首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objectives Perfluorinated compounds (PFCs) are a large group of chemicals produced for several decades and widely used for many industrial and consumer applications. Because of their global occurrence in different environmental media, their persistence, and their potential to bioaccumulate in organisms they are of toxicological and public concern. Methods In the present study, the internal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in 356 human plasma samples collected from an adult population in Germany in 2005 is quantified. Results We were able to detect the target analytes in all plasma samples and observed a significant correlation between the PFOS and PFOA concentrations. In female participants, the levels of PFOS and PFOA ranged between 2.5–30.7 (median: 10.9 μg/l) and 1.5–16.2 μg/l (median: 4.8 μg/l), respectively. In males we observed concentrations from 2.1 to 55.0 μg/l (median: 13.7 μg/l) for PFOS and from 0.5 to 19.1 μg/l (median: 5.7 μg/l) for PFOA. A significant correlation between both PFOS and PFOA concentrations and gender was observed. We also found increased levels of the PFCs with increasing age of the participants, but this association reached statistical significance among females only. Conclusions Our data agree well with results of other recent studies in Europe and suggest that the current exposure of the adult German population is lower than the exposure of the US and Canadian population. The sources of human exposure are currently not well understood. Toxicological implications are restricted to animal studies and occupational investigations not adequate for quantitative risk assessment in humans. Overall, more scientific research is necessary to characterize the body burden of PFCs (especially for relevant subsets of the population) and the main sources and routes, which are responsible for human exposure and possible health implications of these compounds.  相似文献   

2.
Objectives Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) can be released of perfluorinated compounds by biotic and/or metabolic decomposition. Due to their ubiquitous occurrence, persistence and bioaccumulative properties they can be found in blood of the general population all over the world. In animal studies PFOS and PFOA provoked cancer and showed developmental toxic potential besides other adverse health effects. On the basis of the comparison of maternal and umbilical cord plasma sample pairs we wanted to examine whether infants are exposed to PFOS and PFOA via their mothers’ blood. Methods We determined PFOS and PFOA in 11 plasma samples of mothers and the 11 corresponding cord plasma samples of neonates. An analytical method based on plasma protein precipitation followed by HPLC with MS/MS-detection was employed. As internal standards we used 1,2,3,4-13C4-PFOS and 1,2-13C2-PFOA. Results We found PFOS and PFOA in every plasma sample analysed. In maternal plasma samples PFOS concentrations were consistently higher compared to those of the related cord plasma samples (median: 13.0 μg/l vs. 7.3 μg/l). In the case of PFOA we observed only minor differences between PFOA concentrations within the analysed sample pairs (median: 2.6 μg/l vs. 3.4 μg/l for maternal and cord plasma samples, respectively). Discussion For both substances a crossing of the placental barrier could be shown. For PFOS we observed a decrease from maternal to cord plasma concentrations by a factor of 0.41–0.80. To the contrary, PFOA crosses the placental barrier obviously unhindered. These findings show that neonates are exposed to PFOS and PFOA via their mothers’ blood. Given the current situation that only little is known about the consequences of PFOS and PFOA exposure in the early state of development of humans and the fact that in animal studies both substances showed developmental toxic effects further research regarding human health effects is indispensable.  相似文献   

3.
Background: Perfluorochemicals (PFCs) are detectable in the general population and in the human environment, including house dust. Sources are not well characterized, but isomer patterns should enable differentiation of historical and contemporary manufacturing sources. Isomer-specific maternal–fetal transfer of PFCs has not been examined despite known developmental toxicity of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in rodents.Objectives: We elucidated relative contributions of electrochemical (phased out in 2001) and telomer (contemporary) PFCs in dust and measured how transplacental transfer efficiency (TTE; based on a comparison of maternal and cord sera concentrations) is affected by perfluorinated chain length and isomer branching pattern.Methods: We analyzed matching samples of house dust (n = 18), maternal sera (n = 20), and umbilical cord sera (n = 20) by isomer-specific high-performance liquid chromatography tandem mass spectrometry.Results: PFOA isomer signatures revealed that telomer sources accounted for 0–95% of total PFOA in house dust (median, 31%). This may partly explain why serum PFOA concentrations are not declining in some countries despite the phase-out of electrochemical PFOA. TTE data indicate that total branched isomers crossed the placenta more efficiently than did linear isomers for both PFOS (p < 0.01) and PFOA (p = 0.02) and that placental transfer of branched isomers of PFOS increased as the branching point moved closer to the sulfonate (SO3) end of the molecule.Conclusions: Results suggest that humans are exposed to telomer PFOA, but larger studies that also account for dietary sources should be conducted. The exposure profile of PFOS and PFOA isomers can differ between the mother and fetus—an important consideration for perinatal epidemiology studies of PFCs.  相似文献   

