共查询到20条相似文献,搜索用时 0 毫秒
1.
Flexible and Robust Methods for Rare‐Variant Testing of Quantitative Traits in Trios and Nuclear Families
下载免费PDF全文
![点击此处可从《Genetic epidemiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Most rare‐variant association tests for complex traits are applicable only to population‐based or case‐control resequencing studies. There are fewer rare‐variant association tests for family‐based resequencing studies, which is unfortunate because pedigrees possess many attractive characteristics for such analyses. Family‐based studies can be more powerful than their population‐based counterparts due to increased genetic load and further enable the implementation of rare‐variant association tests that, by design, are robust to confounding due to population stratification. With this in mind, we propose a rare‐variant association test for quantitative traits in families; this test integrates the QTDT approach of Abecasis et al. [Abecasis et al., 2000a ] into the kernel‐based SNP association test KMFAM of Schifano et al. [Schifano et al., 2012 ]. The resulting within‐family test enjoys the many benefits of the kernel framework for rare‐variant association testing, including rapid evaluation of P‐values and preservation of power when a region harbors rare causal variation that acts in different directions on phenotype. Additionally, by design, this within‐family test is robust to confounding due to population stratification. Although within‐family association tests are generally less powerful than their counterparts that use all genetic information, we show that we can recover much of this power (although still ensuring robustness to population stratification) using a straightforward screening procedure. Our method accommodates covariates and allows for missing parental genotype data, and we have written software implementing the approach in R for public use. 相似文献
2.
A Novel Test for Testing the Optimally Weighted Combination of Rare and Common Variants Based on Data of Parents and Affected Children
下载免费PDF全文
![点击此处可从《Genetic epidemiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
With the development of sequencing technologies, the direct testing of rare variant associations has become possible. Many statistical methods for detecting associations between rare variants and complex diseases have recently been developed, most of which are population‐based methods for unrelated individuals. A limitation of population‐based methods is that spurious associations can occur when there is a population structure. For rare variants, this problem can be more serious, because the spectrum of rare variation can be very different in diverse populations, as well as the current nonexistence of methods to control for population stratification in population‐based rare variant associations. A solution to the problem of population stratification is to use family‐based association tests, which use family members to control for population stratification. In this article, we propose a novel test for Testing the Optimally Weighted combination of variants based on data of Parents and Affected Children (TOW‐PAC). TOW‐PAC is a family‐based association test that tests the combined effect of rare and common variants in a genomic region, and is robust to the directions of the effects of causal variants. Simulation studies confirm that, for rare variant associations, family‐based association tests are robust to population stratification although population‐based association tests can be seriously confounded by population stratification. The results of power comparisons show that the power of TOW‐PAC increases with an increase of the number of affected children in each family and TOW‐PAC based on multiple affected children per family is more powerful than TOW based on unrelated individuals. 相似文献
3.
The wave of next‐generation sequencing data has arrived. However, many questions still remain about how to best analyze sequence data, particularly the contribution of rare genetic variants to human disease. Numerous statistical methods have been proposed to aggregate association signals across multiple rare variant sites in an effort to increase statistical power; however, the precise relation between the tests is often not well understood. We present a geometric representation for rare variant data in which rare allele counts in case and control samples are treated as vectors in Euclidean space. The geometric framework facilitates a rigorous classification of existing rare variant tests into two broad categories: tests for a difference in the lengths of the case and control vectors, and joint tests for a difference in either the lengths or angles of the two vectors. We demonstrate that genetic architecture of a trait, including the number and frequency of risk alleles, directly relates to the behavior of the length and joint tests. Hence, the geometric framework allows prediction of which tests will perform best under different disease models. Furthermore, the structure of the geometric framework immediately suggests additional classes and types of rare variant tests. We consider two general classes of tests which show robustness to noncausal and protective variants. The geometric framework introduces a novel and unique method to assess current rare variant methodology and provides guidelines for both applied and theoretical researchers. 相似文献
4.
