共查询到20条相似文献,搜索用时 15 毫秒
1.
Wen Zhang Jiaojian Wang Lingzhong Fan Yuanchao Zhang Peter T. Fox Simon B. Eickhoff Chunshui Yu Tianzi Jiang 《Human brain mapping》2016,37(8):3003-3016
Within the object recognition‐related ventral visual stream, the human fusiform gyrus (FG), which topographically connects the striate cortex to the inferior temporal lobe, plays a pivotal role in high‐level visual/cognitive functions. However, though there are many previous investigations of distinct functional modules within the FG, the functional organization of the whole FG in its full functional heterogeneity has not yet been established. In the current study, a replicable functional organization of the FG based on distinct anatomical connectivity patterns was identified. The FG was parcellated into medial (FGm), lateral (FGl), and anterior (FGa) regions using diffusion tensor imaging. We validated the reasonability of such an organizational scheme from the perspective of resting‐state whole brain functional connectivity patterns and the involvement of functional subnetworks. We found corroborating support for these three distinct modules, and suggest that the FGm serves as a transition region that combines multiple stimuli, the FGl is responsible for categorical recognition, and the FGa is involved in semantic understanding. These findings support two organizational functional transitions of the ventral temporal gyrus, a posterior/anterior direction of visual/semantic processing, and a media/lateral direction of high‐level visual processing. Our results may facilitate a more detailed study of the human FG in the future. Hum Brain Mapp 37:3003–3016, 2016. © 2016 Wiley Periodicals, Inc . 相似文献
2.
Longitudinal functional connectivity changes correlate with mood improvement after regular exercise in a dose‐dependent fashion
下载免费PDF全文

Leonardo Tozzi Angela Carballedo Grace Lavelle Kelly Doolin Myles Doyle Francesco Amico Hazel McCarthy John Gormley Anton Lord Veronica O'Keane Thomas Frodl 《The European journal of neuroscience》2016,43(8):1089-1096
Exercise increases wellbeing and improves mood. It is however unclear how these mood changes relate to brain function. We conducted a randomized controlled trial investigating resting‐state modifications in healthy adults after an extended period of aerobic physical exercise and their relationship with mood improvements. We aimed to identify novel functional networks whose activity could provide a physiological counterpart to the mood‐related benefits of exercise. Thirty‐eight healthy sedentary volunteers were randomised to either the aerobic exercise group of the study or a control group. Participants in the exercise group attended aerobic sessions with a physiotherapist twice a week for 16 weeks. Resting‐state modifications using magnetic resonance imaging were assessed before and after the programme and related to mood changes. An unbiased approach using graph metrics and network‐based statistics was adopted. Exercise reduced mood disturbance and improved emotional wellbeing. It also induced a decrease in local efficiency in the parahippocampal lobe through strengthening of the functional connections from this structure to the supramarginal gyrus, precentral area, superior temporal gyrus and temporal pole. Changes in mood disturbance following exercise were correlated with those in connectivity between parahippocampal gyrus and superior temporal gyrus as well as with the amount of training. No changes were detected in the control group. In conclusion, connectivity from the parahippocampal gyrus to motor, sensory integration and mood regulation areas was strengthened through exercise. These functional changes might be related to the benefits of regular physical activity on mood. 相似文献
3.
Silke Matura David Prvulovic Marius Butz Daniel Hartmann Beate Sepanski Katja Linnemann Viola Oertel‐Knöchel Tarik Karakaya Fabian Fußer Johannes Pantel Vincent van de Ven 《The European journal of neuroscience》2014,40(7):3128-3135
The apolipoprotein E ε4 (ApoE ε4) allele not only represents the strongest single genetic risk factor for sporadic Alzheimer's disease, but also imposes independent effects on brain function in healthy individuals where it has been shown to promote subtle memory deficits and altered intrinsic functional brain network connectivity. Based on previous work showing a potential relevance of the default mode network (DMN) functional connectivity for episodic memory function, we hypothesized that the ApoE ε4 genotype would affect memory performance via modulation of the DMN. We assessed 63 healthy individuals (50–80 years old), of which 20 carried the ε4 allele. All participants underwent resting‐state functional magnetic resonance imaging (fMRI), high‐resolution 3D anatomical MRI imaging and neuropsychological assessment. Functional connectivity analysis of resting‐state activity was performed with a predefined seed region located in the left posterior cingulate cortex (PCC), a core region of the DMN. ApoE ε4 carriers performed significantly poorer than non‐carriers in wordlist recognition and cued recall. Furthermore, ε4 carriers showed increased connectivity relative to ε4 non‐carriers between the PCC seed region and left‐hemispheric middle temporal gyrus (MTG). There was a positive correlation between recognition memory scores and resting‐state connectivity in the left MTG in ε4 carriers. These results can be interpreted as compensatory mechanisms strengthening the cross‐links between DMN core areas and cortical areas involved in memory processing. 相似文献
4.