4.
In May 2006, a serious environmental contamination with perfluorinated compounds (PFCs) became evident in a rural area of North Rhine-Westphalia (NRW) (Region Sauerland), Germany. In autumn 2006, we performed a human biomonitoring study in which a 4-8-fold increase in perfluorooctanoate (PFOA)-plasma concentrations of children, their mothers and men living in Arnsberg (District Hochsauerlandkreis, NRW) was observed compared with a reference population. The exposure was clearly related to the consumption of PFOA-contaminated tap water. However, there is no clear information on the duration of this contamination. The current investigation involves the analysis of PFCs in 30 blood samples of young adults (age 20-31 years) who had ever lived in the affected area. The samples were taken between 1977 and 2004 and stored at the German Environmental Specimen Bank for Human Tissues. Analyses of PFOA, perfluoroctanesulfonate (PFOS), perfluorohexanoate (PFHxA), perfluorohexanesulfonate (PFHxS), perfluoropentanoate (PFPA) and perfluorobutanesulfonate (PFBS) in blood plasma were performed by solid-phase extraction, HPLC and MS/MS detection. PFOA values (median, range) were 6.1, 1.7-40.7 microg/l, PFOS values were 18.8, 8.1-150.7 microg/l and PFHxS values were 1.7, 0.5-4.6 microg/l. The concentrations of PFHxA, PFPA and PFBS in plasma were all below limit of detection. Time-trend analysis showed that between 1977 and 2004 PFOA and PFOS levels remained fairly stable. PFOS and PFOA levels were in the range of current background levels of the general population. In contrast, PFHxS plasma levels have steadily increased since 1977. There was a close association between PFOS and PFOA-plasma levels. From this pilot study there are no indications for an increased exposure to PFCs of residents in Arnsberg in the years 1977-2004 prior to the contamination in 2006.  相似文献   

5.
Background: Prenatal exposures to polyfluoroalkyl compounds (PFCs) may be associated with adverse changes in fetal and postnatal growth.Objective: We explored associations of prenatal serum concentrations of perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and perfluorohexane sulfonate (PFHxS) with fetal and postnatal growth in girls.Methods: We studied a sample of 447 singleton girls and their mothers participating in the Avon Longitudinal Study of Parents and Children (ALSPAC). Data on weight and length were obtained at birth and at 2, 9, and 20 months. Serum samples were obtained in 1991–1992, from mothers during pregnancy. We explored associations between prenatal PFC concentrations and weight at birth as well as longitudinal changes in weight-for-age SD scores between birth and 20 months.Results: PFOS (median, 19.6 ng/mL), PFOA (median, 3.7 ng/mL), and PFHxS (median, 1.6 ng/mL) were detected in 100% of samples. On average, girls born to mothers with prenatal concentrations of PFOS in the upper tertile weighed 140 g less [95% confidence interval (CI): –238, –42] at birth than girls born to mothers with concentrations in the lower tertile in adjusted models. Similar patterns were seen for PFOA (–133 g; 95% CI: –237, –30) and PFHxS (–108 g; 95% CI: –206, –10). At 20 months, however, girls born to mothers with prenatal concentrations of PFOS in the upper tertile weighed 580 g more (95% CI: 301, 858) when compared with those in the lower tertile. No differences in weight were found for PFOA and PFHxS.Conclusions: Girls with higher prenatal exposure to each of the PFCs examined were smaller at birth than those with lower exposure. In addition, those with higher exposure to PFOS were larger at 20 months.  相似文献   

