首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Differentiation of oligodendrocyte precursor cells (OPCs) is the most important event for the myelination of central nervous system (CNS) axons during development and remyelination in demyelinating diseases, while the underlying molecular mechanisms remain largely unknown. Here we show that NMDA receptor (NMDAR) is a functional regulator of OPCs differentiation and remyelination. First, GluN1, GluN2A, and GluN2B subunits are expressed in oligodendrocyte lineage cells (OLs) in vitro and in vivo by immunostaining and Western blot analysis. Second, in a purified rat OPC culture system, NMDARs specially mediate OPCs differentiation by enhancing myelin proteins expression and the processes branching at the immature to mature oligodendrocyte transition analyzed by a serial of developmental stage‐specific antigens. Moreover, pharmacological NMDAR antagonists or specific knockdown of GluN1 by RNA interference in OPCs prevents the differentiation induced by NMDA. NMDA can activate the mammalian target of rapamycin (mTOR) signal in OPCs and the pro‐differentiation effect of NMDA is obstructed by the mTOR inhibitor rapamycin, suggesting NMDAR exerts its effect through mTOR‐dependent mechanism. Furthermore, NMDA increases numbers of myelin segments in DRG‐OPC cocultures. Finally, NMDAR specific antagonist MK801 delays remyelination in the cuprizone model examined by LFB‐PAS, immunofluorescence and electron microscopy. This effect appears to result from inhibiting OPCs differentiation as more NG2+ OPCs but less GST‐π+ mature oligodendrocytes are observed. Together, these results indicate that NMDAR plays a critical role in the regulation of OPCs differentiation in vitro and remyelination in cuprizone model which may provide potential target for the treatment of demyelination disease.  相似文献   

3.
4.
Cuprizone intoxication is one of several animal models used to study demyelination and remyelination. Early treatment protocols exposed mice to cuprizone for 6 weeks to induce demyelination; however, more recent reports have varied exposure times from 4 to 5 weeks. The goal of this study was to determine the minimal exposure of cuprizone in C57BL/6 mice that would induce a pathology of robust demyelination and gliosis similar to that described for a 5‐ or 6‐week treatment. We found that an abbreviated insult of only 2 weeks of exposure to cuprizone induced significant demyelination 3 weeks later (5‐week time point) but was somewhat variable. Three weeks of exposure to cuprizone produced extensive demyelination by week 5, equivalent to that observed with 5 weeks of exposure. The depletion of mature oligodendrocytes, as well as microglia and astrocyte accumulation, showed trends similar to those with 5‐week exposure to cuprizone. Once mature oligodendrocytes are perturbed after a 3‐week treatment, the progression to demyelination occurs without requiring further exposure. Furthermore, the early removal of cuprizone did not accelerate remyelination, suggesting that other sequences of events must follow before repair can occur. Thus, a short, “hit and run” CNS insult triggers a cascade of events leading to demyelination 2–3 weeks later. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Microglia are generally considered the immune cells of the central nervous system. Recent studies have demonstrated that under specific polarization conditions, microglia develop into two different phenotypes, termed M1‐like and M2‐like microglia. However, the phenotypic characteristics of M1‐like‐ and M2‐like‐polarized microglia and the mechanisms that regulate polarization are largely unknown. In this study, we characterized lipopolysaccharide‐treated M1‐like and IL‐4‐treated M2‐like microglia and investigated the mechanisms that regulate phenotypic switching. The addition of M2‐like microglial conditioned medium (CM) to primary neurons resulted in an increase in neurite length when compared with neurons treated with M1‐like microglial CM, possibly because of the enhanced secretion of neurotrophic factors by M2‐like microglia. M1‐like microglia were morphologically characterized by larger soma, whereas M2‐like microglia were characterized by long processes. M2‐like microglia exhibited greater phagocytic capacity than M1‐like microglia. These features switched in response to polarization cues. We found that expression of interferon regulatory factor 7 (IRF7) increased during the M2‐like to M1‐like switch in microglia in vitro and in vivo. Knockdown of IRF7 using siRNA suppressed the expression of M1 marker mRNA and reduced phosphorylation of STAT1. Our findings suggest that IRF7 signaling may play an important role in microglial polarization switching. GLIA 2015;63:595–610  相似文献   