5.
Hui Dai John N. Morelli Fei Ai Dazhi Yin Chunhong Hu Dongrong Xu Yonggang Li 《Human brain mapping》2013,34(10):2455-2463
Purpose: To analyze functional connectivity (FC) of the visual cortex using resting‐state functional MRI in human primary open‐angle glaucoma (POAG) patients. Materials and Methods: Twenty‐two patients with known POAG and 22 age‐matched controls were included in this IRB‐approved study. Subjects were evaluated by 3 T MR using resting‐state blood oxygenation level dependent and three‐dimensional brain volume imaging (3D‐BRAVO) MRI. Data processing was performed with standard software. FC maps were generated from Brodmann areas (BA) 17/18/19/7 in a voxel‐wise fashion. Region of interest analysis was used to specifically examine FC among each pair of BA17/18/19/7. Results: Voxel‐wise analyses demonstrated decreased FC in the POAG group between the primary visual cortex (BA17) and the right inferior temporal, left fusiform, left middle occipital, right superior occipital, left postcentral, right precentral gyri, and anterior lobe of the left cerebellum. Increased FC was found between BA17 and the left cerebellum, right middle cerebellar peduncle, right middle frontal gyrus, and extra‐nuclear gyrus (P < 0.05). In terms of the higher visual cortices (BA18/19), positive FC was disappeared with the cerebellar vermis, right middle temporal, and right superior temporal gyri (P < 0.05). Negative FC was disappeared between BA18/19 and the right insular gyrus (P < 0.05). Region of interest analysis demonstrated no statistically significant differences in FC between the POAG patients relative to the controls (P > 0.05). Conclusion: Changes in FC of the visual cortex are found in patients with POAG. These include alterations in connectivity between the visual cortex and associative visual areas along with disrupted connectivity between the primary and higher visual areas. Hum Brain Mapp 34:2455–2463, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
6.
It is well known that the fusiform gyrus is engaged in face perception, such as the processes of face familiarity and identity. However, the functional role of the fusiform gyrus in face processing related to high-level social cognition remains unclear. The current study assessed the functional role of individually defined fusiform face area (FFA) in the processing of self-face physical properties and self-face identity. We used functional magnetic resonance imaging to monitor neural responses to rapidly presented face stimuli drawn from morph continua between self-face (Morph 100%) and a gender-matched friend's face (Morph 0%) in a face recognition task. Contrasting Morph 100% versus Morph 60% that differed in self-face physical properties but were both recognized as the self uncovered neural activity sensitive to self-face physical properties in the left FFA. Contrasting Morphs 50% that were recognized as the self versus a friend on different trials revealed neural modulations associated with self-face identity in the right FFA. Moreover, the right FFA activity correlated with the frequency of recognizing Morphs 50% as the self. Our results provide evidence for functional dissociations of the left and right FFAs in the representations of self-face physical properties and self-face identity. 相似文献
7.
Resting‐state functional connectivity predicts the strength of hemispheric lateralization for language processing in temporal lobe epilepsy and normals
下载免费PDF全文

Gaëlle E. Doucet Dorian Pustina Christopher Skidmore Ashwini Sharan Michael R. Sperling Joseph I. Tracy 《Human brain mapping》2015,36(1):288-303
In temporal lobe epilepsy (TLE), determining the hemispheric specialization for language before surgery is critical to preserving a patient's cognitive abilities post‐surgery. To date, the major techniques utilized are limited by the capacity of patients to efficiently realize the task. We determined whether resting‐state functional connectivity (rsFC) is a reliable predictor of language hemispheric dominance in right and left TLE patients, relative to controls. We chose three subregions of the inferior frontal cortex (pars orbitalis, pars triangularis, and pars opercularis) as the seed regions. All participants performed both a verb generation task and a resting‐state fMRI procedure. Based on the language task, we computed a laterality index (LI) for the resulting network. This revealed that 96% of the participants were left‐hemisphere dominant, although there remained a large degree of variability in the strength of left lateralization. We tested whether LI correlated with rsFC values emerging from each seed. We revealed a set of regions that was specific to each group. Unique correlations involving the epileptic mesial temporal lobe were revealed for the right and left TLE patients, but not for the controls. Importantly, for both TLE groups, the rsFC emerging from a contralateral seed was the most predictive of LI. Overall, our data depict the broad patterns of rsFC that support strong versus weak left hemisphere language laterality. This project provides the first evidence that rsFC data may potentially be used on its own to verify the strength of hemispheric dominance for language in impaired or pathologic populations. Hum Brain Mapp, 36:288–303, 2015. © 2014 Wiley Periodicals, Inc. 相似文献
8.