6.
After detection of perfluorooctanoate (PFOA) in drinking water at concentrations up to 0.64 μg/l in Arnsberg, Sauerland, Germany, the German Drinking Water Commission (TWK) assessed perfluorinated compounds (PFCs) in drinking water and set for the first time worldwide in June 2006 a health-based guide value for safe lifelong exposure at 0.3 μg/l (sum of PFOA and perfluorooctanesulfonate, PFOS). PFOA and PFOS can be effectively removed from drinking water by percolation over granular activated carbon. Additionally, recent EU-regulations require phasing out use of PFOS and ask to voluntarily reduce the one of PFOA. New and shorter-chained PFCs (C4–C7) and their mixtures are being introduced as replacements. We assume that some of these “new” compounds could be main contributors to total PFC levels in drinking water in future, especially since short-chained PFCs are difficult to remove from drinking water by common treatment techniques and also by filtration over activated carbon. The aims of the study were to summarize the data from the regularly measured PFC levels in drinking water and in the drinking water resources in North Rhine-Westphalia (NRW) for the sampling period 2008–2009, to give an overview on the general approach to assess PFC mixtures and to assess short-chained PFCs by using toxicokinetic instead of (sub)chronic data. No general increase of substitutes for PFOS and PFOA in wastewater and surface water was detected. Present findings of short-chained PFC in drinking waters in NRW were due to extended analysis and caused by other impacts. Additionally, several PFC contamination incidents in drinking water resources (groundwater and rivers) have been reported in NRW. The new approach to assess short-chained PFCs is based on a ranking of their estimated half-lives for elimination from the human body. Accordingly, we consider the following provisional health-related indication values (HRIV) as safe in drinking water for lifelong exposure: perfluorobutanoate (PFBA) 7 μg/l, perfluoropentanoate (PFPA) 3 μg/l, perfluorohexanoate (PFHxA) 1 μg/l, perfluoroheptanoate (PFHpA) 0.3 μg/l, perfluorobutanesulfonate (PFBS) 3 μg/l, perfluoropentanesulfonate (PFPS) 1 μg/l, perfluorohexanesulfonate (PFHxS) 0.3 μg/l and perfluoroheptanesulfonate (PFHpS) 0.3 μg/l. For all PFCs the long-term lowest maximal quality goal (general precautionary value, PVg) in drinking water is set to −0.1 μg/l.  相似文献   

7.
BACKGROUND: Polyfluoroalkyl chemicals (PFCs) have been used since the 1950s in numerous commercial applications. Exposure of the general U.S. population to PFCs is widespread. Since 2002, the manufacturing practices for PFCs in the United States have changed considerably. OBJECTIVES: We aimed to assess exposure to perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), and eight other PFCs in a representative 2003-2004 sample of the general U.S. population >or= 12 years of age and to determine whether serum concentrations have changed since the 1999-2000 National Health and Nutrition Examination Survey (NHANES). METHODS: By using automated solid-phase extraction coupled to isotope dilution-high-performance liquid chromatography-tandem mass spectrometry, we analyzed 2,094 serum samples collected from NHANES 2003-2004 participants. RESULTS: We detected PFOS, PFOA, PFHxS, and PFNA in > 98% of the samples. Concentrations differed by race/ethnicity and sex. Geometric mean concentrations were significantly lower (approximately 32% for PFOS, 25% for PFOA, 10% for PFHxS) and higher (100%, PFNA) than the concentrations reported in NHANES 1999-2000 (p < 0.001). CONCLUSIONS: In the general U.S. population in 2003-2004, PFOS, PFOA, PFHxS, and PFNA serum concentrations were measurable in each demographic population group studied. Geometric mean concentrations of PFOS, PFOA, and PFHxS in 2003-2004 were lower than in 1999-2000. The apparent reductions in concentrations of PFOS, PFOA, and PFHxS most likely are related to discontinuation in 2002 of industrial production by electrochemical fluorination of PFOS and related perfluorooctanesulfonyl fluoride compounds.  相似文献   

