共查询到20条相似文献,搜索用时 11 毫秒
1.
Tsung-Han Tsai Benjamin Potsaid Yuankai K. Tao Vijaysekhar Jayaraman James Jiang Peter J. S. Heim Martin F. Kraus Chao Zhou Joachim Hornegger Hiroshi Mashimo Alex E. Cable James G. Fujimoto 《Biomedical optics express》2013,4(7):1119-1132
We developed a micromotor based miniature catheter with an outer diameter of 3.2 mm for ultrahigh speed endoscopic swept source optical coherence tomography (OCT) using a vertical cavity surface-emitting laser (VCSEL) at a 1 MHz axial scan rate. The micromotor can rotate a micro-prism at several hundred frames per second with less than 5 V drive voltage to provide fast and stable scanning, which is not sensitive to the bending of the catheter. The side-viewing probe can be pulled back to acquire a three-dimensional (3D) data set covering a large area on the specimen. The VCSEL provides a high axial scan rate to support dense sampling under high frame rate operation. Using a high speed data acquisition system, in vivo 3D-OCT imaging in the rabbit GI tract and ex vivo imaging of a human colon specimen with 8 μm axial resolution, 8 μm lateral resolution and 1.2 mm depth range in tissue at a frame rate of 400 fps was demonstrated.OCIS codes: (170.4500) Optical coherence tomography, (170.3880) Medical and biological imaging, (170.2150) Endoscopic imaging, (170.2680) Gastrointestinal, (140.3600) Three-dimensional image acquisition, (110.2350) Fiber optics imaging, (120.5800) Scanners, (120.3890) Medical optics instrumentation 相似文献
2.
Hsiang-Chieh Lee Jonathan J. Liu Yuri Sheikine Aaron D. Aguirre James L. Connolly James G. Fujimoto 《Biomedical optics express》2013,4(8):1236-1254
We demonstrate a compact, ultrahigh speed spectral-domain optical coherence microscopy (SD-OCM) system for multiscale imaging of specimens at 840 nm. Using a high speed 512-pixel line scan camera, an imaging speed of 210,000 A-scans per second was demonstrated. Interchangeable water immersion objectives with magnifications of 10×, 20×, and 40× provided co-registered en face cellular-resolution imaging over several size scales. Volumetric OCM data sets and en face OCM images were demonstrated on both normal and pathological human colon and kidney specimens ex vivo with an axial resolution of ~4.2 µm, and transverse resolutions of ~2.9 µm (10×), ~1.7 µm (20×), and ~1.1 µm (40×) in tissue. In addition, en face OCM images acquired with high numerical aperture over an extended field-of-view (FOV) were demonstrated using image mosaicking. Comparison between en face OCM images among different transverse and axial resolutions was demonstrated, which promises to help the design and evaluation of imaging performance of Fourier domain OCM systems at different resolution regimes.OCIS codes: (170.4500) Optical coherence tomography, (170.3880) Medical and biological imaging, (170.6900) Three-dimensional microscopy, (180.1790) Confocal microscopy 相似文献
3.
Tsai TH Potsaid B Kraus MF Zhou C Tao YK Hornegger J Fujimoto JG 《Biomedical optics express》2011,2(8):2438-2448
We developed a piezoelectric-transducer- (PZT) based miniature catheter with an outer diameter of 3.5 mm for ultrahigh-speed endoscopic optical coherence tomography (OCT). A miniaturized PZT bender actuates a fiber and the beam is scanned through a GRIN lens and micro-prism to provide high-speed, side-viewing capability. The probe optics can be pulled back over a long distance to acquire three-dimensional (3D) data sets covering a large area. Imaging is performed with 11 μm axial resolution in air (8 μm in tissue) and 20 μm transverse resolution, at 960 frames per second with a Fourier domain mode-locked laser operating at 480 kHz axial scan rate. Using a high-speed data acquisition system, endoscopic OCT imaging of the rabbit esophagus and colon in vivo and human colon specimens ex vivo is demonstrated. 相似文献
4.
