 vaccine strain CVI988 Rispens in comparative genomic studies with virulent strains of MDV has revealed the presence of a number of insertions, deletions and single-nucleotide polymorphisms. In this study, we investigated a SNP in the H/ACA box of the viral RNA subunit of telomerase (vTR). We sequenced vTR from four different batches of CVI988 vaccine originating from a single commercial company. The A-to-G mutation defining the SNP in the H/ACA box of CVI988 vTR was present in only some of the batches. Thus, although this mutation affects CVI988 vTR function, it is not shared by all CVI988 isolates and may be a stochastic rather than causative event in CVI988 attenuation.  相似文献   

5.
A Marek’s disease virus (MDV) field strain designated GX0101 was isolated from a layer flock and confirmed to be a recombinant virus with an insert of a long terminal repeat (LTR) from the reticuloendotheliosis virus (REV). A chimeric molecule containing an REV-LTR insert of 539 bp and its flanking sequences from MDV was amplified and sequenced. An REV-LTR downstream from the Internal Repeat Short (IRS) region has 77.4–98.6% homology to seven REV field strains isolated from different avian species in different parts of the world. The insertion site is located downstream of SORF 1 and upstream of SORF2 in the IRS region near the junction with the Unique Short (US) region in the MDV serotype 1 genome. Chicken experiments were conducted to determine the oncogenicity of the recombinant GX0101 virus and its transmissibility to contact chickens. Dot blot hybridization was used to detect the presence of the pp38 gene in feather tips from GX0101 or Md5 infected and contact birds. The pp38 was detected in GX0101 contact birds about 1–2 weeks earlier than in Md5 birds when both groups were vaccinated with HVT vaccine. Long term pathogenicity tests in specific pathogen free (SPF) chickens reveal that the recombinant GX0101 has a higher virulence than GA, but less virulence than Md5, the very virulent pathotype of MDV. This is the first report on an oncogenic serotype 1 MDV field strain with LTR insert and its pathogenicity.  相似文献   

6.
The complete DNA sequence of Marek’s disease virus (MDV) serotype 1 vaccine strain 814 was determined. It consisted of 172,541 bp, with an overall gene organization identical to that of the MDV-1 type strains. Comparative genomic analysis of vaccine strains (814 and CVI988) and other strains (CU-2, Md5, and Md11) showed that 814 was most similar to CVI988. Several unique insertions, deletions, and substitutions were identified in strain 814. Of note, a 177-bp insertion in the overlapping genes encoding the Meq, RLORF6, and 23-kDa proteins of strain 814 was identified, and a 69-bp deletion was also located in the origin of replication site (Ori) in the gene encoding RLORF12. Compared to the CVI988 vaccine strain, a deletion of 510 bp was identified in the UL36 gene. These analyses identified key mutations in the 814 strain and the vaccine strain that could be exploited for future MDV vaccine design.  相似文献   

7.
Spatz SJ  Rue CA 《Virus genes》2008,36(3):479-489
The complete DNA sequence of the mildly virulent Gallid herpesvirus type 2 strain CU-2 was determined and consists of 176,922 bp with an overall gene organization typical of class E herpesviruses. Phylogenetically, this strain partitions in its own branch between the virulent strains RB-1B, Md11, and Md5, and the vaccine strain CVI988. Overall, the genome of CU-2 is more similar to that of CVI988, with identically sized unique short regions of 11,651 bp. As in CVI988, an insertion of 177 bp was identified in the overlapping genes encoding the Meq, RLORF6, and 23 kDa proteins within the repeat long region of the genome. A total of 15 single nucleotide polymorphisms (SNPs) common to both CU-2 and CVI988, and not occurring in virulent strains, were identified in the genes encoding UL29, UL45, UL50, UL52, LORF10, RLORF14a, RLORF12, Meq(RLORF7), 23kDa, ICP4, US3, and two hypothetical proteins MDV071.4 and MDV076.4. Each gene encoding UL29 and Meq contained two SNPs. Only one major open reading frame (ORF) encoding UL41, the virus host shutoff (VHS) ribonuclease, was disrupted in the CU-2 genome. An additional cytosine after the 25 codon is predicted to produce a truncated protein of 97 aa. Since GaHV-2 mutants lacking UL41 have been reported to retain their virulence, other factors are likely responsible for the low virulence of CU-2. It is largely suspected that SNPs in common with CVI988 along with the insertions in the Meq loci are responsible for its phenotype. Conversely, we identified 43 nonsynonymous mutations (within 23 genes) that may contribute to the virulence of CU-2. These SNPs are shared exclusively with all sequenced virulent strains (Md5, Md11, and RB-1B) and not present within the CVI988 genome. Although most occur in proteins of unknown function, a significant percentage is in proteins involved in virion assembly.  相似文献   