8.
Background: For > 50 years, polyfluoroalkyl compounds (PFCs) have been used worldwide, mainly as surfactants and emulsifiers, and human exposure to some PFCs is widespread.Objectives: Our goal was to report PFC serum concentrations from a convenience sample of Dallas, Texas, children from birth to < 13 years of age, and to examine age and sex differences in PFC concentrations.Methods: We analyzed 300 serum samples collected in 2009 for eight PFCs by online solid phase extraction–high performance liquid chromatography–isotope dilution–tandem mass spectrometry.Results: Perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) were detected in > 92% of participants; the other PFCs measured were detected less frequently. Overall median concentrations of PFOS (4.1 ng/mL) were higher than those for PFOA (2.85 ng/mL), PFNA (1.2 ng/mL), and PFHxS (1.2 ng/mL). For PFOS, PFOA, PFNA, and PFHxS, we found no significant differences (p < 0.05) by sex, significantly increasing concentrations for all four chemicals by age, and significantly positive correlations between all four compounds.Conclusions: We found no significant differences in the serum concentrations of PFOS, PFOA, PFNA, and PFHxS by sex, but increasing concentrations with age. Our results suggest that these 300 Texas children from birth through 12 years of age continued to be exposed to several PFCs in late 2009, years after changes in production of some PFCs in the United States.  相似文献   

9.
We detected nine perfluorinated compounds (PFCs) in 233 human whole-blood samples collected from 12 cities (from 12 provinces and districts) in China. Perfluorinated compounds could be detected in all blood samples, with perfluorooctane sulfonate (C8, PFOS) as the most prominent PFC. Mean PFOS concentrations were measured at 3.06 to 34.0?μg/L, accounting for the majority of the total perfluorinated compounds (ΣPFCs) (54-87%) in blood samples, except those from Kunming. Perfluorooctane sulfonate and perfluorohexane sulfonate (C6, PFHxS) concentrations were positively correlated in blood samples (p < 0.01). Significant relations among perfluorooctanoate (C8, PFOA), perfluorononanoic acid (C9, PFNA), perfluorodecanoic acid (C10, PFDA), and perfluoroundecanoic acid (C11, PFUnDA) (p < 0.05) were also observed in the present study, indicating that they may come from a similar exposure pathway in China. In general, gender-related differences were found for PFHxS and ΣPFCs concentrations, which were significantly higher in males than in females (p < 0.05). In the 20- to 29-year age group, gender influence was also found for PFHxS and PFOS concentrations. The mean blood concentration of PFOS (10.6 μg/L) in the present study was comparable with results from other countries, while PFOA and PFHxS (1.39 μg/L and 0.57 μg/L, respectively) were often lower. This can probably be attributed to a different exposure pathway of the general population in China as compared to other countries.  相似文献   

10.
BackgroundPerfluoroalkyl acids (PFAAs) are widely distributed in the environment and humans are globally exposed with them. Contaminated drinking water can considerably contribute to the inner exposure levels.ObjectivesWe report the results of a human biomonitoring study with mother–child pairs living in two German cities, one city with PFAA contaminated drinking water in the sub μg/l-range (Bochum) and the other one without contamination (Duisburg). Furthermore, we studied time trends of exposure levels within the Duisburg cohort study.MethodsWe measured seven PFAAs (PFOS, PFOA, PFHxS, PFNA, PFBS, PFDeA, PFDoA) in blood samples by high performance liquid chromatography and tandem mass spectrometry. Samples were taken during pregnancy, from umbilical cord blood (2000–2002), 6–7 years (5th follow-up) and 8–10 years after birth (7th follow-up). The consumption of drinking water was recorded by a standardized questionnaire. Statistical analyses were calculated with multiple linear regression models.ResultsChildren and mothers from Bochum showed higher PFOS and PFOA plasma concentrations than from Duisburg. The median concentrations (μg/l) for children were: PFOS 4.7 vs. 3.3; PFOA 6.0 vs. 3.6 μg/l (p  0.05). Consumption of >0.7 l (children) and >0.9 l (mothers) drinking water/day was associated with 13–18% higher PFOS, PFOA and PFHxS concentrations in children (p  0.01), and 22% higher PFOA in mothers (p  0.05). Within the Duisburg cohort, PFAA levels in children peaked in the 5th follow-up study (medians (μg/l): cord plasma: 2.7 (PFOS); 1.9 (PFOA); 5th follow-up: 3.6 (PFOS); 4.6 (PFOA); 7th follow-up: 3.3 (PFOS); 3.6 (PFOA)). PFOS concentrations in mothers declined from pregnancy to the 5th follow-up (medians: 8.7 vs. 4.0 μg/l).ConclusionResidents exposed to PFOS and PFOA through drinking water showed significantly higher PFOS and PFOA concentrations in blood plasma. Although PFAA concentrations in the children slightly decreased from the 5th to the 7th follow-up, we detected increasing exposure trends with increasing age in the 7th follow-up.  相似文献   