6.
The oligodendrocyte maturation process and the transition from the pre‐myelinating to the myelinating state are extremely important during development and in pathology. In the present study, we have investigated the role of the cell adhesion molecule CNTN2/TAG‐1 on oligodendrocyte proliferation, differentiation, myelination, and function during development and under pathological conditions. With the combination of in vivo, in vitro, ultrastructural, and electrophysiological methods, we have mapped the expression of CNTN2 protein in the oligodendrocyte lineage during the different stages of myelination and its involvement on oligodendrocyte maturation, branching, myelin‐gene expression, myelination, and axonal function. The cuprizone model of central nervous system demyelination was further used to assess CNTN2 in pathology. During development, CNTN2 can transiently affect the expression levels of myelin and myelin‐regulating genes, while its absence results in reduced oligodendrocyte branching, hypomyelination of fiber tracts and impaired axonal conduction. In pathology, CNTN2 absence does not affect the extent of de‐ and remyelination. However during remyelination, a novel, CNTN2‐independent mechanism is revealed that is able to recluster voltage gated potassium channels (VGKCs) resulting in the improvement of fiber conduction.  相似文献   

7.
Remyelination is in the center of new therapies for the treatment of multiple sclerosis to resolve and improve disease symptoms and protect axons from further damage. Although remyelination is considered beneficial in the long term, it is not known, whether this is also the case early in lesion formation. Additionally, the precise timing of acute axonal damage and remyelination has not been assessed so far. To shed light onto the interrelation between axons and the myelin sheath during de‐ and remyelination, we employed cuprizone‐ and focal lysolecithin‐induced demyelination and performed time course experiments assessing the evolution of early and late stage remyelination and axonal damage. We observed damaged axons with signs of remyelination after cuprizone diet cessation and lysolecithin injection. Similar observations were made in early multiple sclerosis lesions. To assess the correlation of remyelination and axonal damage in multiple sclerosis lesions, we took advantage of a cohort of patients with early and late stage remyelinated lesions and assessed the number of APP‐ and SMI32‐ positive damaged axons and the density of SMI31‐positive and silver impregnated preserved axons. Early de‐ and remyelinating lesions did not differ with respect to axonal density and axonal damage, but we observed a lower axonal density in late stage demyelinated multiple sclerosis lesions than in remyelinated multiple sclerosis lesions. Our findings suggest that remyelination may not only be protective over a long period of time, but may play an important role in the immediate axonal recuperation after a demyelinating insult.  相似文献   

8.
Perinatal inflammation causes immediate changes of the blood‐brain barrier (BBB) and thus may have different consequences in adult life including an impact on neurological diseases such as demyelinating disorders. In order to determine if such a perinatal insult affects the course of demyelination in adulthood as “second hit,” we simulated perinatal bacterial inflammation by systemic administration of lipopolysaccharide (LPS) to either pregnant mice or newborn animals. Demyelination was later induced in adult animals by cuprizone [bis(cyclohexylidenehydrazide)], which causes oligodendrocyte death with subsequent demyelination accompanied by strong microgliosis and astrogliosis. A single LPS injection at embryonic day 13.5 did not have an impact on demyelination in adulthood. In contrast, serial postnatal LPS injections (P0‐P8) caused an early delay of myelin removal in the corpus callosum, which was paralleled by reduced numbers of activated microglia. During remyelination, postnatal LPS treatment enhanced early remyelination with a concomitant increase of mature oligodendrocytes. Furthermore, the postnatal LPS challenge impacts the phenotype of microglia since an elevated mRNA expression of microglia related genes such as TREM 2, CD11b, TNF‐α, TGF‐β1, HGF, FGF‐2, and IGF‐1 was found in these preconditioned mice during early demyelination. These data demonstrate that postnatal inflammation has long‐lasting effects on microglia functions and modifies the course of demyelination and remyelination in adulthood. GLIA 2014;62:1659–1670  相似文献   

