首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diagnosis of epithelioid hemangioma (EH) remains challenging due to its rarity, worrisome histologic features, and locally aggressive clinical and radiographic presentation. Especially in the bone, EH can be misdiagnosed as a malignant vascular neoplasm due its lytic, often destructive or multifocal growth, as well as atypical morphology. The discovery of recurrent FOS and FOSB gene fusions in the pathogenesis of most EH has strengthened its stand‐alone classification, distinct from other malignant epithelioid vascular lesions, such as epithelioid hemangioendothelioma or angiosarcoma. In this study we investigate a group of molecularly confirmed skeletal EH by the presence of FOS or FOSB gene rearrangements to better define its clinical and pathologic characteristics within a homogenous molecular subset. The cohort included 38 patients (25 males, 13 females), with a mean age at diagnosis of 38 years (range, 4‐75). Regional, multifocal presentation was noted in 10 cases. Only six cases were correctly recognized as EH by the referring institutions, while most were misdiagnosed as other vascular tumors. Of the 17 patients with follow‐up data available, five patients (29%) developed local recurrence after marginal en bloc excision (n = 3) or curettage (n = 2). Local recurrence‐free survival rates were 84% at 3 years and 38% at 5 years. No metastasis or disease‐related death was identified. Imaging studies exhibited no specific features, showing cortical bone destruction and soft‐tissue extension in 14 (38%) cases. FOS gene rearrangements were detected in 28 (74%) of cases, while FOSB rearrangements in 10 (26%) cases. Our results highlight the significant challenges encountered in establishing a correct diagnosis exclusive of the molecular testing, mainly due to its overlap to other malignant epithelioid vascular tumors. Skeletal EH emerges as a genetically defined locally aggressive vascular neoplasm, with a high rate of local recurrence, but lacking the propensity for distant spread.  相似文献   

2.
3.
We report an Xp11 translocation perivascular epithelioid cell tumor (PEComa) with a novel RBMX‐TFE3 gene fusion, resulting from a paracentric X chromosome inversion, inv(X)(p11;q26). The neoplasm occurred in an otherwise healthy 12‐year‐old boy who presented with a large left renal mass with extension into the inferior vena cava. The patient was found to have multiple pulmonary metastases at diagnosis and died of disease 3 months later. The morphology (epithelioid clear cells with alveolar and nested architecture) and immunophenotype (TFE3 and HMB45 strongly positive; actin, desmin, and PAX8 negative) was typical of an Xp11 translocation PEComa; however, TFE3 rearrangement was initially not detected by routine TFE3 break‐apart fluorescence in situ hybridization (FISH). Further RNA sequencing revealed a novel RBMX‐TFE3 gene fusion, which was subsequently confirmed by fusion assay FISH, using custom design RBMX and TFE3 come‐together probes. This report describes a novel TFE3 gene fusion partner, RBMX, in a pediatric renal PEComa patient associated with a fulminant clinical course. As documented in other intrachromosomal Xp11.2 inversions, such as fusions with NONO, RBM10, or GRIPAP1 genes, the TFE3 break‐apart might be below the FISH resolution, resulting in a false negative result.  相似文献   

4.
5.
6.
7.
8.
Recent molecular advances have shed significant light on the classification of vascular tumours. Except for haemangiomas, vascular lesions remain difficult to diagnose, owing to their rarity and overlapping clinical, radiographic and histological features across malignancies. In particular, challenges still remain in the differential diagnosis of epithelioid vascular tumours, including epithelioid haemangioma and epithelioid haemangioendothelioma at the benign/low-grade end of the spectrum, and epithelioid angiosarcoma at the high-grade end. Historically, the classification of vascular tumours has been heavily dependent on the clinical setting and histological features, as traditional immunohistochemical markers across the group have often been non-discriminatory. The increased application of next-generation sequencing in clinical practice, in particular targeted RNA sequencing (such as Archer, Illumina), has led to numerous novel discoveries, mainly recurrent gene fusions (e.g. those involving FOS, FOSB, YAP1, and WWTR1), which have resulted in refined tumour classification and improved diagnostic reproducibility for vascular tumours. However, other molecular alterations besides fusions have been discovered in vascular tumours, including somatic mutations (e.g. involving GNA family and IDH genes) in a variety of haemangiomas, as well as copy number alterations in high-grade angiosarcomas (e.g. MYC amplifications). Moreover, the translation of these novel molecular abnormalities into diagnostic ancillary markers, either fluorescence in-situ hybridisation probes or surrogate immunohistochemical markers (FOSB, CAMTA1, YAP1, and MYC), has been remarkable. This review will focus on the latest molecular discoveries covering both benign and malignant vascular tumours, and will provide practical diagnostic algorithms, highlighting frequently encountered pitfalls and challenges in the diagnosis of vascular lesions.  相似文献   

