首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new isoflavone glycosides, tectorigenin 7-O-β-d-glucopyranoside-4′-O-[β-d-glucopyranosyl-(1″″ → 6′′′)-β-d-glucopyranoside] (1) and iristectorigenin B 4′-O-[β-d-glucopyranosyl-(1′′′ → 6″)-β-d-glucopyranoside] (2), together with 11 known compounds, including six isoflavones, tectorigenin 7-O-β-d-glucopyranoside-4′-O-β-d-glucopyranoside (3), tectorigenin 4′-O-[β-d-glucopyranosyl-(1′′′ → 6″)-β-d-glucopyranoside] (4), tectorigenin 7-O-β-d-glucopyranoside (5), genistein 7-O-β-d-glucopyranoside (6), tectorigenin 4′-O-β-d-glucopyranoside (7), and tectorigenin (8); two phenolic acid glycosides, vanillic acid 4-O-β-d-glucopyranoside (9) and glucosyringic acid (10); a phenylpropanoid glycoside, E-coniferin (11); an auronol derivative, maesopsin 6-O-β-d-glucopyranoside (12); and a pyrrole derivative, 4-(2-formyl-5-hydroxymethylpyrrol-1-yl) butyric acid (13), were isolated from fresh Iris spuria (Calizona) rhizomes. The structures of these compounds were established on the basis of spectroscopic and chemical evidence. Inhibitory effects on the activation of Epstein–Barr virus early antigen were examined for compounds 18 and 12.  相似文献   

2.
A new phenolic glycoside syringate, 4′-hydroxy-2′,6′-dimethoxyphenol 1-O-β-d-(6-O-syringoyl) glucopyranoside (1), together with two known ones, 2′-hydroxy-4′-methoxyphenol 1-O-β-d-(6-O-syringoyl) glucopyranoside (2) and 4′-hydroxy-2′-methoxyphenol 1-O-β-d-(6-O-syringoyl) glucopyranoside (3), were isolated from the bark of Juglans mandshurica MAXIM. var. sieboldiana MAKINO. Their structures were established on the basis of spectral and chemical data.  相似文献   

3.
Five new glycosides, quercetin 3′-O-β-d-galactopyranoside (1), quercetin 3-O-(2″-acetyl)-β-d-glucopyranoside (2), 4,6-dihydroxy-2-methoxyphenyl 1-O-β-d-glucopyranoside (3), 4-hydroxy-2,6-dimethoxyphenyl 1-O-α-l-rhamnopyranosyl (1 → 6)-β-d-glucopyranoside (4) and 3-methyl-but-2-en-1-yl β-d-glucopyranosyl (1 → 6)-β-d-glucopyranoside (5), were isolated from Hypericum erectum Thunb. Their structures were established on the basis of spectral and chemical data.  相似文献   

4.
From dried whole plants of Glechoma hederacea L. (Labiatae), seven known glycosides were isolated and identified: (6R,7E,9R)-megastigma-4,7-dien-3-one 9-O-β-d-glucopyranoside (1), apigenin 7-O-neohesperidoside (2), chrysoeriol 7-O-neohesperidoside (3), (+)-pinoresinol 4,4′-bis-O-β-d-glucopyranoside (4), (+)-syringaresinol 4,4′-bis-O-β-d-glucopyranoside (5), (+)-lariciresinol 4,4′-bis-O-β-d-glucopyranoside (6), and (7R,8R)-threo-7,9,9′-trihydroxy-3,3′-dimethoxy-8-O-4′-neolignan 4-O-β-d-glucopyranoside (7).  相似文献   