9.
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system. Interleukin (IL)−6 is a pleiotropic cytokine with a potential role in MS. Here we used transgenic mice with astrocyte‐targeted production of IL‐6 (GFAP‐IL6Tg) to study the effect of IL‐6 in the cuprizone‐induced demyelination paradigm, which is an experimental model of de‐ and re‐myelination, both hallmarks of MS. Our results demonstrated that cuprizone‐treated GFAP‐IL6Tg mice showed a significant reduction in astroglial and especially microglial activation/accumulation in the corpus callosum in comparison with the corresponding cuprizone‐treated wild type (WT). Production of a key microglial attracting chemokine CXCL10, as well as CXCL1 and CCL4 was lower in cuprizone‐treated GFAP‐IL6Tg mice compared with cuprizone‐treated WT. Reduced microglial cell accumulation was associated with inefficient removal of degraded myelin and axonal protection in cuprizone‐treated GFAP‐IL6Tg mice, compared with WT mice at the peak of demyelination. In addition, transgenic production of IL‐6 did not alter initial oligodendrocyte (OL) apoptosis and oligodendrocyte precursor cell recruitment to the lesion site, but it impaired early OL differentiation, possibly due to impaired removal of degraded myelin. Indeed, a microglial receptor involved in myelin phagocytosis, TREM2, as well as the phagolysosomal protein CD68 were lower in cuprizone‐treated GFAP‐IL6Tg compared with WT mice. Our results show for the first time that astrocyte‐targeted production of IL‐6 may play a role in modulating experimental demyelination induced by cuprizone. Further understanding of the IL‐6‐mediated molecular mechanisms involved in the regulation of demyelination is needed, and may have implications for the development of future therapeutic strategies for the treatment of MS. GLIA 2016;64:2104–2119  相似文献   

10.
We have previously demonstrated that Sox17 expression is prominent at developmental stages corresponding to oligodendrocyte progenitor cell (OPC) cycle exit and onset of differentiation, and that Sox17 promotes initiation of OPC differentiation. In this study, we examined Sox17 expression and regulation under pathological conditions, particularly in two animal models of demyelination/remyelination and in post‐mortem multiple sclerosis (MS) brain lesions. We found that the number of Sox17 expressing cells was significantly increased in lysolecithin (LPC)‐induced lesions of the mouse spinal cord between 7 and 30 days post‐injection, as compared with controls. Sox17 immunoreactivity was predominantly detected in Olig2+ and CC1+ oligodendrocytes and rarely in NG2+ OPCs. The highest density of Sox17+ oligodendrocytes was observed at 2 weeks after LPC injection, coinciding with OPC differentiation. Consistent with these findings, in cuprizone‐treated mice, Sox17 expression was highest in newly generated and in maturing CC1+ oligodendrocytes, but low in NG2+ OPCs during the demyelination and remyelination phases. In MS tissue, Sox17 was primarily detected in actively demyelinating lesions and periplaque white matter. Sox17 immunoreactivity was co‐localized with NOGO‐A+ post‐mitotic oligodendrocytes both in active MS lesions and periplaque white matter. Taken together, our data: (i) demonstrate that Sox17 expression is highest in newly generated oligodendrocytes under pathological conditions and could be used as a marker of oligodendrocyte regeneration, and (ii) are suggestive of Sox17 playing a critical role in oligodendrocyte differentiation and lesion repair. GLIA 2013;61:1659–1672  相似文献   