11.
OBJECTIVE: 40,000 residents in Arnsberg, Germany, had been exposed to drinking water contaminated with perfluorinated compounds (PFCs). Internal exposure of the residents of Arnsberg to six PFCs was assessed in comparison with reference areas. DESIGN AND PARTICIPANTS: One hundred seventy children (5-6 years of age), 317 mothers (23-49 years), and 204 men (18-69 years) took part in the cross-sectional study. MEASUREMENTS: Individual consumption of drinking water and personal characteristics were assessed by questionnaire and interview. Perfluorooctanoate (PFOA), perfluorooctanesulfonate (PFOS), perfluorohexanoate, perfluorohexanesulfonate (PFHxS), perfluoropentanoate, and perfluorobutanesulfonate (PFBS) in blood plasma and PFOA/PFOS in drinking water samples were measured by solid-phase extraction, high-performance liquid chromatrography, and tandem mass spectrometry detection. RESULTS: Of the various PFCs, PFOA was the main compound found in drinking water (500-640 ng/L). PFOA levels in blood plasma of residents living in Arnsberg were 4.5-8.3 times higher than those for the reference population (arithmetic means Arnsberg/controls: children 24.6/5.2 microg/L, mothers 26.7/3.2 microg/L, men 28.5/6.4 microg/L). Consumption of tap water at home was a significant predictor of PFOA blood concentrations in Arnsberg. PFHxS concentrations were significantly increased in Arnsberg compared with controls (p < 0.05). PFBS was detected in 33% of the children, 4% of the women, and 13% of the men in Arnsberg compared with 5%, 0.7%, and 3%, respectively, in the reference areas (p < 0.05). Regression analysis showed that age and male sex were significant predictors of PFOS, PFOA, and PFHxS; associations of other regressors (diet, body mass index) varied among PFCs. CONCLUSIONS: PFC concentrations in blood plasma of children and adults exposed to PFC-contaminated drinking water were increased 4- to 8-fold compared with controls.  相似文献   

12.

Background

The C8 Health Project was established in 2005 to collect data on perfluorooctanoic acid (PFOA, or C8) and human health in Ohio and West Virginia communities contaminated by a fluoropolymer production facility.

Objective

We assessed PFOA exposure via contaminated drinking water in a subset of C8 Health Project participants who drank water from private wells.

Methods

Participants provided demographic information and residential, occupational, and medical histories. Laboratory analyses were conducted to determine serum-PFOA concentrations. PFOA data were collected from 2001 through 2005 from 62 private drinking water wells. We examined the relationship between drinking water and PFOA levels in serum using robust regression methods. As a comparison with regression models, we used a first-order, single-compartment pharmacokinetic model to estimate the serum:drinking-water concentration ratio at steady state.

Results

The median serum PFOA concentration in 108 study participants who used private wells was 75.7 μg/L, approximately 20 times greater than the levels in the U.S. general population but similar to those of local residents who drank public water. Each 1 μg/L increase in PFOA levels in drinking water was associated with an increase in serum concentrations of 141.5 μg/L (95% confidence interval, 134.9–148.1). The serum:drinking-water concentration ratio for the steady-state pharmacokinetic model was 114.