Next generation sequencing technologies make direct testing rare variant associations possible. However, the development of powerful statistical methods for rare variant association studies is still underway. Most of existing methods are burden and quadratic tests. Recent studies show that the performance of each of burden and quadratic tests depends strongly upon the underlying assumption and no test demonstrates consistently acceptable power. Thus, combined tests by combining information from the burden and quadratic tests have been proposed recently. However, results from recent studies (including this study) show that there exist tests that can outperform both burden and quadratic tests. In this article, we propose three classes of tests that include tests outperforming both burden and quadratic tests. Then, we propose the optimal combination of single‐variant tests (OCST) by combining information from tests of the three classes. We use extensive simulation studies to compare the performance of OCST with that of burden, quadratic and optimal single‐variant tests. Our results show that OCST either is the most powerful test or has similar power with the most powerful test. We also compare the performance of OCST with that of the two existing combined tests. Our results show that OCST has better power than the two combined tests. 相似文献
5.
Family‐Based Rare Variant Association Analysis: A Fast and Efficient Method of Multivariate Phenotype Association Analysis
下载免费PDF全文
![点击此处可从《Genetic epidemiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Longfei Wang Sungyoung Lee Jungsoo Gim Dandi Qiao Michael Cho Robert C Elston Edwin K Silverman Sungho Won 《Genetic epidemiology》2016,40(6):502-511
Family‐based designs have been repeatedly shown to be powerful in detecting the significant rare variants associated with human diseases. Furthermore, human diseases are often defined by the outcomes of multiple phenotypes, and thus we expect multivariate family‐based analyses may be very efficient in detecting associations with rare variants. However, few statistical methods implementing this strategy have been developed for family‐based designs. In this report, we describe one such implementation: the multivariate family‐based rare variant association tool (mFARVAT). mFARVAT is a quasi‐likelihood‐based score test for rare variant association analysis with multiple phenotypes, and tests both homogeneous and heterogeneous effects of each variant on multiple phenotypes. Simulation results show that the proposed method is generally robust and efficient for various disease models, and we identify some promising candidate genes associated with chronic obstructive pulmonary disease. The software of mFARVAT is freely available at http://healthstat.snu.ac.kr/software/mfarvat/ , implemented in C++ and supported on Linux and MS Windows. 相似文献
6.
With its potential to discover a much greater amount of genetic variation, next‐generation sequencing is fast becoming an emergent tool for genetic association studies. However, the cost of sequencing all individuals in a large‐scale population study is still high in comparison to most alternative genotyping options. While the ability to identify individual‐level data is lost (without bar‐coding), sequencing pooled samples can substantially lower costs without compromising the power to detect significant associations. We propose a hierarchical Bayesian model that estimates the association of each variant using pools of cases and controls, accounting for the variation in read depth across pools and sequencing error. To investigate the performance of our method across a range of number of pools, number of individuals within each pool, and average coverage, we undertook extensive simulations varying effect sizes, minor allele frequencies, and sequencing error rates. In general, the number of pools and pool size have dramatic effects on power while the total depth of coverage per pool has only a moderate impact. This information can guide the selection of a study design that maximizes power subject to cost, sample size, or other laboratory constraints. We provide an R package (hiPOD: hierarchical Pooled Optimal Design) to find the optimal design, allowing the user to specify a cost function, cost, and sample size limitations, and distributions of effect size, minor allele frequency, and sequencing error rate. 相似文献
7.
Many association tests have been proposed for rare variants, but the choice of a powerful test is uncertain when there is limited information on the underlying genetic model. Proposed methods use either linear statistics, which are powerful when most variants are causal and have the same direction of effect, or quadratic statistics, which are more powerful in other scenarios. To achieve robustness, it is natural to combine the evidence of association from two or more complementary tests. To this end, we consider the minimum‐p and Fisher's methods of combining P‐values from linear and quadratic statistics. Extensive simulation studies show that both methods are robust across models with varying proportions of causal, deleterious, and protective rare variants, allele frequencies, and effect sizes. When the majority (>75%) of the causal effects are in the same direction (deleterious or protective), Fisher's method consistently outperforms the minimum‐p and the individual linear and quadratic tests, as well as the optimal sequence kernel association test, SKAT‐O. When the individual test has moderate power, Fisher's test has improved power for 90% of the ~5000 models considered, with >20% relative efficiency gain for 40% of the models. The maximum absolute power loss is 8% for the remaining 10% of the models. An application to the GAW17 quantitative trait Q2 data based on sequence data of the 1000 Genomes Project shows that, compared with linear and quadratic tests, Fisher's test has comparable power for all 13 functional genes and provides the best power for more than half of them. 相似文献
8.