11.
The process of demyelination occurring in diseases as multiple sclerosis is usually investigated in animal models. A major drawback of animal models is that only one condition can be tested per animal, necessitating many animals and systemic effects are factors to be considered. The aim of the study was to develop a reproducible in vitro model for de‐ and remyelination using whole brain spheroid cultures and lysophosphatidyl choline (LPC). In spheroid cultures, single cell suspensions of embryonic day 15 rodent brain cells reaggregate under constant rotation. Three‐dimensional contacts form between the central nervous system cell types present. Multilayered myelin is maximal in four‐week old cultures. A week of repeated exposure to LPC led to 30% loss of MBP protein concentration and 2′,3′‐cyclic nucleotide 3′‐phosphodiesterase activity measurements in both rat and mouse spheroids and 56% loss in the number of myelin sheets, with partial remyelination after a week of recovery. The number of dividing cells was increased after LPC exposure and oligodendrocytes were shown to be among the dividing cells. Microglia and astrocytes were not affected and neurons were relatively spared. This suggests that LPC toxicity is specific for myelin and oligodendrocytes. LPC toxicity could be decreased using cholesterol and simvastatin, suggesting that LPC works through altering membrane composition. Thus, in different rodent species and using different read‐outs, we could reproducibly show de‐ and remyelination in spheroid cultures after LPC exposure. This model for demyelination with potential for remyelination offers possibilities for testing novel therapies and studying mechanisms of remyelination. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
In demyelinating diseases such as multiple sclerosis (MS), an imbalance between the demyelination and remyelination rates underlies the degenerative processes. Microglial activation is observed in demyelinating lesions; however, the molecular mechanism responsible for the homeostatic/environmental change remains elusive. We previously found that cystatin F (CysF), a cysteine protease inhibitor, is selectively expressed in microglia only in actively demyelinating/remyelinating lesions but ceases expression in chronic lesions, suggesting its role in remyelination. Here, we report the effects of manipulating the expression of CysF and cathepsin C (CatC), a key target of CysF, in a murine model of transgenic demyelinating disease, Plp4e/‐. During the active remyelinating phase, both CysF knockdown (CysFKD) and microglial‐selective CatC overexpression (CatCOE) showed a worsening of the demyelination in Plp4e/‐ transgenic mice. Conversely, during the chronic demyelinating phase, CatC knockdown (CatCKD) ameliorated the demyelination. Our results suggest that the balance between CatC and CysF expression controls the demyelination and remyelination process.  相似文献   

13.
Recent evidence suggests that the oral drug Fingolimod (FTY720) for relapsing‐remitting multiple sclerosis (MS) may act directly on the central nervous system (CNS) and modulate disease pathogenesis and progression in experimental models of MS. However, the specific subtype of sphingosine‐1‐phosphate (S1P) receptors that mediates the effect of FTY720 on the CNS cells has not been fully elucidated. Here, we report that S1P receptor 1 (S1PR1) is elevated in reactive astrocytes in an autoimmunity independent mouse model of MS and that selective S1PR1 modulation is sufficient to ameliorate the loss of oligodendrocytes and demyelination. The non‐selective S1PR modulator, FTY720, or a short‐lived S1PR1‐specific modulator, CYM5442, was administered daily to mice while on cuprizone diet. Both FTY720‐ and CYM5422‐treated mice displayed a significant reduction in oligodendrocyte apoptosis and astrocyte and microglial activation in comparison to vehicle‐treated groups, which was associated with decreased production of proinflammatory mediators and down‐regulation of astrocytic S1PR1 protein. Interestingly, S1PR1 modulation during the early phase of cuprizone intoxication was required to suppress oligodendrocyte death and consequent demyelination as drug treatment from 10 days after the initiation of cuprizone feeding was no longer effective. CYM5442 treatment during the brief cuprizone exposure significantly prevented Il‐1β, Il‐6, Cxcl10, and Cxcl3 induction, resulting in suppression of subsequent reactive gliosis and demyelination. Our study identifies functional antagonism of S1PR1 as a major mechanism for the protective effect of FTY720 in the cuprizone model and suggests pathogenic contributions of astrocyte S1PR1 signaling in primary demyelination and its potential as a therapeutic target for CNS inflammation.  相似文献   