Conclusions

PFOA-contaminated drinking water is a significant contributor to PFOA levels in serum in the study population. Regression methods and pharmacokinetic modeling produced similar estimates of the relationship.  相似文献   

13.

Background

Polyfluoroalkyl chemicals (PFCs) have been widely used in consumer products. Exposures in the United States and in world populations are widespread. PFC exposures have been linked to various health impacts, and data in animals suggest that PFCs may be potential developmental neurotoxicants.

Objectives

We evaluated the associations between exposures to four PFCs and parental report of diagnosis of attention deficit/hyperactivity disorder (ADHD).

Methods

Data were obtained from the National Health and Nutrition Examination Survey (NHANES) 1999–2000 and 2003–2004 for children 12–15 years of age. Parental report of a previous diagnosis by a doctor or health care professional of ADHD in the child was the primary outcome measure. Perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS) levels were measured in serum samples from each child.

Results

Parents reported that 48 of 571 children included in the analysis had been diagnosed with ADHD. The adjusted odds ratio (OR) for parentally reported ADHD in association with a 1-μg/L increase in serum PFOS (modeled as a continuous predictor) was 1.03 [95% confidence interval (CI), 1.01–1.05]. Adjusted ORs for 1-μg/L increases in PFOA and PFHxS were also statistically significant (PFOA: OR = 1.12; 95% CI, 1.01–1.23; PFHxS: OR = 1.06; 95% CI, 1.02–1.11), and we observed a nonsignificant positive association with PFNA (OR = 1.32; 95% CI, 0.86–2.02).

Conclusions

Our results, using cross-sectional data, are consistent with increased odds of ADHD in children with higher serum PFC levels. Given the extremely prevalent exposure to PFCs, follow-up of these data with cohort studies is needed.  相似文献   

14.
Background: Perfluorinated compounds (PFCs) are ubiquitous pollutants. Experimental data suggest that they may be associated with adverse health outcomes, including asthma. However, there is little supporting epidemiological evidence.Methods: A total of 231 asthmatic children and 225 nonasthmatic controls, all from northern Taiwan, were recruited in the Genetic and Biomarkers study for Childhood Asthma. Structure questionnaires were administered by face-to-face interview. Serum concentrations of 11 PFCs and levels of immunological markers were also measured. Associations of PFC quartiles with concentrations of immunological markers and asthma outcomes were estimated using multivariable regression models.Results: Nine PFCs were detectable in most children (≥ 84.4%), of which perfluorooctane sulfonate (PFOS) was the most abundant (median serum concentrations of 33.9 ng/mL in asthmatics and 28.9 ng/mL in controls). Adjusted odds ratios for asthma among those with the highest versus lowest quartile of PFC exposure ranged from 1.81 (95% CI: 1.02, 3.23) for the perfluorododecanoic acid (PFDoA) to 4.05 (95% CI: 2.21, 7.42) for perfluorooctanic acid (PFOA). PFOS, PFOA, and subsets of the other PFCs were positively associated with serum IgE concentrations, absolute eosinophil counts (AEC), eosinophilic cationic protein (ECP) concentrations, and asthma severity scores among asthmatics.Conclusions: This study suggests an association between PFC exposure and juvenile asthma. Because of widespread exposure to these chemicals, these findings may be of potential public health concern.  相似文献   

15.
Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are important perfluorochemicals (PFCs) in various applications. Recently, it has been shown that these chemicals are widespread in the environment, wildlife and humans. But the kinds of factors that affect their levels in serum are unclear, and it is also not clear whether exposure to them is increasing or not. To investigate the impacts of time, geographical location and sex on the levels of these chemicals, we measured PFOS and PFOA concentrations in human sera samples collected both historically and recently in Miyagi, Akita and Kyoto Prefectures in Japan. The PFOS and PFOA levels in sera [Geometric Mean (Geometric Standard Deviation)] (microg/L) in 2003 ranged from 3.5 (2.9) in Miyagi to 28.1 (1.5) in Kyoto for PFOS and from 2.8 (1.5) to 12.4 (1.4) for PFOA. Historical samples collected from females demonstrated that PFOS and PFOA concentrations have increased by factors of 3 and 14, respectively, over the past 25 yr. There are large sex differences in PFOS and PFOA concentrations in serum at all locations. Furthermore, there are predominant regional differences for both PFOS and PFOA concentrations. In Kyoto the concentrations of PFOA in dwellers who had lived in the Kinki area for more than 2 yr were significantly higher than in people who had recently moved into the area, in both sexes. This finding suggests that there are sources of PFOA in the Kinki area that have raised the PFOA serum levels of its inhabitants. Further studies are needed to elucidate these sources in the Kinki area of Japan.  相似文献   

16.