5.
A new compound, 4-caffeoyl quinic acid 5-O-methyl ether (2), together with 12 known compounds—identified as (2R,3R)-pterosin L 3-O-β-d-glucopyrannoside (3), β-sitosterol β-d-glucopyranoside (4), apigenin 7-Ο-β-d-glucopyranoside (5), luteolin 7-Ο-β-d-glucopyranoside (6), sucrose (7), caffeic acid (8), pterosin C 3-Ο-β-d-glucopyranoside (9), pteroside C (10), 4,5-dicaffeoyl quinic acid (11), pteroside A (12), wallichoside (13) and (2S)-5,7,3′,5′-tetrahydroxyflavanone (14)—were isolated from Pteris multifida. The structure of the new compound was determined by means of physical, chemical and spectroscopic evidence. Compounds 5 and 6 were the main constituents of the plant, with yields of 0.19% and 0.16%, respectively. The cytotoxic activities of 2, 3, and 913 were evaluated against a human cell line (KB cells). Among the isolated compounds, pterosin C 3-Ο-β-d-glucopyrannoside (9) and 4,5-dicaffeoylquinic acid (11) showed a significant selective cytotoxicity (IC50 2.35 and 5.38, respectively), while moderate activity was observed for compound 2 (IC50 12.3). The chemosystematics of Pteris species is also discussed.  相似文献   

6.
Five new triterpene saponins, arganine L (1), O (2), P (3), Q (4) and R (5), were isolated from the barks of Argania spinosa (L.) Skeels. Arganines L-P and R are bidesmosidic saponins. The structures of 15 were elucidated as 3-O-[β-d-xylopyranosyl-(1–4)-β-d-glucuronopyranosyl]-28-O-[β-d-apiofuranosyl-(1–3)-β-d-xylopyranosyl-(1–4)-α-l-rhamnopyranosyl-(1–2)-α-l-arabinopyranosyl] bayogenin, 3-O-[β-d-xylopyranosyl-(1–4)-β-d-glucuronopyranosyl]-28-O-[β-d-xylopyranosyl-(1–4)-α-l-arabinopyranosyl] bayogenin, 3-O-[β-d-xylopyranosyl-(1–4)-β-d-glucuronopyranosyl]-28-O-[α-l-arabinopyranosyl] bayogenin, 3-O-[β-d-xylopyranosyl-(1–4)-β-d-glucuronopyranosyl] bayogenin, and 3-O-[β-d-apiofuranosyl-(1–4)-β-d-glucuronopyranosyl]-28-O-[β-d-xylopyranosyl-(1–4)-α-l-rhamnopyranosyl-(1–2)-α-l-arabinopyranosyl] bayogenin, respectively, mainly on the basis of their spectroscopic data.  相似文献   

7.
A new compound named pinoresinol 4-O-α-l-rhamnopyranosyl (1 → 2)-β-d-glucopyranoside (1) together with six known compounds, isolariciresinol 9-O-β-D-glucopyranoside (2), apigenin 6,8-di-C-β-d-glucopyranoside (3), luteolin 7-O-neohesperidoside (4), luteolin 7-O-β-d-glucopyranoside (5), 5-methoxyluteolin 7-O-β-d-glucopyranoside (6), and rutin (7), were isolated from the aerial parts of Urtica laetevirens Maxim. All of the above compounds were isolated from this plant for the first time.  相似文献   

8.
Two new neolignan glycosides, (7R, 8R)-threo-guaiacylglycerol-8-O-4′-sinapyl ether 7-O-β-d-glucopyranoside (1) and (7S, 8R)-5-methoxydehydrodiconiferyl alcohol 4-O-β-d-glucopyranoside (2), and four known ones (36), were isolated from the leaves of Osmanthus heterophyllus. The structures of compounds 16 were established on the basis of spectral and chemical data.  相似文献   

9.
Eleven compounds of interest were isolated from the aerial parts of Caryopteris incana, specifically a new acyl derivative (3) of 8-O-acetylharpagide, two new (3R)-oct-1-en-3-ol glycosides (5, 6), and 6-O-caffeoylphlinoside A (11) along with seven known compounds, 8-O-acetylharpagide (1), 6′-O-p-coumaroyl-8-O-acetylharpagide (2), (3R)-oct-1-en-3-ol (matsutake alcohol) O-α-l-arabinopyranosyl-(1″ → 6′)-O-β-d-glucopyranoside (4), apigenin 7-O-neohesperidinoside (7), 6′-O-caffeoylarbutin (8), and two phenylethanoids, leucosceptoside A (9) and phlinoside A (10). This paper deals with structural elucidation of the new compounds.  相似文献   