We designed and implemented a magnetic-driven scanning (MDS) probe for endoscopic optical coherence tomography (OCT). The probe uses an externally-driven tiny magnet in the distal end to achieve unobstructed 360-degree circumferential scanning at the side of the probe. The design simplifies the scanning part inside the probe and thus allows for easy miniaturization and cost reduction. We made a prototype probe with an outer diameter of 1.4 mm and demonstrated its capability by acquiring OCT images of ex vivo trachea and artery samples from a pigeon. We used a spectrometer-based Fourier-domain OCT system and the system sensitivity with our prototype probe was measured to be 91 dB with an illumination power of 850 μW and A-scan exposure time of 1 ms. The axial and lateral resolutions of the system are 6.5 μm and 8.1 μm, respectively.OCIS codes: (170.4500) Optical coherence tomography, (170.3880) Medical and biological imaging, (170.2150) Endoscopic imaging, (120.5800) Scanners 相似文献
5.
Colon phantoms with cancer lesions for endoscopic characterization with optical coherence tomography
Natalia Zulina Oscar Caravaca Guiqiu Liao Sara Gravelyn Morgane Schmitt Keshia Badu Lucile Heroin Michalina J. Gora 《Biomedical optics express》2021,12(2):955
Optical coherence tomography (OCT) is a growing imaging technique for real-time early diagnosis of digestive system diseases. As with other well-established medical imaging modalities, OCT requires validated imaging performance and standardized test methods for performance assessment. A major limitation in the development and testing of new imaging technologies is the lack of models for simultaneous clinical procedure emulation and characterization of healthy and diseased tissues. Currently, the former can be tested in large animal models and the latter can be tested in small animal disease models or excised human biopsy samples. In this study, a 23 cm by 23 cm optical phantom was developed to mimic the thickness and near-infrared optical properties of each anatomical layer of a human colon, as well as the surface topography of colorectal polyps and visual appearance compatible with white light endoscopy. 相似文献
6.
Kaicheng Liang Giovanni Traverso Hsiang-Chieh Lee Osman Oguz Ahsen Zhao Wang Benjamin Potsaid Michael Giacomelli Vijaysekhar Jayaraman Ross Barman Alex Cable Hiroshi Mashimo Robert Langer James G. Fujimoto 《Biomedical optics express》2015,6(4):1146-1163
Depth resolved and en face OCT visualization in vivo may have important clinical applications in endoscopy. We demonstrate a high speed, two-dimensional (2D) distal scanning capsule with a micromotor for fast rotary scanning and a pneumatic actuator for precision longitudinal scanning. Longitudinal position measurement and image registration were performed by optical tracking of the pneumatic scanner. The 2D scanning device enables high resolution imaging over a small field of view and is suitable for OCT as well as other scanning microscopies. Large field of view imaging for screening or surveillance applications can also be achieved by proximally pulling back or advancing the capsule while scanning the distal high-speed micromotor. Circumferential en face OCT was demonstrated in living swine at 250 Hz frame rate and 1 MHz A-scan rate using a MEMS tunable VCSEL light source at 1300 nm. Cross-sectional and en face OCT views of the upper and lower gastrointestinal tract were generated with precision distal pneumatic longitudinal actuation as well as proximal manual longitudinal actuation. These devices could enable clinical studies either as an adjunct to endoscopy, attached to an endoscope, or as a swallowed tethered capsule for non-endoscopic imaging without sedation. The combination of ultrahigh speed imaging and distal scanning capsule technology could enable both screening and surveillance applications.OCIS codes: (170.4500) Optical coherence tomography, (170.3880) Medical and biological imaging, (170.2150) Endoscopic imaging, (170.2680) Gastrointestinal 相似文献
7.