8.
Marek’s disease virus (MDV) is a cell-associated alphaherpesvirus that induces rapid-onset T-cell lymphomas in poultry. MDV isolates vary greatly in pathogenicity. While some of the strains such as CVI988 are non-pathogenic and are used as vaccines, others such as RB-1B are highly oncogenic. Molecular determinants associated with differences in pathogenicity are not completely understood. Comparison of the genome sequences of phenotypically different strains could help to identify molecular determinants of pathogenicity. We have previously reported the construction of bacterial artificial chromosome (BAC) clones of RB-1B from which fully infectious viruses could be reconstituted upon DNA transfection into chicken cells. MDV reconstituted from one of these clones (pRB-1B-5) showed similar in vitro and in vivo replication kinetics and oncogenicity as the parental virus. However, unlike the parental RB-1B virus, the BAC-derived virus showed inability to spread between birds. In order to identify the unique determinants for oncogenicity and the ‘‘non-spreading phenotype’’ of MDV derived from this clone, we determined the full-length sequence of pRB-1B-5. Comparative sequence analysis with the published sequences of strains such as Md5, Md11, and CVI988 identified frameshift mutations in RLORF1, protein kinase (UL13), and glycoproteins C (UL44) and D (US6). Comparison of the sequences of these genes with the parental virus indicated that the RLORF1, UL44, and US6 mutations were also present in the parental RB-1B stock of the virus. However with regard to UL13 mutation, the parental RB-1B stock appeared to be a mixture of wild type and mutant viruses, indicating that the BAC cloning has selected a mutant clone. Although further studies are needed to evaluate the role of these genes in the horizontal-spreading defective phenotype, our data clearly indicate that mutations in these genes do not affect the oncogenicity of MDV.  相似文献   

9.
The differentiation of Marek's disease virus (MDV)-infected and vaccinated animal (DIVA) test, based on the MDV pp38 gene was described by Baigent et al. [(2016). Real-time PCR for differential quantification of CVI988 vaccine and virulent MDV strains. Journal of Virological Methods, 233, 23-36], using similar primers and alternate probes for virulent MDV-1 and the vaccine CVI988 virus. We explored the assay’s applicability for commercial vaccines and commercial chickens, as the above-mentioned study employed tissue-cultured MDV strains and tissues from experimental trials. DNA of visceral organs and feathers of vaccinated or naturally infected chickens was used. Further, the applicability of the DIVA assay was evaluated using single or duplexed probes for the two viruses in the same amplification tube. Due to the high viral content in the commercial vaccines and in the clinical cases of MDV-1 infected commercial chickens, their examination by the MDV-1 DIVA real-time PCR was performed in one step. However, for the feather DNAs of commercially vaccinated birds, a step of pre-amplification was required. The MDV-1 DIVA real-time PCR performed as single probe in separate tubes using the Vir3 probe was very sensitive for virulent MDV-1 strains, but not very specific, as it also gave a clear signal with CVI988 vaccine virus. In contrast, the CVI vaccine probe was specific for CVI988, and did not recognize the MDV-1 strains. When both probes were present in one tube, the CVI probe showed a greater sensitivity for CV1988, while the Vir3 probe showed a much better specificity for virulent MDV-1.  相似文献   

10.
Characterization of very virulent Marek's disease viruses isolated in Japan   总被引:1,自引:0,他引:1  
Pathogenicity of two isolates of Marek's disease virus (MDV), MS1 and MS2, from chickens was examined in two genetically different strains of chickens, MD-susceptible P-2 chickens and less susceptible PDL-1 chickens. The isolates induced an early mortality syndrome unassociated with lymphoproliferative lesions in P-2 chickens. There were no significant differences in pathogenicity between our isolates and the Md/5 strain of very virulent MDV (vvMDV) in both P-2 and PDL-1 chickens. Protective indices of turkey herpes virus (HVT) vaccine against challenge with MS1 or MS2 in P-2 chickens were 54% and 28%, respectively, whereas HVT gave more than 80% protection in PDL-1 chickens. These results indicate that the two isolates could be classified as vvMDV. In contrast, a bivalent vaccine composed of HVT and serotype 2 MDV, and CVI988 vaccine gave good protection against challenge with the isolates in P-2 chickens; however, the best protection was given by the CBI988 vaccine. This is the first report of isolation of vvMDV in Japan.  相似文献   