Stephanie Kullmann Martin Heni Katarzyna Linder Stephan Zipfel Hans‐Ulrich Häring Ralf Veit Andreas Fritsche Hubert Preissl 《Human brain mapping》2014,35(12):6088-6096
The hypothalamus is of enormous importance for multiple bodily functions such as energy homeostasis. Especially, rodent studies have greatly contributed to our understanding how specific hypothalamic subregions integrate peripheral and central signals into the brain to control food intake. In humans, however, the neural circuitry of the hypothalamus, with its different subregions, has not been delineated. Hence, the aim of this study was to map the hypothalamus network using resting‐state functional connectivity (FC) analyses from the medial hypothalamus (MH) and lateral hypothalamus (LH) in healthy normal‐weight adults (n = 49). Furthermore, in a separate sample, we examined differences within the LH and MH networks between healthy normal‐weight (n = 25) versus overweight/obese adults (n = 23). FC patterns from the LH and MH revealed significant connections to the striatum, thalamus, brainstem, orbitofrontal cortex, middle and posterior cingulum and temporal brain regions. However, our analysis revealed subtler distinctions within hypothalamic subregions. The LH was functionally stronger connected to the dorsal striatum, anterior cingulum, and frontal operculum, while the MH showed stronger functional connections to the nucleus accumbens and medial orbitofrontal cortex. Furthermore, overweight/obese participants revealed heightened FC in the orbitofrontal cortex and nucleus accumbens within the MH network. Our results indicate that the MH and LH network are tapped into different parts of the dopaminergic circuitry of the brain, potentially modulating food reward based on the functional connections to the ventral and dorsal striatum, respectively. In obese adults, FC changes were observed in the MH network. Hum Brain Mapp 35:6088–6096, 2014. © 2014 Wiley Periodicals, Inc. 相似文献
9.
Martijn P. van den Heuvel René C.W. Mandl René S. Kahn Hilleke E. Hulshoff Pol 《Human brain mapping》2009,30(10):3127-3141
During rest, multiple cortical brain regions are functionally linked forming resting‐state networks. This high level of functional connectivity within resting‐state networks suggests the existence of direct neuroanatomical connections between these functionally linked brain regions to facilitate the ongoing interregional neuronal communication. White matter tracts are the structural highways of our brain, enabling information to travel quickly from one brain region to another region. In this study, we examined both the functional and structural connections of the human brain in a group of 26 healthy subjects, combining 3 Tesla resting‐state functional magnetic resonance imaging time‐series with diffusion tensor imaging scans. Nine consistently found functionally linked resting‐state networks were retrieved from the resting‐state data. The diffusion tensor imaging scans were used to reconstruct the white matter pathways between the functionally linked brain areas of these resting‐state networks. Our results show that well‐known anatomical white matter tracts interconnect at least eight of the nine commonly found resting‐state networks, including the default mode network, the core network, primary motor and visual network, and two lateralized parietal‐frontal networks. Our results suggest that the functionally linked resting‐state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc. 相似文献
10.