In vivo endoscopic optical coherence tomography of the human gastrointestinal tract--toward optical biopsy 总被引:9,自引:0,他引:9
Jäckle S Gladkova N Feldchtein F Terentieva A Brand B Gelikonov G Gelikonov V Sergeev A Fritscher-Ravens A Freund J Seitz U Soehendra S Schrödern N 《Endoscopy》2000,32(10):743-749
BACKGROUND AND STUDY AIMS: Optical coherence tomography (OCT) is a new technique for high-resolution cross-sectional imaging using infrared light. It has over 10 times the resolution of the currently available ultrasonography. Although in vitro studies have suggested its potential for gastrointestinal imaging, in vivo studies have not been possible so far on account of technical limitations. PATIENTS AND METHODS: We describe here the first clinical study of OCT during routine endoscopy obtaining high resolution images of the normal esophageal, gastric, and colonic mucosa. Portable OCT equipment and a fiberoptic-based flexible probe for endoscopic use have been developed by the authors. RESULTS: Differences in the optical properties of epithelium, lamina propria, muscularis mucosae, and submucosa enabled distinction of the mucosal architecture. Owing to the low penetration depth (1 mm) and high resolution (10 microm), OCT images may become comparable to mucosal histological findings. Image acquisition time was 1.5 seconds, and the entire procedure was completed within 5 minutes. Endoscopic OCT images of colonic adenoma and carcinoma were also studied and compared with the corresponding histology. CONCLUSIONS: The newly developed portable OCT equipment and flexible fiberoptic probe makes OCT a promising method for endoscopic "optical biopsy". 相似文献
8.
Optical Coherence Tomography (OCT) is increasingly used in endoluminal procedures since it provides high-speed and high resolution imaging. Distortion and instability of images obtained with a proximal scanning endoscopic OCT system are significant due to the motor rotation irregularity, the friction between the rotating probe and outer sheath and synchronization issues. On-line compensation of artefacts is essential to ensure image quality suitable for real-time assistance during diagnosis or minimally invasive treatment. In this paper, we propose a new online correction method to tackle both B-scan distortion, video stream shaking and drift problem of endoscopic OCT linked to A-line level image shifting. The proposed computational approach for OCT scanning video correction integrates a Convolutional Neural Network (CNN) to improve the estimation of azimuthal shifting of each A-line. To suppress the accumulative error of integral estimation we also introduce another CNN branch to estimate a dynamic overall orientation angle. We train the network with semi-synthetic OCT videos by intentionally adding rotational distortion into real OCT scanning images. The results show that networks trained on this semi-synthetic data generalize to stabilize real OCT videos, and the algorithm efficacy is demonstrated on both ex vivo and in vivo data, where strong scanning artifacts are successfully corrected. 相似文献
9.
Barrett's esophagus (BE) and associated adenocarcinoma have emerged as a major health care problem. Endoscopic optical coherence tomography is a microscopic sub-surface imaging technology that has been shown to differentiate tissue layers of the gastrointestinal wall and identify dysplasia in the mucosa, and is proposed as a surveillance tool to aid in management of BE. In this work a computer-aided diagnosis (CAD) system has been demonstrated for classification of dysplasia in Barrett's esophagus using EOCT. The system is composed of four modules: region of interest segmentation, dysplasia-related image feature extraction, feature selection, and site classification and validation. Multiple feature extraction and classification methods were evaluated and the process of developing the CAD system is described in detail. Use of multiple EOCT images to classify a single site was also investigated. A total of 96 EOCT image-biopsy pairs (63 non-dysplastic, 26 low-grade and 7 high-grade dysplastic biopsy sites) from a previously described clinical study were analyzed using the CAD system, yielding an accuracy of 84% for classification of non-dysplastic vs. dysplastic BE tissue. The results motivate continued development of CAD to potentially enable EOCT surveillance of large surface areas of Barrett's mucosa to identify dysplasia. 相似文献
10.
Matthew Strathman Yunbo Liu Ethan G. Keeler Mingli Song Utku Baran Jiefeng Xi Ming-Ting Sun Ruikang Wang Xingde Li Lih Y. Lin 《Biomedical optics express》2015,6(1):211-224
This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique.OCIS codes: (230.4685) Optical microelectromechanical devices, (230.0230) Optical devices, (170.2150) Endoscopic imaging, (100.0100) Image processing 相似文献
11.