11.
Liu X  Peng D  Wu X  Xing L  Zhang R 《Acta virologica》1999,43(2-3):201-204
Recombinant fowlpox virus (rFPV) was constructed to express glycoprotein B (gB) gene from CVI988/Rispens strain of Marek's disease virus (MDV). The rFPV-gB/R alone and in combination with herpesvirus of turkey (HVT) preparations were evaluated for their protective efficacy against challenge with very virulent MDV strains Md5 and RB1B in different chickens. The rFPV-gB/R alone induced protection comparable to that by HVT vaccines in both Ab- SPF chickens and Ab+ production chickens. Significant protective synergism was observed in one of these two types of commercial production chickens when rFPV-gB/R was combined with HVT of either cell-associated or cell-free preparations. Immunogenesis studies showed that rFPV-gB/R, just like conventional vaccines, significantly reduced the level of viremia, splenocytes infection and feather follicle shedding of challenge virus in vaccinated chickens.  相似文献   

12.
ABSTRACT

In previous studies, we have demonstrated that very virulent plus Marek’s disease viruses (vv+MDV) are highly immunosuppressive in commercial meat-type chickens. The specific objectives of this work were to evaluate if vv+MDV immunosuppression (MDV-IS) is induced by reduction of lymphocyte responsiveness and/or viability. Three experiments were conducted to (i) compare vv+MDV 686 with a partially attenuated 686-BAC; (ii) compare vv+MDV strains (648A and 686) with vMDV (GA) and vvMDV (Md5); and (iii) compare chickens vaccinated with Md5-BACΔMEQ and with CVI988?+?HVT. In each experiment, spleens were collected at 28–30 days post infection and lymphocytes were isolated and investigated in three ways: their proliferative response to Concanavalin A (ConA) was analysed by MTT proliferation assay; cell death, and expression of CD45 and MHC-I was studied by flow cytometry; and MHC-IA and β-2 microglobulin (B2M) expression was evaluated by real time RT-PCR. Splenocytes of chickens inoculated with vv+MDV were severely impaired to proliferate when exposed to ConA. Furthermore, vv+MDV induced severe splenocyte death that did not occur after infection with v or vvMDV strains. Vaccination with CVI988?+?HVT, and at less level with Md5-BACΔMEQ reduced these negative effects. This is in contrast to our previous results in which Md5-BACΔMEQ but not CVI988?+?HVT protected against MDV-IS suggesting that although cell death and decrease lymphocyte function seem to be related to MDV virulence and certainly will be associated with immunosuppression, they might not fully explain the previously reported MDV-IS.

RESEARCH HIGHLIGHTS
  • vv+MDV induces extensive death in splenocytes in meat-type chickens 28–30?dpi.

  • vv+MDV impairs lymphocyte function in meat-type chickens 28–30?dpi.

  • Vaccination protects against splenocyte death and reduced lymphocyte function.

  • Cell lysis and reduced lymphocyte function do not fully explain MDV-IS.

  相似文献   

13.
A fowlpox recombinant expressing the pp38 antigen of Marek's disease virus has been constructed. Production of pp38 in chick embryo fibroblasts (CEF) infected at a m.o.i. of 1 pfu/cell occurred over a period of 5 days and reached a peak at 72 h after infection. The pp38 antigen could be released from infected cells by freezing and thawing. Western blot analysis showed that denatured pp38 antigen reacted with antisera from chickens inoculated with serotype 1 MDV but failed to react with antisera from chickens inoculated with MDV serotype 2 or HVT. The results suggest that MDV pp38 contains a serotype 1-specific epitope which becomes available upon denaturation of the antigen and that this could be exploited to identify MDV-specific antibodies in epidemiological studies. The relationship between pp38 and the related polypeptides pp24 and pp41 in MDV-infected cells was also examined. The results suggest that pp24 and pp38 are synthesised independently and that MDV coded proteins (probably a protein kinase) might be required to convert pp38 to pp41.  相似文献   