Functional characterization and differential coactivation patterns of two cytoarchitectonic visual areas on the human posterior fusiform gyrus
下载免费PDF全文

Julian Caspers Karl Zilles Katrin Amunts Angela R. Laird Peter T. Fox Simon B. Eickhoff 《Human brain mapping》2014,35(6):2754-2767
The ventral stream of the human extrastriate visual cortex shows a considerable functional heterogeneity from early visual processing (posterior) to higher, domain‐specific processing (anterior). The fusiform gyrus hosts several of those “high‐level” functional areas. We recently found a subdivision of the posterior fusiform gyrus on the microstructural level, that is, two distinct cytoarchitectonic areas, FG1 and FG2 (Caspers et al., Brain Structure & Function, 2013). To gain a first insight in the function of these two areas, here we studied their behavioral involvement and coactivation patterns by means of meta‐analytic connectivity modeling based on the BrainMap database ( www.brainmap.org ), using probabilistic maps of these areas as seed regions. The coactivation patterns of the areas support the concept of a common involvement in a core network subserving different cognitive tasks, that is, object recognition, visual language perception, or visual attention. In addition, the analysis supports the previous cytoarchitectonic parcellation, indicating that FG1 appears as a transitional area between early and higher visual cortex and FG2 as a higher‐order one. The latter area is furthermore lateralized, as it shows strong relations to the visual language processing system in the left hemisphere, while its right side is stronger associated with face selective regions. These findings indicate that functional lateralization of area FG2 relies on a different pattern of connectivity rather than side‐specific cytoarchitectonic features. Hum Brain Mapp 35:2754–2767, 2014. © 2013 Wiley Periodicals, Inc . 相似文献
11.
Isoflurane induces dose‐dependent alterations in the cortical connectivity profiles and dynamic properties of the brain's functional architecture
下载免费PDF全文

R. Matthew Hutchison Melina Hutchison Kathryn Y. Manning Ravi S. Menon Stefan Everling 《Human brain mapping》2014,35(12):5754-5775
Despite their widespread use, the effect of anesthetic agents on the brain's functional architecture remains poorly understood. This is particularly true of alterations that occur beyond the point of induced unconsciousness. Here, we examined the distributed intrinsic connectivity of macaques across six isoflurane levels using resting‐state functional MRI (fMRI) following the loss of consciousness. The results from multiple analysis strategies showed stable functional connectivity (FC) patterns between 1.00% and 1.50% suggesting this as a suitable range for anesthetized nonhuman primate resting‐state investigations. Dose‐dependent effects were evident at moderate to high dosages showing substantial alteration of the functional topology and a decrease or complete loss of interhemispheric cortical FC strength including that of contralateral homologues. The assessment of dynamic FC patterns revealed that the functional repertoire of brain states is related to anesthesia depth and most strikingly, that the number of state transitions linearly decreases with increased isoflurane dosage. Taken together, the results indicate dose‐specific spatial and temporal alterations of FC that occur beyond the typically defined endpoint of consciousness. Future work will be necessary to determine how these findings generalize across anesthetic types and extend to the transition between consciousness and unconsciousness. Hum Brain Mapp 35:5754–5775, 2014. © 2014 Wiley Periodicals, Inc. 相似文献
12.
13.
Giampaolo Brichetto Luca Roccatagliata Giulia Bommarito Christian Cordano Mario Battaglia Giovanni Luigi Mancardi Matilde Inglese 《Human brain mapping》2016,37(11):3847-3857
Motor imagery (MI) relies on the mental simulation of an action without any overt motor execution (ME), and can facilitate motor learning and enhance the effect of rehabilitation in patients with neurological conditions. While functional magnetic resonance imaging (fMRI) during MI and ME reveals shared cortical representations, the role and functional relevance of the resting‐state functional connectivity (RSFC) of brain regions involved in MI is yet unknown. Here, we performed resting‐state fMRI followed by fMRI during ME and MI with the dominant hand. We used a behavioral chronometry test to measure ME and MI movement duration and compute an index of performance (IP). Then, we analyzed the voxel‐matched correlation between the individual MI parameter estimates and seed‐based RSFC maps in the MI network to measure the correspondence between RSFC and MI fMRI activation. We found that inter‐individual differences in intrinsic connectivity in the MI network predicted several clusters of activation. Taken together, present findings provide first evidence that RSFC within the MI network is predictive of the activation of MI brain regions, including those associated with behavioral performance, thus suggesting a role for RSFC in obtaining a deeper understanding of neural substrates of MI and of MI ability. Hum Brain Mapp 37:3847–3857, 2016. © 2016 Wiley Periodicals, Inc. 相似文献
14.