Rare variants have recently garnered an immense amount of attention in genetic association analysis. However, unlike methods traditionally used for single marker analysis in GWAS, rare variant analysis often requires some method of aggregation, since single marker approaches are poorly powered for typical sequencing study sample sizes. Advancements in sequencing technologies have rendered next‐generation sequencing platforms a realistic alternative to traditional genotyping arrays. Exome sequencing in particular not only provides base‐level resolution of genetic coding regions, but also a natural paradigm for aggregation via genes and exons. Here, we propose the use of penalized regression in combination with variant aggregation measures to identify rare variant enrichment in exome sequencing data. In contrast to marginal gene‐level testing, we simultaneously evaluate the effects of rare variants in multiple genes, focusing on gene‐based least absolute shrinkage and selection operator (LASSO) and exon‐based sparse group LASSO models. By using gene membership as a grouping variable, the sparse group LASSO can be used as a gene‐centric analysis of rare variants while also providing a penalized approach toward identifying specific regions of interest. We apply extensive simulations to evaluate the performance of these approaches with respect to specificity and sensitivity, comparing these results to multiple competing marginal testing methods. Finally, we discuss our findings and outline future research. 相似文献
9.
Sungkyoung Choi Sungyoung Lee Dandi Qiao Megan Hardin Michael H. Cho Edwin K Silverman Taesung Park Sungho Won 《Genetic epidemiology》2016,40(6):475-485
Although the X chromosome has many genes that are functionally related to human diseases, the complicated biological properties of the X chromosome have prevented efficient genetic association analyses, and only a few significantly associated X‐linked variants have been reported for complex traits. For instance, dosage compensation of X‐linked genes is often achieved via the inactivation of one allele in each X‐linked variant in females; however, some X‐linked variants can escape this X chromosome inactivation. Efficient genetic analyses cannot be conducted without prior knowledge about the gene expression process of X‐linked variants, and misspecified information can lead to power loss. In this report, we propose new statistical methods for rare X‐linked variant genetic association analysis of dichotomous phenotypes with family‐based samples. The proposed methods are computationally efficient and can complete X‐linked analyses within a few hours. Simulation studies demonstrate the statistical efficiency of the proposed methods, which were then applied to rare‐variant association analysis of the X chromosome in chronic obstructive pulmonary disease. Some promising significant X‐linked genes were identified, illustrating the practical importance of the proposed methods. 相似文献
10.
Given the functional relevance of many rare variants, their identification is frequently critical for dissecting disease etiology. Functional variants are likely to be aggregated in family studies enriched with affected members, and this aggregation increases the statistical power to detect rare variants associated with a trait of interest. Longitudinal family studies provide additional information for identifying genetic and environmental factors associated with disease over time. However, methods to analyze rare variants in longitudinal family data remain fairly limited. These methods should be capable of accounting for different sources of correlations and handling large amounts of sequencing data efficiently. To identify rare variants associated with a phenotype in longitudinal family studies, we extended pedigree‐based burden (BT) and kernel (KS) association tests to genetic longitudinal studies. Generalized estimating equation (GEE) approaches were used to generalize the pedigree‐based BT and KS to multiple correlated phenotypes under the generalized linear model framework, adjusting for fixed effects of confounding factors. These tests accounted for complex correlations between repeated measures of the same phenotype (serial correlations) and between individuals in the same family (familial correlations). We conducted comprehensive simulation studies to compare the proposed tests with mixed‐effects models and marginal models, using GEEs under various configurations. When the proposed tests were applied to data from the Diabetes Heart Study, we found exome variants of POMGNT1 and JAK1 genes were associated with type 2 diabetes. 相似文献
11.