Objective

Potential neurotoxic effects of perfluorinated compounds (PFCs) have been reported in highly exposed animals, but whether these chemicals are neurotoxic in humans is not known. We therefore investigated whether prenatal exposure to perfluorooctanoic acid (PFOA) or perfluorooctane sulfate (PFOS), two of the most prevalent PFCs, are associated with behavioral or coordination problems in early childhood.

Methods

We used data from the Danish National Birth Cohort, which enrolled mothers in early pregnancy, and we measured maternal blood levels of PFOA and PFOS using specimens drawn around 8 weeks of gestation. When the children reached 7 years of age, mothers completed the Strengths and Difficulties Questionnaire (SDQ, n = 787) and the Developmental Coordination Disorder Questionnaire (DCDQ, n = 526) to assess behavioral health and motor coordination of their children. SDQ scores above the 90th percentile were a priori defined to identify behavioral problems and DCDQ scores below the 10th percentile were defined as a potential DCD.

Results

The median concentrations of PFOS and PFOA in maternal blood were 34.4 ng/mL [interquartile range (IQR), 26.6–44.5] and 5.4 ng/mL (IQR, 4.0–7.1), respectively, similar to distributions reported for populations without occupational exposure. We found no association between higher SDQ scores and maternal levels of PFOS or PFOA, nor did we see any statistically significant association with motor coordination disorders.

Conclusion

The findings suggest that background levels of PFOA and PFOS are not associated with behavioral and motor coordination problems in childhood. However, effects on other developmental end points, including cognitive, attentional, and clinical mental disorders not measured in this study, cannot be ruled out.  相似文献   

17.
Perfluorinated compounds (PFCs) can currently be detected in many environmental media and biota, as well as in humans. Because of their persistence and their potential to accumulate they are of toxicological concern. The present review presents the current knowledge of PFC monitoring data in environmental media relevant for human exposure. In this context, PFC concentrations in indoor and ambient air, house dust, drinking water and food are outlined. Furthermore, we summarize human biomonitoring data of PFC levels in blood, breast milk, and human tissues. An estimate of the overall exposure of the general adult population is provided and compared with tolerable intake values. Using a simplified model, the average (and upper) level of daily exposure including all potential routes amounts to 1.6 ng/kg(body weight) (8.8 ng/kg(body weight)) for PFOS and 2.9 ng/kg(body weight) (12.6 ng/kg(body weight)) for PFOA in adults in the general population. The majority of exposure can be attributed to the oral route, mainly to diet. Overall, the contribution of PFOS and PFOA precursors to total exposure seems to be limited. Besides this background exposure of the general population, a specific additional exposure may occur which causes an increased PFC body burden. This has been observed in populations living near PFC production facilities or in areas with environmental contamination of PFCs. The consumption of highly contaminated fish products may also cause an increase in PFC body burdens.  相似文献   