Reward mediates the acquisition and long‐term retention of procedural skills in humans. Yet, learning under rewarded conditions is highly variable across individuals and the mechanisms that determine interindividual variability in rewarded learning are not known. We postulated that baseline functional connectivity in a large‐scale frontostriatal‐limbic network could predict subsequent interindividual variability in rewarded learning. Resting‐state functional MRI was acquired in two groups of subjects (n = 30) who then trained on a visuomotor procedural learning task with or without reward feedback. We then tested whether baseline functional connectivity within the frontostriatal‐limbic network predicted memory strength measured immediately, 24 h and 1 month after training in both groups. We found that connectivity in the frontostriatal‐limbic network predicted interindividual variability in the rewarded but not in the unrewarded learning group. Prediction was strongest for long‐term memory. Similar links between connectivity and reward‐based memory were absent in two control networks, a fronto‐parieto‐temporal language network and the dorsal attention network. The results indicate that baseline functional connectivity within the frontostriatal‐limbic network successfully predicts long‐term retention of rewarded learning. Hum Brain Mapp 35:5921–5931, 2014. © 2014 Wiley Periodicals, Inc. 相似文献
15.
Tianhua Yang Cheng Luo Qifu Li Zhiwei Guo Ling Liu Qiyong Gong Dezhong Yao Dong Zhou 《Human brain mapping》2013,34(8):1761-1767
Purpose: To investigate the intrinsic brain connections at the time of interictal generalized spike‐wave discharges (GSWDs) to understand their mechanism of effect on brain function in untreated childhood absence epilepsy (CAE). Methods: The EEG‐functional MRI (fMRI) was used to measure the resting state functional connectivity during interictal GSWDs in drug‐naïve CAE, and three different brain networks—the default mode network (DMN), cognitive control network (CCN), and affective network (AN)—were investigated. Results: Cross‐correlation functional connectivity analysis with priori seed revealed decreased functional connectivity within each of these three networks in the CAE patients during interictal GSWDS. It included precuneus‐dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC), and inferior parietal lobule in the DMN; DLPFC‐inferior frontal junction (IFJ), and pre‐supplementary motor area (pre‐SMA) subregions connectivity disruption in CCN; ACC‐ventrolateral prefrontal cortex (VLPFC) and DMPFC in AN; There were also some regions, primarily the parahippcampus, paracentral in AN, and the left frontal mid orb in the CCN, which showed increased connectivity. Conclusions: The current findings demonstrate significant alterations of resting‐state networks in drug naïve CAE subjects during interictal GSWDs and interictal GSWDs can cause dysfunction in specific networks important for psychosocial function. Impairment of these networks may cause deficits both during and between seizures. Our study may contribute to the understanding of neuro‐pathophysiological mechanism of psychosocial function impairments in patients with CAE. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
16.
Individual and sex‐related differences in pain and relief responsiveness are associated with differences in resting‐state functional networks in healthy volunteers
下载免费PDF全文

Giulia Galli Emiliano Santarnecchi Matteo Feurra Marco Bonifazi Simone Rossi Martin P. Paulus Alessandro Rossi 《The European journal of neuroscience》2016,43(4):486-493
Pain processing is associated with neural activity in a number of widespread brain regions. Here, we investigated whether functional connectivity at rest between these brain regions is associated with individual and sex‐related differences in thermal pain and relief responsiveness. Twenty healthy volunteers (ten females) were scanned with functional magnetic resonance imaging in resting conditions. Half an hour after scanning, we administered thermal pain on the back of their right hand and collected pain and relief ratings in two separate runs of twelve stimuli each. Across the whole group, mean pain ratings were associated with decreased connectivity at rest between brain regions belonging to the default mode and the visual resting‐state network. In men, pain measures correlated with increased connectivity within the visual resting‐state network. In women, in contrast, decreased connectivity between this network and parietal and prefrontal brain regions implicated in affective cognitive control were associated with both pain and relief ratings. Our findings indicate that the well documented individual variability and sex differences in pain sensitivity may be explained, at least in part, by network dynamics at rest in these brain regions. 相似文献
17.
18.
Working memory‐related changes in functional connectivity persist beyond task disengagement
下载免费PDF全文

Evan M. Gordon Andrew L. Breeden Stephanie E. Bean Chandan J. Vaidya 《Human brain mapping》2014,35(3):1004-1017
We examined whether altered connectivity in functional networks during working memory performance persists following conclusion of that performance, into a subsequent resting state. We conducted functional magnetic resonance imaging (fMRI) in 50 young adults during an initial resting state, followed by an N‐back working memory task and a subsequent resting state, in order to examine changes in functional connectivity within and between the default‐mode network (DMN) and the task‐positive network (TPN) across the three states. We found that alterations in connectivity observed during the N‐back task persisted into the subsequent resting state within the TPN and between the DMN and TPN, but not within the DMN. Further, both speed of working memory performance and TPN connectivity strength during the N‐back task predicted connectivity strength in the subsequent resting state. Finally, DMN connectivity measured before and during the N‐back task predicted individual differences in self‐reported inattentiveness, but this association was not found during the post‐task resting state. Together, these findings have important implications for models of how the brain recovers following effortful cognition, as well as for experimental designs using resting and task scans. Hum Brain Mapp 35:1004–1017, 2014. © 2012 Wiley Periodicals, Inc. 相似文献
19.