Shuibin Ni Shanjida Khan Thanh-Tin P. Nguyen Ringo Ng Brandon J. Lujan Ou Tan David Huang Yifan Jian 《Biomedical optics express》2022,13(2):950
Photoreceptor loss and resultant thinning of the outer nuclear layer (ONL) is an important pathological feature of retinal degenerations and may serve as a useful imaging biomarker for age-related macular degeneration. However, the demarcation between the ONL and the adjacent Henle’s fiber layer (HFL) is difficult to visualize with standard optical coherence tomography (OCT). A dedicated OCT system that can precisely control and continuously and synchronously update the imaging beam entry points during scanning has not been realized yet. In this paper, we introduce a novel imaging technology, Volumetric Directional OCT (VD-OCT), which can dynamically adjust the incident beam on the pupil without manual adjustment during a volumetric OCT scan. We also implement a customized spoke-circular scanning pattern to observe the appearance of HFL with sufficient optical contrast in continuous cross-sectional scans through the entire volume. The application of VD-OCT for retinal imaging to exploit directional reflectivity properties of tissue layers has the potential to allow for early identification of retinal diseases. 相似文献
12.
Jason M. Tucker-Schwartz Maryse Lapierre-Landry Chetan A. Patil Melissa C. Skala 《Biomedical optics express》2015,6(6):2268-2282
Photothermal OCT (PTOCT) provides high sensitivity to molecular targets in tissue, and occupies a spatial imaging regime that is attractive for small animal imaging. However, current implementations of PTOCT require extensive temporal sampling, resulting in slow frame rates and a large data burden that limit its in vivo utility. To address these limitations, we have implemented optical lock-in techniques for photothermal optical lock-in OCT (poli-OCT), and demonstrated the in vivo imaging capabilities of this approach. The poli-OCT signal was assessed in tissue-mimicking phantoms containing indocyanine green (ICG), an FDA approved small molecule that has not been previously imaged in vivo with PTOCT. Then, the effects of in vivo blood flow and motion artifact were assessed and attenuated, and in vivo poli-OCT was demonstrated with both ICG and gold nanorods as contrast agents. Experiments revealed that poli-OCT signals agreed with optical lock-in theory and the bio-heat equation, and the system exhibited shot noise limited performance. In phantoms containing biologically relevant concentrations of ICG (1 µg/ml), the poli-OCT signal was significantly greater than control phantoms (p<0.05), demonstrating sensitivity to small molecules. Finally, in vivo poli-OCT of ICG identified the lymphatic vessels in a mouse ear, and also identified low concentrations (200 pM) of gold nanorods in subcutaneous injections at frame rates ten times faster than previously reported. This work illustrates that future in vivo molecular imaging studies could benefit from the improved acquisition and analysis times enabled by poli-OCT.OCIS codes: (110.4500) Optical coherence tomography, (350.5340) Photothermal effects 相似文献
13.
Aaron Doug Deen Heleen M. M. Van Beusekom Tom Pfeiffer Mathijs Stam Dominique De Kleijn Jolanda Wentzel Robert Huber Antonius F. W. Van Der Steen Gijs Van Soest Tianshi Wang 《Biomedical optics express》2022,13(3):1430
Optical imaging techniques that provide free space, label free imaging are powerful tools in obtaining structural and biochemical information in biological samples. To date, most of the optical imaging technologies create images with a specific contrast and require multimodality integration to add additional contrast. In this study, we demonstrate spectroscopic Thermo-elastic Optical Coherence Tomography (TE-OCT) as a potential tool in tissue identification. TE-OCT creates images based on two different forms of contrast: optical reflectance and thermo-elastic deformation. TE-OCT uses short laser pulses to induce thermo-elastic tissue deformation and measures the resulting surface displacement using phase-sensitive OCT. In this work we characterized the relation between thermo-elastic displacement and optical absorption, excitation, fluence and illumination area. The experimental results were validated with a 2-dimensional analytical model. Using spectroscopic TE-OCT, the thermo-elastic spectra of elastic phantoms and tissue components in coronary arteries were extracted. Specific tissue components, particularly lipid, an important biomarker for identifying atherosclerotic lesions, can be identified in the TE-OCT spectral response. As a label-free, free-space, dual-contrast, all-optical imaging technique, spectroscopic TE-OCT holds promise for biomedical research and clinical pathology diagnosis. 相似文献
14.