14.
Multiple Sclerosis affects mainly women and consists in intermittent or chronic damages to the myelin sheaths, focal inflammation, and axonal degeneration. Current therapies are limited to immunomodulators and antiinflammatory drugs, but there is no efficient treatment for stimulating the endogenous capacity of myelin repair. Progesterone and synthetic progestins have been shown in animal models of demyelination to attenuate myelin loss, reduce clinical symptoms severity, modulate inflammatory responses and partially reverse the age‐dependent decline in remyelination. Moreover, progesterone has been demonstrated to promote myelin formation in organotypic cultures of cerebellar slices. In the present study, we show that progesterone and the synthetic 19‐nor‐progesterone derivative Nestorone® promote the repair of severe chronic demyelinating lesions induced by feeding cuprizone to female mice for up to 12 weeks. Progesterone and Nestorone increase the density of NG2+ oligodendrocyte progenitor cells and CA II+ mature oligodendrocytes and enhance the formation of myelin basic protein (MBP)‐ and proteolipid protein (PLP)‐immunoreactive myelin. However, while demyelination in response to cuprizone was less marked in corpus callosum than in cerebral cortex, remyelination appeared earlier in the former. The remyelinating effect of progesterone was progesterone receptor (PR)‐dependent, as it was absent in PR‐knockout mice. Progesterone and Nestorone also decreased (but did not suppress) neuroinflammatory responses, specifically astrocyte and microglial cell activation. Therefore, some progestogens are promising therapeutic candidates for promoting the regeneration of myelin. GLIA 2015;63:104–117  相似文献   

15.
Unravelling the factors that can positively influence remyelination is one of the major challenges in multiple sclerosis research. Expression of the chemokine receptor CXCR2 on oligodendrocytes both in vitro and in MS lesions has suggested a possible role for CXCR2 in the recruitment of oligodendrocyte precursor cells (OPC). To investigate the function of CXCR2 during remyelination in vivo, we studied this receptor in cuprizone-induced demyelination and subsequent remyelination. We found that CXCR2 is constitutively expressed on OPC, whereas on macrophages/microglia CXCR2 is upregulated upon activation during demyelination. Hence, the expression of CXCR2 is differentially regulated in oligodendrocytes and macrophages/microglia. Furthermore, we subjected CXCR2-/- mice to the cuprizone model demonstrating that remyelination was not altered in comparison to wildtype controls. In addition, the number of OPC and the amount of microglial accumulation were similar in both CXCR2-/- and wildtype animals during the whole demyelination and remyelination process. These results suggest that despite expression on OPC and microglia CXCR2 plays only a minor role during remyelination.  相似文献   

16.
The study shows the dynamic expression of connexin47 (Cx47) in oligodendrocytes and myelin of mice, either in myelinogenesis occurring in early development or in an experimental model of new‐myelinogenesis of adult mice. Cx47 first appeared in the embryonic mouse brain at E10.5 successively the expression increased, principally in regions populated by developing oligodendrocytes. The expression declined postnatally toward adulthood and immunoreactivity was restricted to a few specific areas, such as the corpus callosum, the striatum, the cerebellum, and the spinal cord. Since the expression of Cx47 in developing oligodendrocytes preceded those of Cx32 and Cx29, a role of Cx47 in myelinogenesis was postulated. This hypothesis was tested in a model of re‐myelination, which principally involved the corpus callosum, occurring in adult mice by treatment with cuprizone. Cx47 was upregulated during demyelination and recovered during the remyelination phase. During demyelination, Cx47 was first over‐expressed in the corpus callosum and later, when the myelin virtually disappeared in the injured areas, Cx47 was expressed in astrocytes located inside and closely around the demyelinated areas. The remyelination of injured areas occurred after stopping the administration of cuprizone and continued to complete recovery. In this period the expression of Cx47 shifted from astrocytes to newly‐formed myelin. Thus, Cx47 exhibits in this model a transient and de novo expression in astrocytes with a topographic segregation in the injured areas, only when oligodendrocytes and the myelin were most severely affected. Taken as a whole the evidence suggests that Cx47 play a key role in myelination. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Catecholaminergic neurons of the rostral ventrolateral medulla (RVLM‐CA neurons; C1 neurons) contribute to the sympathetic, parasympathetic and neuroendocrine responses elicited by physical stressors such as hypotension, hypoxia, hypoglycemia, and infection. Most RVLM‐CA neurons express vesicular glutamate transporter (VGLUT)2, and may use glutamate as a ionotropic transmitter, but the importance of this mode of transmission in vivo is uncertain. To address this question, we genetically deleted VGLUT2 from dopamine‐β‐hydroxylase‐expressing neurons in mice [DβHCre/0;VGLUT2flox/flox mice (cKO mice)]. We compared the in vivo effects of selectively stimulating RVLM‐CA neurons in cKO vs. control mice (DβHCre/0), using channelrhodopsin‐2 (ChR2–mCherry) optogenetics. ChR2–mCherry was expressed by similar numbers of rostral ventrolateral medulla (RVLM) neurons in each strain (~400 neurons), with identical selectivity for catecholaminergic neurons (90–99% colocalisation with tyrosine hydroxylase). RVLM‐CA neurons had similar morphology and axonal projections in DβHCre/0 and cKO mice. Under urethane anesthesia, photostimulation produced a similar pattern of activation of presumptive ChR2‐positive RVLM‐CA neurons in DβHCre/0 and cKO mice. Photostimulation in conscious mice produced frequency‐dependent respiratory activation in DβHCre/0 mice but no effect in cKO mice. Similarly, photostimulation under urethane anesthesia strongly activated efferent vagal nerve activity in DβHCre/0 mice only. Vagal responses were unaffected by α1‐adrenoreceptor blockade. In conclusion, two responses evoked by RVLM‐CA neuron stimulation in vivo require the expression of VGLUT2 by these neurons, suggesting that the acute autonomic responses driven by RVLM‐CA neurons are mediated by glutamate.  相似文献   