14.
A radioactive PCR test was developed that amplified the very virulent Marek's disease virus-1 (vvMDV-1) DNA sequence containing the 132 bp repeats. In apathogenic MDV-1 (CVI 988, Rispens), amplified DNA bands containing multiple copies of 132 bp repeats were identified. In the present study this PCR technique was used to monitor the passage level of vvMDV-1 in chicken embryo fibroblasts (CEF) in which the number of tandem 132 bp repeats was increased. It was found that at passage level 32 of vvMDV-1-B isolate, the 132 bp tandem repeat was already markedly amplified and its pattern resembled that of the MDV-1 (CVI 988, Rispens) vaccine virus DNA. In the vvMDV-1Z strain, amplification of the 132 bp repeat was not detectable at a similar passage level. The PCR test demonstrated that the apathogenic MDV-1 Md11/75c virus developed by extensive in vitro passaging has amplified 132 bp DNA repeats similar to those of the commercial vaccine virus (CVI 988, Rispense). It was also found that the pattern of viral RNA from infected cells detectable by Northern blot hybridization was markedly changed from a 2.4 kb RNA species in cells infected with vvMDV-1 viruses, to four RNA species (ranging from 2.2 to 4.4 kb) in cells infected with passage 32 of MDV-1-B strain, to a very large number of undefined RNA species synthesized in cells infected with attenuated MDV-1 viruses (CVI 988, Rispens and Md 11/75c).  相似文献   

15.
Phylogenetic analyses based on concatenated amino acid sequences from orthologous loci from eight genomes of alpha herpesviruses infecting birds provided strong support for the following hypotheses: (1) gallid HV3 is a sister taxon to gallid HV2 but gallid HV1 is not closely related to the other two chicken herpesviruses; (2) meleagrid HV1 is closer to both gallid HV2 and gallid HV3 than is gallid HV1; (3) within gallid HV2, the virulent GA genome forms an outgroup to both the avirulent CVI988 genome and the highly virulent Md5 and Md11 genomes. Analysis of the pattern of synonymous nucleotide substitution between orthologous genes shared by four complete genomes of gallid HV2 showed strong evidence of past events of homologous recombination that homogenized certain loci between genomes. Eight of these loci represented cases of loci homogenized between the CVI988, on the one hand, and the Md5 and Md11 genomes, on the other hand. Two others represented loci where the GA genome was homogenized with those of Md5 and Md11. The two loci (UL49.5 and RLORF12) that were homogenized among the virulent genomes GA, Md5, and Md11 are candidates for contributing to viral virulence.  相似文献   

16.
Marek’s disease virus (MDV), an alphaherpesvirus, causes Marek’s disease (MD), a lymphoproliferative disease in poultry characterized by T-cell lymphomas, nerve lesions, and mortality. Vaccination is used worldwide to control MD, but increasingly virulent field strains can overcome this protection, driving a need to create new vaccines. Previous studies revealed that insertion of reticuloendotheliosis virus (REV) long terminal repeat (LTR) into a bacterial artificial chromosome (BAC) clone of a very virulent strain of MDV, Md5, rendered the resultant recombinant virus, rMd5 REV-LTR BAC, fully attenuated in maternal antibody positive (Mab+) chickens at passage 40. In the current study, the protective efficacy of rMd5 REV-LTR BAC was evaluated. First, passage 70 was identified as being fully attenuated in maternal antibody negative chickens and chosen as the optimal passage level for use in protective efficacy studies. Second, three protective efficacy trials were conducted comparing the rMd5 REV-LTR p70 BAC to the CVI988/Rispens vaccine. Groups of Mab+ and Mab? 15I5?×?71 chickens were vaccinated in ovo at 18 days of embryonation or intra-abdominally at day of hatch, and challenged at 5 days post-hatch with the vv+MDV strain 686. Vaccination at day of hatch and in ovo with rMd5 REV-LTR p70 BAC protected chickens against MDV-induced bursa and thymic atrophy, but did not provide the same level of protection against MD tumours as that afforded by the commercial vaccine, CVI988/Rispens.  相似文献   

17.
In chickens vaccinated with MDV strain CVI 988, HVT strain FC 126 or PB-THV 1, no MDV-specific antigens could be demonstrated in the feather follicle epithelium by immunofluorescence (IF). In chickens given virulent MDV strains, the epithelium of the feather follicle was positive in IF. In an experiment where chickens were vaccinated with strain CVI 988, positive IF was observed in the lung, bursa and pancreas, but not in the feather follicle epithelium, kidney, cloaca, or caecal tonsils. Absence of IF antigen in the skin may be indicative of avirulence of the strain of MDV.  相似文献   