Paul L. Auer Gao Wang NHLBI Exome Sequencing Project Suzanne M. Leal 《Genetic epidemiology》2013,37(6):529-538
For studies of genetically complex diseases, many association methods have been developed to analyze rare variants. When variant calls are missing, naïve implementation of rare variant association (RVA) methods may lead to inflated type I error rates as well as a reduction in power. To overcome these problems, we developed extensions for four commonly used RVA tests. Data from the National Heart Lung and Blood Institute‐Exome Sequencing Project were used to demonstrate that missing variant calls can lead to increased false‐positive rates and that the extended RVA methods control type I error without reducing power. We suggest a combined strategy of data filtering based on variant and sample level missing genotypes along with implementation of these extended RVA tests. 相似文献
12.
Andrea E. Byrnes Michael C. Wu Fred A. Wright Mingyao Li Yun Li 《Genetic epidemiology》2013,37(7):666-674
In the past few years, a plethora of methods for rare variant association with phenotype have been proposed. These methods aggregate information from multiple rare variants across genomic region(s), but there is little consensus as to which method is most effective. The weighting scheme adopted when aggregating information across variants is one of the primary determinants of effectiveness. Here we present a systematic evaluation of multiple weighting schemes through a series of simulations intended to mimic large sequencing studies of a quantitative trait. We evaluate existing phenotype‐independent and phenotype‐dependent methods, as well as weights estimated by penalized regression approaches including Lasso, Elastic Net, and SCAD. We find that the difference in power between phenotype‐dependent schemes is negligible when high‐quality functional annotations are available. When functional annotations are unavailable or incomplete, all methods suffer from power loss; however, the variable selection methods outperform the others at the cost of increased computational time. Therefore, in the absence of good annotation, we recommend variable selection methods (which can be viewed as “statistical annotation”) on top of regions implicated by a phenotype‐independent weighting scheme. Further, once a region is implicated, variable selection can help to identify potential causal single nucleotide polymorphisms for biological validation. These findings are supported by an analysis of a high coverage targeted sequencing study of 1,898 individuals. 相似文献
13.
Robust Rare Variant Association Testing for Quantitative Traits in Samples With Related Individuals
下载免费PDF全文
![点击此处可从《Genetic epidemiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
The recent development of high‐throughput sequencing technologies calls for powerful statistical tests to detect rare genetic variants associated with complex human traits. Sampling related individuals in sequencing studies offers advantages over sampling unrelated individuals only, including improved protection against sequencing error, the ability to use imputation to make more efficient use of sequence data, and the possibility of power boost due to more observed copies of extremely rare alleles among relatives. With related individuals, familial correlation needs to be accounted for to ensure correct control over type I error and to improve power. Recognizing the limitations of existing rare‐variant association tests for family data, we propose MONSTER (Minimum P‐value Optimized Nuisance parameter Score Test Extended to Relatives), a robust rare‐variant association test, which generalizes the SKAT‐O method for independent samples. MONSTER uses a mixed effects model that accounts for covariates and additive polygenic effects. To obtain a powerful test, MONSTER adaptively adjusts to the unknown configuration of effects of rare‐variant sites. MONSTER also offers an analytical way of assessing P‐values, which is desirable because permutation is not straightforward to conduct in related samples. In simulation studies, we demonstrate that MONSTER effectively accounts for family structure, is computationally efficient and compares very favorably, in terms of power, to previously proposed tests that allow related individuals. We apply MONSTER to an analysis of high‐density lipoprotein cholesterol in the Framingham Heart Study, where we are able to replicate association with three genes. 相似文献
14.
Population stratification has long been recognized as an issue in genetic association studies because unrecognized population stratification can lead to both false‐positive and false‐negative findings and can obscure true association signals if not appropriately corrected. This issue can be even worse in rare variant association analyses because rare variants often demonstrate stronger and potentially different patterns of stratification than common variants. To correct for population stratification in genetic association studies, we proposed a novel method to Test the effect of an Optimally Weighted combination of variants in Admixed populations (TOWA) in which the analytically derived optimal weights can be calculated from existing phenotype and genotype data. TOWA up weights rare variants and those variants that have strong associations with the phenotype. Additionally, it can adjust for the direction of the association, and allows for local ancestry difference among study subjects. Extensive simulations show that the type I error rate of TOWA is under control in the presence of population stratification and it is more powerful than existing methods. We have also applied TOWA to a real sequencing data. Our simulation studies as well as real data analysis results indicate that TOWA is a useful tool for rare variant association analyses in admixed populations. 相似文献
15.