18.
In this study, the concentrations of 13 perfluorinated compounds (PFCs) (PFBuS, PFHxS, PFOS, THPFOS, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTDA, and PFOSA) were analyzed in municipal drinking water samples collected at 40 different locations from 5 different zones of Catalonia, Spain. Detection limits ranged between 0.02 (PFHxS) and 0.85 ng/L (PFOA). The most frequent compounds were PFOS and PFHxS, which were detected in 35 and 31 samples, with maximum concentrations of 58.1 and 5.30 ng/L, respectively. PFBuS, PFHxA, and PFOA were also frequently detected (29, 27, and 26 samples, respectively), with maximum levels of 69.4, 8.55, and 57.4 ng/L. In contrast, PFDoDA and PFTDA could not be detected in any sample. The most contaminated water samples were found in the Barcelona Province, whereas none of the analyzed PFCs could be detected in two samples (Banyoles and Lleida), and only one PFC could be detected in four of the samples. Assuming a human water consumption of 2 L/day, the maximum daily intake of PFOS and PFOA from municipal drinking water would be, for a subject of 70 kg of body weight, 1.7 and 1.6 ng/kg/day. This is clearly lower than the respective Tolerable Daily Intake set by the European Food Safety Authority. In all samples, PFOS and PFOA also showed lower levels than the short-term provisional health advisory limit for drinking water (200 ng PFOS/L and 400 ng PFOA/L) set by the US Environmental Protection Agency. Although PFOS and PFOA concentrations found in drinking water in Catalonia are not expected to pose human health risks, safety limits for exposure to the remaining PFCs are clearly necessary, as health-based drinking water concentration protective for lifetime exposure is set to 40 ng/L for PFOA.  相似文献   

19.

Background

The role of perfluorinated compounds (PFCs) in the immune system and allergic diseases is not well-known. This study examined the effects of pre-natal exposure to PFCs on immunoglobulin E (IgE) levels and atopic dermatitis (AD).

Methods

In Taiwan Birth Panel cohort study, newborns with cord blood and peri-natal factors (i.e. birth body weight, weeks of gestation, and type of delivery) gathered at birth were evaluated. At the age of 2 years, information on the development of AD, environmental exposures, and serum total IgE were collected. The AD and non-AD children were compared for the concentration of cord blood serum PFCs measured by Ultra-performance liquid chromatography/triple–quadrupole mass (UPLC-MS/MS). Correlations among cord blood IgE, serum total IgE at 2 years of age, and cord blood PFC levels were made.

Results

Of 244 children who completed the follow-up and specimen collections, 43 (17.6%) developed AD. Concentrations of cord blood serum perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS) were median (range) 1.71 (0.75–17.40), 5.50 (0.11–48.36), 2.30 (0.38–63.87), and 0.035 (0.035–0.420) ng/mL, respectively. PFOA and PFOS levels positively correlated with cord blood IgE levels (per ln-unit: β=0.134 KU/l, p=0.047 for PFOA; β=0.161 KU/l, p=0.017 for PFOS). Analyses stratified by gender revealed that PFOA and PFOS levels positively correlated with cord blood IgE levels only in boys (per ln-unit: β=0.206 KU/l, p=0.025 for PFOA; β=0.175 KU/l, p=0.053 for PFOS). When dividing cord blood serum PFCs into quartiles in the fully adjusted models, AD had no significant association with PFOS.

Conclusions

Pre-natal PFOA and PFOS exposures positively correlated with cord blood IgE levels.  相似文献   

20.

Background

Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are man-made, persistent organic pollutants widely spread throughout the environment and human populations. They have been found to interfere with fetal growth in some animal models, but whether a similar effect is seen in humans is uncertain.

Objectives

We investigated the association between plasma levels of PFOS and PFOA in pregnant women and their infants’ birth weight and length of gestation.

Methods

We randomly selected 1,400 women and their infants from the Danish National Birth Cohort among those who completed all four computer-assisted telephone interviews, provided the first blood samples between gestational weeks 4 and 14, and who gave birth to a single live-born child without congenital malformation. PFOS and PFOA were measured by high performance liquid chromatography–tandem mass spectrometer.

Results

PFOS and PFOA levels in maternal plasma were on average 35.3 and 5.6 ng/mL, respectively. Only PFOA levels were inversely associated with birth weight (adjusted β = −10.63 g; 95% confidence interval, −20.79 to −0.47 g). Neither maternal PFOS nor PFOA levels were consistently associated with the risk for preterm birth or low birth weight. We observed no adverse effects for maternal PFOS or PFOA levels on small for gestational age.

Conclusion

Our nationwide cohort data suggest an inverse association between maternal plasma PFOA levels and birth weight. Because of widespread exposure to these chemicals, our findings may be of potential public health concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号