10.
Seven known lignan glycosides were isolated from the leaves of Osmanthus heterophyllus: (+)-syringaresinol 4-O-β-d-glucopyranoside, (+)-syringaresinol 4, 4′-O-di-β-d-glucopyranoside, (+)-medioresinol 4, 4′-O-di-β-d-glucopyranoside, (+)-medioresinol 4-O-β-d-glucopyranoside, (+)-pinoresinol 4, 4′-O-β-d-glucopyranoside, (+)-epipinoresinol 4-O-β-d-glucopyranoside and phillyrin. Their structures were determined on the basis of spectral data.  相似文献   

11.
Five novel phenolic glycosides, adenophorasides A (1), B (2), C (3), D (4), and E (5), were isolated from commercial Adenophora roots, together with vanilloloside (6), 3,4-dimethoxybenzyl alcohol 7-O-β-d-glucopyranoside (7), and lobetyolin (8). The structures of the new compounds (15) were characterized as 4-hydroxy-3-methoxyphenylacetonitrile 4-O-β-d-glucopyranoside (1), 4-hydroxy-3-methoxyphenylacetonitrile 4-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (2), 4-hydroxy-3-methoxyphenylacetonitrile 4-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (3), 4-hydroxyphenylacetonitrile 4-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (4), and 4-hydroxy-3-methoxybenzyl alcohol 4-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (5), respectively, by means of spectroscopic and chemical analyses.  相似文献   

12.
Two new triterpene saponins, named stellatoside B (1) and erucasaponin A (2), were isolated from a cactaceous plant, Stenocereus eruca A. C. Gibson & K. E. Horak (Machaerocereus eruca Br. & R.). The structures of 1 and 2 were elucidated as 3-O-β-d-xylopyranosyl-(1→2)-β-d-glucopyranosyl-(1→2)-β-d-glucuronopyranosyl stellatogenin and 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→3)]-β-d-glucuronopyranosyl betulinic acid 28-O-α-l-rhamnopyranosyl ester, respectively, on the basis of their spectroscopic data.  相似文献   

13.
From the ethyl acetate fraction of the methanol extract of the needles of Pinus densiflora (Pinaceae), a new diterpenoid glucoside [9α,13α-epoxy-8β,14β-dihydroxy-abietic acid-18-O-β-d-glucopyranoside] (1), two flavonoid glucosides [kaempferol 3-O-β-d-glucoside (2) and 6-C-methyl kaempferol 3-O-β-d-glucoside (3)], and two monoterpenoid glucosides [bornyl 6-O-α-Larabinofuranosyl (1→6)-β-d-glucopyranoside (4) and bornyl 6-O-β-d-apiofuranosyl (1→6)-β-d-glucopyranoside (5)] were isolated and characterized on the basis of spectral analysis. Of all the compounds, 2 and 3 showed peroxynitrite scavenging activity.  相似文献   

14.
Four hydrolyzable tannins [oenothein B (1), eugeniflorin D2 (2), and tellimagrandins I (3) and II (4)], two related polyphenolic compounds [gallic acid (5) and quinic acid 3,5-di-O-gallate (6)], and four myricetin glycosides [myricetins 3-O-β-d-xyloside (7), 3-O-β-d-galactoside (8), 3-O-β-d-galactoside 6″-O-gallate (9), and 3-O-α-l-rhamnoside (10)] were isolated from the leaves of Myrtus communis. Antioxidant activities of the isolated compounds were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay.  相似文献   