Chen Y Aguirre AD Hsiung PL Desai S Herz PR Pedrosa M Huang Q Figueiredo M Huang SW Koski A Schmitt JM Fujimoto JG Mashimo H 《Endoscopy》2007,39(7):599-605
15.
Chen D. Lu Martin F. Kraus Benjamin Potsaid Jonathan J. Liu WooJhon Choi Vijaysekhar Jayaraman Alex E. Cable Joachim Hornegger Jay S. Duker James G. Fujimoto 《Biomedical optics express》2014,5(1):293-311
We developed an ultrahigh speed, handheld swept source optical coherence tomography (SS-OCT) ophthalmic instrument using a 2D MEMS mirror. A vertical cavity surface-emitting laser (VCSEL) operating at 1060 nm center wavelength yielded a 350 kHz axial scan rate and 10 µm axial resolution in tissue. The long coherence length of the VCSEL enabled a 3.08 mm imaging range with minimal sensitivity roll-off in tissue. Two different designs with identical optical components were tested to evaluate handheld OCT ergonomics. An iris camera aided in alignment of the OCT beam through the pupil and a manual fixation light selected the imaging region on the retina. Volumetric and high definition scans were obtained from 5 undilated normal subjects. Volumetric OCT data was acquired by scanning the 2.4 mm diameter 2D MEMS mirror sinusoidally in the fast direction and linearly in the orthogonal slow direction. A second volumetric sinusoidal scan was obtained in the orthogonal direction and the two volumes were processed with a software algorithm to generate a merged motion-corrected volume. Motion-corrected standard 6 x 6 mm2 and wide field 10 x 10 mm2 volumetric OCT data were generated using two volumetric scans, each obtained in 1.4 seconds. High definition 10 mm and 6 mm B-scans were obtained by averaging and registering 25 B-scans obtained over the same position in 0.57 seconds. One of the advantages of volumetric OCT data is the generation of en face OCT images with arbitrary cross sectional B-scans registered to fundus features. This technology should enable screening applications to identify early retinal disease, before irreversible vision impairment or loss occurs. Handheld OCT technology also promises to enable applications in a wide range of settings outside of the traditional ophthalmology or optometry clinics including pediatrics, intraoperative, primary care, developing countries, and military medicine.OCIS codes: (170.4460) Ophthalmic optics and devices, (170.5755) Retina scanning, (170.3880) Medical and biological imaging, (170.4500) Optical coherence tomography, (170.4470) Ophthalmology 相似文献
16.
We report on a new articular cartilage imaging technique with potential for clinical arthroscopic use, by supplementing the variable-incidence-angle polarization-sensitive optical coherence tomography method previously developed by us with a conical beam scan protocol. The technique is validated on bovine tendon by comparing experimental data with simulated data generated using the extended Jones matrix calculus. A unique capability of this new optical technique is that it can locate the “brushing direction” of collagen fibers in articular cartilage, which is structural information that extends beyond established methods such as split-line photography or birefringent fast-axis measurement in that it is uniquely defined over the full azimuthal-angle range of (-π, + π). The mapping of this direction over the cartilage surface may offer insights into the optimal design of tissue-engineering scaffolds for cartilage repair.OCIS codes: (170.4500) Optical coherence tomography, (170.3880) Medical and biological imaging, (170.3890) Medical optics instrumentation, (260.1440) Birefringence, (260.5430) Polarization 相似文献
17.