9.
10.
11.
12.
13.
Synovial chondromatosis (SC) is a rare benign cartilaginous neoplasm in which recurrent fibronectin 1 (FN1) and activin receptor 2A (ACVR2A) gene rearrangements have been recently reported. Triggered by a case of malignant transformation in SC (synovial chondrosarcoma) showing a novel KMT2ABCOR gene fusion by targeted RNA sequencing, we sought to evaluate the molecular abnormalities in a cohort of 27 SC cases using a combined methodology of fluorescence in situ hybridization (FISH) and/or targeted RNA sequencing. Results showed that FN1 and /or ACVR2A gene rearrangements were noted in 18 cases (67%), with an FN1‐ACVR2A fusion being confirmed in 15 (56%) cases. Two cases showed only FN1 gene rearrangement, without other abnormalities. A novel FN1‐NFATc2 gene fusion was noted in one case by RNA sequencing. The remaining nine cases showed no abnormalities in FN1 and ACVR2A genes. No additional cases showed BCOR gene alterations. In conclusion, this study confirms that FN1ACVR2A fusion is the leading pathogenetic event in SC, at even higher frequency than previously reported. FISH methodology emerges as an appropriate tool in the identification of FN1 and ACVR2A gene abnormalities, which can be used in challenging cases. Further studies are needed to determine the recurrent potential of BCOR abnormalities in this disease.  相似文献   

14.
The echinoderm microtubule‐associated protein‐like 4‐anaplastic lymphoma kinase (EML4‐ALK) fusion gene is an important biomarker for target therapy. The aim of this study is to better understand the clinical and molecular features of the EML4‐ALK fusion gene in lung cancer patients in Taiwan and therefore to generate an efficient algorithm for the detection of ALK translocation. In the first cohort, ALK translocation was identified in 1 adenocarcinoma from 100 lung cancer patients by using break apart fluorescent in situ hybridization (FISH). Next, we detected 6 ALK translocations in another 40 EGFR wild type adenocarcinomas but not in 40 cases with EGFR mutation. Histological analysis revealed that solid growth with signet‐ring cells or cribriform glands with extracellular mucin were noted in all the 7 ALK translocated cases. One ALK positive cancer with mucinous cribriform pattern had no ALK expression. ALK expression was correlated with ALK translocation (p < 0.001), but not with ALK gene copy number gain (CNG) (P = 0.838). ALK translocation was also mutually exclusive with EGFR mutation in Taiwanese non‐small cell lung cancer (P = 0.033). These results indicate that screening tests for EGFR mutation status and/or ALK expression could help efficiently select ALK translocated patients for target therapy.  相似文献   

15.
16.
ALK oncogenic activation mechanisms were characterized in four conventional spindle‐cell inflammatory myofibroblastic tumours (IMT) and five atypical IMT, each of which had ALK genomic perturbations. Constitutively activated ALK oncoproteins were purified by ALK immunoprecipitation and electrophoresis, and were characterized by mass spectrometry. The four conventional IMT had TPM3/4‐ALK fusions (two cases) or DCTN1‐ALK fusions (two cases), whereas two atypical spindle‐cell IMT had TFG‐ALK and TPM3‐ALK fusion in one case each, and three epithelioid inflammatory myofibroblastic sarcomas had RANBP2‐ALK fusions in two cases, and a novel RRBP1‐ALK fusion in one case. The epithelioid inflammatory myofibroblastic sarcoma with RRBP1‐ALK fusion had cytoplasmic ALK expression with perinuclear accentuation, different from the nuclear membranous ALK localization in epithelioid inflammatory myofibroblastic sarcomas with RANBP2‐ALK fusions. Evaluation of three additional uncharacterized epithelioid inflammatory myofibroblastic sarcomas with ALK cytoplasmic/perinuclear‐ accentuation expression demonstrated RRBP1‐ALK fusion in two cases. These studies show that atypical spindle‐cell IMT can utilize the same ALK fusion mechanisms described previously in conventional IMT, whereas in clinically aggressive epithelioid inflammatory myofibroblastic sarcoma we identify a novel recurrent ALK oncogenic mechanism, resulting from fusion with the RRBP1 gene. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

17.
18.
19.
A novel group of S100‐ and CD34‐positive spindle cell tumors with distinctive stromal and perivascular hyalinization harboring recurrent gene fusions involving kinases including RAF1, BRAF, NTRK1/2/3, and RET have been recently reported. To our knowledge, no such cases harboring ALK rearrangements have been identified. We report a previously healthy 41‐year‐old male with a 12‐cm intramuscular shoulder mass. The tumor was composed of bland‐appearing spindled to epithelioid cells, arranged in a patternless pattern in a background of loose myxoid stroma containing striking amianthoid‐like stromal collagen and perivascular rings. In accordance with the previously reported tumors, the tumor cells showed diffuse immunopositivity with S100 and CD34, while lacking SOX10 expression. Targeted RNA‐based next‐generation sequencing identified a novel serine/threonine‐protein phosphatase PP1‐beta‐catalytic subunit (PPP1CB)‐ALK fusion gene. Although ALK break‐apart was not detected by FISH, likely due to a paracentric inversion of chromosome 2, the presence of the fusion was confirmed by Sanger sequencing showing a 10‐bp linker between exon 6 of PPP1CB and intron 19 of ALK while maintaining reading frame. Subsequent ALK‐1 immunostain exhibited diffuse cytoplasmic staining in the tumor cells. Our case expands the molecular genetic spectrum of the distinctive group of spindle cell tumors with CD34/S100+ immunophenotype, supporting the important role of various kinases as drivers of oncogenesis. Awareness of this entity including its unique morphologic and immunophenotypic features as well as its interchangeable kinase gene fusions is crucial for correct classification and potential targeted therapy, particularly in aggressive subsets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号