15.
A new prenylated flavonoid (1) and two new aliphatic glycosides (2, 3) have been isolated from leaves of Euodia meliaefolia (Hance) Benth., together with three known compounds, (2R,3R)-5,7,4′-trihydroxy-8-(3-methylbut-2-enyl)dihydroflavonol 7-O-β-d-glucopyranoside (phellamurin) (4), (2R,3R)-dihydroquercetin 3′-O-β-d-glucopyranoside (5), and (7R,8S)-dihydrodiconiferyl alcohol 4-O-β-d-glucopyranoside (6). Their structures were determined on the basis of the results of spectroscopic analysis.  相似文献   

16.
A new isoflavone glycoside, 6-methoxy-7-hydroxy-4′-O-β-d-glucosyl isoflavone, glycitein-4′-O-β-d-glucoside (10), along with nine known flavonoids, were isolated from the stem bark of Sophora japonica. The structures of these compounds were determined by analysis of spectroscopic data (1D -, 2D - NMR and HRMS). The inhibitory effects of all the isolated compounds on aldose reductase were evaluated in vitro. Among these compounds, daidzein (1), puerol A (4), and paratensein-7-O-glucoside (9) exhibited potent inhibitory effects, with IC50 values of 3.2, 6.4, and 1.9 μM, respectively.  相似文献   

17.
A new (Z)-3-hexenyl O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside was isolated from the aerial part of Spermacoce laevis, along with 17 known compounds: (6S,9R)-roseoside, (Z)-3-hexenyl O-β-d-glucopyranoside, (Z)-3-hexenyl O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside, (Z)-3-hexenyl O-α-l-arabinopyranosyl-(1→6)-β-d-glucopyranoside, phenyethyl O-β-d-glucopyranoside, phenyethyl O-α-l-arabinopyranosyl-(1→6)-β-d-glucopyranoside, phenyethyl O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside, benzyl O-α-l-arabinopyranosyl-(1→6)-β-d-glucopyranoside, benzyl O-β-d-xylopyranosyl-(1→6)-β-d-glucopyranoside, asperuloside, 6α-hydroxyadoxoside, asperulosidic acid, kaempferol 3-O-β-d-glucopyranoside, kaempferol 3-O-rutinoside, quercetin 3-O-β-d-galactopyranoside, quercetin 3-O-α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranoside, and rutin. The structure determinations were based on physical data and spectroscopic evidence.  相似文献   

18.
From the leaves of Brassica juncea, three kaempferol glycosides, kaempferol-3-O-(2-O-sinapoyl)-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside-7-O-β-d-glucopyranoside (1), kaempferol-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside-7-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (2), and kaempferol-3-O-(2-O-sinapoyl)-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside-7-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (3) were isolated and the structures elucidated on the basis of spectral and chemical evidences. Antioxidant activities were determined by measuring the scavenging activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and peroxynitrite (ONOO). Compounds 1 and 3 showed good antioxidant activities with respective IC50 values of 28.61 and 36.93 μM toward DPPH; respective IC50 values of 9.79 and 11.40 μM toward ONOO. However, compound 2 showed no DPPH scavenging activity and weak ONOO scavenging activity with an IC50 value of 32.00 μM.  相似文献   

19.
Thirteen compounds (113) were isolated from a MeOH extract of leaves of Glochidion rubrum. The structures of four new compounds were elucidated to be (−)-isolariciresinol 2a-O-β-d-glucopyranoside (1), (7R,8S)- and (7R,8R)-4,7,9,9′-tetrahydroxy-3,3′-dimethoxy-8-O-4′-neolignan 7-O-β-d-glucopyranosides (2 and 3, respectively), and tachioside 2′-O-4″-O-methylgallate (4) on detailed inspection of one- and two-dimensional NMR spectral data.  相似文献   

20.
From the fruits of Phaleria macrocarpa, icariside C3 (1), phalerin (2), and mangiferin (3) were isolated and their structures were identified on the basis of spectroscopic data. Icariside C3 (1) showed a slow vasorelaxant activity against noradrenaline-induced contraction of isolated rat aorta. The structure of phalerin (2) was revised as 2,4′,6-trihydroxy-4-methoxybenzophenone-2-O-β-d-glucoside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号