Jason Zhang Tan Nguyen Benjamin Potsaid Vijaysekhar Jayaraman Christopher Burgner Siyu Chen Jinxi Li Kaicheng Liang Alex Cable Giovanni Traverso Hiroshi Mashimo James G. Fujimoto 《Biomedical optics express》2021,12(4):2384
Swept source optical coherence tomography (SS-OCT) enables volumetric imaging of subsurface structure. However, applications requiring wide fields of view (FOV), rapid imaging, and higher resolutions have been challenging because multi-MHz axial scan (A-scan) rates are needed. We describe a microelectromechanical systems vertical cavity surface-emitting laser (MEMS-VCSEL) SS-OCT technology for A-scan rates of 2.4 and 3.0 MHz. Sweep to sweep calibration and resampling are performed using dual channel acquisition of the OCT signal and a Mach Zehnder interferometer signal, overcoming inherent optical clock limitations and enabling higher performance. We demonstrate ultrahigh speed structural SS-OCT and OCT angiography (OCTA) imaging of the swine gastrointestinal tract using a suite of miniaturized brushless motor probes, including a 3.2 mm diameter micromotor OCT catheter, a 12 mm diameter tethered OCT capsule, and a 12 mm diameter widefield OCTA probe. MEMS-VCSELs promise to enable ultrahigh speed SS-OCT with a scalable, low cost, and manufacturable technology, suitable for a diverse range of imaging applications. 相似文献
18.
Donglin Wang Peng Liang Sean Samuelson Hongzhi Jia Junshan Ma Huikai Xie 《Biomedical optics express》2013,4(10):2066-2077
A two-axis scanning microelectromechanical (MEMS) mirror enables an optical coherence tomography (OCT) system to perform three-dimensional endoscopic imaging due to its fast scan speed and small size. However, the radial scan from the MEMS mirror causes various distortions in OCT images, namely spherical, fan-shaped and keystone distortions. In this paper, a new method is proposed to correct all of three distortions presented in OCT systems based on two-axis MEMS scanning mirrors. The spherical distortion is corrected first by directly manipulating the original spectral interferograms in the phase domain, followed by Fourier transform and three-dimensional geometrical transformation for correcting the other two types of distortions. OCT imaging experiments on a paper with square ink printed arrays and a glass tube filled with milk have been used to validate the proposed method. Distortions in OCT images of flat or curved surfaces can all be effectively removed.OCIS codes: (110.4500) Optical coherence tomography, (230.4685) Optical microelectromechanical devices, (100.6890) Three-dimensional image processing 相似文献
19.
Aizhu Tao Yilei Shao Jianguang Zhong Hong Jiang Meixiao Shen Jianhua Wang 《Biomedical optics express》2013,4(7):1031-1044
We demonstrated the feasibility of a CMOS-based spectral domain OCT (SD-OCT) for versatile ophthalmic applications of imaging the corneal epithelium, limbus, ocular surface, contact lens, crystalline lens, retina, and full eye in vivo. The system was based on a single spectrometer and an alternating reference arm with four mirrors. A galvanometer scanner was used to switch the reference beam among the four mirrors, depending on the imaging application. An axial resolution of 7.7 μm in air, a scan depth of up to 37.7 mm in air, and a scan speed of up to 70,000 A-lines per second were achieved. The approach has the capability to provide high-resolution imaging of the corneal epithelium, contact lens, ocular surface, and tear meniscus. Using two reference mirrors, the zero delay lines were alternatively placed on the front cornea or on the back lens. The entire ocular anterior segment was imaged by registering and overlapping the two images. The full eye through the pupil was measured when the reference arm was switched among the four reference mirrors. After mounting a 60 D lens in the sample arm, this SD-OCT was used to image the retina, including the macula and optical nerve head. This system demonstrates versatility and simplicity for multi-purpose ophthalmic applications.OCIS codes: (170.4500) Optical coherence tomography, (170.3880) Medical and biological imaging, (170.4580) Optical diagnostics for medicine, (330.4460) Ophthalmic optics and devices 相似文献
20.
The incorporation of polarization sensitivity into optical coherence tomography (PS-OCT) imaging can greatly enhance utility by allowing differentiation via intrinsic contrast of many types of tissue. In fiber-based OCT systems such as those employing endoscopic imaging probes, however, polarization mode dispersion (PMD) can significantly impact the ability to obtain accurate polarization data unless valuable axial resolution is sacrificed. In this work we present a new technique for compensating for PMD in endoscopic PS-OCT with minimal impact on axial resolution and without requiring mutually coherent polarization inputs, needing only a birefringent structure with known orientation in view (such as the catheter sheath). We then demonstrate the advantages of this technique by comparing it against the current state of the art approach. 相似文献