Resting‐state frontostriatal functional connectivity in Parkinson's disease–related apathy
下载免费PDF全文

Hugo Cesar Baggio MD PhD Bàrbara Segura PhD Jose Luis Garrido‐Millan MS Maria‐José Marti MD PhD Yaroslau Compta MD PhD Francesc Valldeoriola MD PhD Eduardo Tolosa MD Carme Junque PhD 《Movement disorders》2015,30(5):671-679
One of the most common neuropsychiatric symptoms in Parkinson's disease (PD) is apathy, affecting between 23% and 70% of patients and thought to be related to frontostriatal dopamine deficits. In the current study, we assessed functional resting‐state frontostriatal connectivity and structural changes associated with the presence of apathy in a large sample of PD subjects and healthy controls, while controlling for the presence of comorbid depression and cognitive decline. Thirty‐one healthy controls (HC) and 62 age‐, sex‐, and education‐matched PD patients underwent resting‐state functional magnetic resonance imaging (MRI). Apathy symptoms were evaluated with the Apathy Scale (AS). The 11 Beck Depression Inventory‐II items that measure dysphoric mood symptoms as well as relevant neuropsychological scores were used as nuisance factors in connectivity analyses. Voxel‐wise analyses of functional connectivity between frontal lobes (limbic, executive, rostral motor, and caudal motor regions), striata (limbic, executive, sensorimotor regions), and thalami were performed. Subcortical volumetry/shape analysis and fronto‐subcortical voxel‐based morphometry were performed to assess associated structural changes. Twenty‐five PD patients were classified as apathetic (AS > 13). Apathetic PD patients showed functional connectivity reductions compared with HC and with non‐apathetic patients, mainly in left‐sided circuits, and predominantly involving limbic striatal and frontal territories. Similarly, severity of apathy negatively correlated with connectivity in these circuits. No significant effects were found in structural analyses. Our results indicate that the presence of apathy in PD is associated with functional connectivity reductions in frontostriatal circuits, predominating in the left hemisphere and mainly involving its limbic components. © 2015 International Parkinson and Movement Disorder Society 相似文献
20.
Tom Christian Adamsen Martin Biermann Njål Brekke Alexander Richard Craven Lars Ersland Renate Grüner Nina Kleven‐Madsen Ole‐Heine Kvernenes Thomas Schwarzlmüller Rasmus Aamand Olesen Kenneth Hugdahl 《Human brain mapping》2015,36(6):2027-2038
Over the last decade, the brain's default‐mode network (DMN) and its function has attracted a lot of attention in the field of neuroscience. However, the exact underlying mechanisms of DMN functional connectivity, or more specifically, the blood‐oxygen level‐dependent (BOLD) signal, are still incompletely understood. In the present study, we combined 2‐deoxy‐2‐[18F]fluoroglucose positron emission tomography (FDG‐PET), proton magnetic resonance spectroscopy (1H‐MRS), and resting‐state functional magnetic resonance imaging (rs‐fMRI) to investigate more directly the association between local glucose consumption, local glutamatergic neurotransmission and DMN functional connectivity during rest. The results of the correlation analyzes using the dorsal posterior cingulate cortex (dPCC) as seed region showed spatial similarities between fluctuations in FDG‐uptake and fluctuations in BOLD signal. More specifically, in both modalities the same DMN areas in the inferior parietal lobe, angular gyrus, precuneus, middle, and medial frontal gyrus were positively correlated with the dPCC. Furthermore, we could demonstrate that local glucose consumption in the medial frontal gyrus, PCC and left angular gyrus was associated with functional connectivity within the DMN. We did not, however, find a relationship between glutamatergic neurotransmission and functional connectivity. In line with very recent findings, our results lend further support for a close association between local metabolic activity and functional connectivity and provide further insights towards a better understanding of the underlying mechanism of the BOLD signal. Hum Brain Mapp 36:2027–2038, 2015. © 2015 Wiley Periodicals, Inc. 相似文献