18.
Treating acute brain injuries with COX‐2 inhibitors can produce both neuroprotective and neurotoxic effects. This study investigated the role of COX‐2 in modulating acute brain injury induced by excitotoxic neural damage. Intrastriatal injection of excitotoxin (RS)‐(tetrazole‐5yl) glycine elicited COX‐2 expression in two distinct groups of cells. cortical neurons surrounding the lesion and vascular cells in the lesion core. The vascular COX‐2 was expressed in two cell types, endothelial cells and monocytes. Selective deletion of COX‐2 in vascular cells in Tie2Cre Cox‐2flox/flox mice did not affect the induction of COX‐2 in neurons after the excitotoxin injection but resulted in increased lesion volume, indicating a neuroprotective role for the COX‐2 expressed in the vascular cells. Selective deletion of monocyte COX‐2 in LysMCre Cox‐2flox/flox mice did not reduce COX‐2‐dependent neuroprotection, suggesting that endothelial COX‐2 is sufficient to confer neuroprotection. Pharmacological inhibition of COX‐2 activity in Tie2Cre Cox‐2flox/flox mice reduced lesion volume, indicating a neurotoxic role for the COX‐2 expressed in neurons. Furthermore, COX‐2‐dependent neurotoxicity was mediated, at least in part, via the activation of the EP1 receptor. These results show that Cox‐2 expression induced in different cell types can confer opposite effects. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
20.
Little is known about the functional phenotype of microglia in normal appearing white matter (NAWM) of multiple sclerosis (MS), although it may hold valuable clues about mechanisms for lesion development. Therefore, we studied microglia from NAWM obtained post‐mortem from controls (n = 25) and MS patients (n = 21) for their phenotype ex vivo and their immune responsiveness in vitro, using a microglia isolation method that omits culture and adherence. By flow cytometry, microglia in MS NAWM displayed elevated CD45 levels and increased size and granularity but were distinct from autologous choroid plexus macrophages by absent or low expression of additional markers, in particular CD206. Flow cytometric analysis of microglia from NAWM of three controls and four MS patients showed alterations in levels of Fc‐gamma receptors in MS. In primary microglia from a bigger sample of subjects, analysis of Fc‐gamma receptors by quantitative PCR indicated a significant increase in mRNA levels of the inhibitory CD32b isoform in MS NAWM. Despite their changed activation status, microglia from MS NAWM were unresponsive to lipopolysaccharide in vitro. Notably, culture with dexamethasone led to an impaired induction of the inflammation‐limiting cytokine CCL18 in microglia from MS NAWM compared with those from control NAWM. Together, these data demonstrate that microglia in MS NAWM are in an alerted state, but display features of immunosuppression. Thus, the activation status of microglia in NAWM of MS patients likely reflects a response to ongoing neuroinflammation, which coincides with upregulation of immunoregulatory molecules to prevent full activation and damage to the vulnerable milieu. GLIA 2013;61:1848–1861  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号