18.
Marek’s disease virus (MDV) is a cell-associated α-herpesvirus of chickens. It is difficult to grow MDV in suspension culture. Therefore, MDV vaccines are currently produced using adherent primary chicken embryo fibroblasts, and on a large scale this is labour-intensive and costly. In this study, the CVI988 strain of MDV was inoculated into chicken fibroblast cell line UMNSAH/DF-1 (DF-1) cultured by microcarrier suspension for the proliferation experiment. Moreover, the effects of culture conditions, such as inoculation method, multiplicity of infection (MOI), microcarrier concentration, and pH value, on the proliferation of MDV were investigated. The results demonstrated that the maximum viral load of 64.76?±?2.64?×?106 PFU/flask in a working volume of 100?ml could be obtained using synchronous cell seeding and inoculation method at an MOI of 0.02 and a microcarrier concentration of 5?g/l at pH 7.2. At the same time, the CVI988/DF-1 vaccines prepared by the microcarrier culture process and the traditional adherent cell culture process (CVI988/Rispens) were compared through bird experiments. We found a protective rate of 94.4% using the CVI988/DF-1 vaccine with specific pathogen-free chickens that was equivalent to that of the commercial vaccine CVI988/Rispens (protection rate of 94.1%). In this study, the MDV CVI988/DF-1 vaccine prepared by the microcarrier suspension culture of DF-1 cells could provide effective immune protection for specific pathogen-free chickens, providing a reference for the prevention and control of MD and further development of a large-scale bioreactor for producing the MD vaccine.  相似文献   

19.
Co-cultivation of the JM/102W strain of Marek's disease virus (MDV) with reticuloendotheliosis virus (REV) resulted in the generation of a recombinant MDV containing the REV long terminal repeat (LTR) named the RM1 strain of MDV, a strain that was highly attenuated for oncogenicity but induced severe bursal and thymic atrophy. We hypothesize that the phenotypic changes were solely due to the LTR insertion. Furthermore, we hypothesize that insertion of REV LTR into an analogous location in a different MDV would result in a similar phenotypic change. To test these hypotheses, we inserted the REV LTR into a bacterial artificial chromosome (BAC) clone of a very virulent strain of MDV, Md5, and designated the virus rMd5-RM1-LTR. The rMd5-RM1-LTR virus and the rMd5 virus were passaged in duck embryo fibroblast cells for up to 40 passages before pathogenicity studies. Susceptible chickens were inoculated intra-abdominally at hatch with the viruses rMd5-RM1-LTR, rMd5 BAC parental virus, wild-type strain Md5, or strain RM1 of MDV. The rMd5-RM1-LTR virus was attenuated at cell culture passage 40, whereas the rMd5 BAC without RM1 LTR retained its pathogenicity at cell culture passage 40. Using polymerase chain analysis, the RM1 LTR insert was detected in MDV isolated from buffy coat cells collected from chickens inoculated with rMd5-RM1-LTR, but only at 1 week post inoculation. The data suggest that the presence of the RM1 LTR insert within MDV genome for 1 week post inoculation with virus at hatch is sufficient to cause a reduction in pathogenicity of strain Md5 of MDV.  相似文献   

20.
Marek's disease virus (MDV) gene clones, RA2 and GA8, constructed inE. coli bacteriophage lambda-gt11 (gt11) were identified by a monoclonal antibody (MAb), H19.47, against a putative transformation-related viral antigen consisting of a complex of three phosphorylated polypeptides, pp41, pp38, and pp24. Both recombinants have a MDV-DNA insert of about 0.5 kb and are mapped to the region ofBamHI-H orEcoRI-X fragments of the MDV genome by Southern blot hybridization. Immunoblot and immunoprecipitation with H19.47 identified a recombinant beta-galactosidase-MDV 140-kD fusion protein for RA2 and a 127-kD fusion protein for GA8.Immunoprecipitation of35S-methionine-labeled, MDV-infected chicken embryo fibroblasts (CEF) with antisera against RA2 and GA8 fusion proteins recognized five polypeptides, of which three (p41, p38, and p24) are specified by H19.47 and the remaining two, p135 and p20, have not been previously identified. Immunoprecipitation of32P-phosphate-labeled or3H-glucosamine-labeled, GA-MDV-infected CEF with the antiserum against RA2 fusion protein identified a phosphorylated polypeptide of 38 kD and two glycoproteins of 60 and 49 kD, respectively. The antisera against recombinant fusion proteins thus revealed the existence of epitopes common to the phosphorylated polypeptides and other MDV-specific polypeptides.Sera from chickens or mice hyperimmunized with the purified fusion proteins reacted with serotype 1, MDV-infected CEF in the fluorescent antibody (FA) test to significant titers. These immune sera did not react with either serotype II or III, indicating the serotype specificity of the phosphorylated polypeptides.Requests for reprints should be addressed to Lucy F. Lee, USDA, Agricultural Research Service, Regional Research Laboratory, 3606 East Mount Hope Road, East Lansing, MI 48823, USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号