Benjamin A. Logsdon James Y. Dai Paul L. Auer Jill M. Johnsen Santhi K. Ganesh Nicholas L. Smith James G. Wilson Russell P. Tracy Leslie A. Lange Shuo Jiao Stephen S. Rich Guillaume Lettre Christopher S. Carlson Rebecca D. Jackson Christopher J. O'Donnell Mark M. Wurfel Deborah A. Nickerson Hua Tang Alexander P. Reiner Charles Kooperberg 《Genetic epidemiology》2014,38(1):21-30
Recently, many statistical methods have been proposed to test for associations between rare genetic variants and complex traits. Most of these methods test for association by aggregating genetic variations within a predefined region, such as a gene. Although there is evidence that “aggregate” tests are more powerful than the single marker test, these tests generally ignore neutral variants and therefore are unable to identify specific variants driving the association with phenotype. We propose a novel aggregate rare‐variant test that explicitly models a fraction of variants as neutral, tests associations at the gene‐level, and infers the rare‐variants driving the association. Simulations show that in the practical scenario where there are many variants within a given region of the genome with only a fraction causal our approach has greater power compared to other popular tests such as the Sequence Kernel Association Test (SKAT), the Weighted Sum Statistic (WSS), and the collapsing method of Morris and Zeggini (MZ). Our algorithm leverages a fast variational Bayes approximate inference methodology to scale to exome‐wide analyses, a significant computational advantage over exact inference model selection methodologies. To demonstrate the efficacy of our methodology we test for associations between von Willebrand Factor (VWF) levels and VWF missense rare‐variants imputed from the National Heart, Lung, and Blood Institute's Exome Sequencing project into 2,487 African Americans within the VWF gene. Our method suggests that a relatively small fraction (~10%) of the imputed rare missense variants within VWF are strongly associated with lower VWF levels in African Americans. 相似文献
16.
Qunyuan Zhang Lihua Wang Dan Koboldt Ingrid B. Boreki Michael A. Province 《Genetic epidemiology》2014,38(8):722-727
Family data represent a rich resource for detecting association between rare variants (RVs) and human traits. However, most RV association analysis methods developed in recent years are data‐driven burden tests which can adaptively learn weights from data but require permutation to evaluate significance, thus are not readily applicable to family data, because random permutation will destroy family structure. Direct application of these methods to family data may result in a significant inflation of false positives. To overcome this issue, we have developed a generalized, weighted sum mixed model (WSMM), and corresponding computational techniques that can incorporate family information into data‐driven burden tests, and allow adaptive and efficient permutation test in family data. Using simulated and real datasets, we demonstrate that the WSMM method can be used to appropriately adjust for genetic relatedness among family members and has a good control for the inflation of false positives. We compare WSMM with a nondata‐driven, family‐based Sequence Kernel Association Test (famSKAT), showing that WSMM has significantly higher power in some cases. WSMM provides a generalized, flexible framework for adapting different data‐driven burden tests to analyze data with any family structures, and it can be extended to binary and time‐to‐onset traits, with or without covariates. 相似文献
17.
Whole genome sequencing (WGS) and whole exome sequencing studies are used to test the association of rare genetic variants with health traits. Many existing WGS efforts now aggregate data from heterogeneous groups, for example, combining sets of individuals of European and African ancestries. We here investigate the statistical implications on rare variant association testing with a binary trait when combining together heterogeneous studies, defined as studies with potentially different disease proportion and different frequency of variant carriers. We study and compare in simulations the Type 1 error control and power of the naïve score test, the saddlepoint approximation to the score test, and the BinomiRare test in a range of settings, focusing on low numbers of variant carriers. We show that Type 1 error control and power patterns depend on both the number of carriers of the rare allele and on disease prevalence in each of the studies. We develop recommendations for association analysis of rare genetic variants. (1) The Score test is preferred when the case proportion in the sample is 50%. (2) Do not down‐sample controls to balance case–control ratio, because it reduces power. Rather, use a test that controls the Type 1 error. (3) Conduct stratified analysis in parallel with combined analysis. Aggregated testing may have lower power when the variant effect size differs between strata. 相似文献
18.
A Comparison Study of Fixed and Mixed Effect Models for Gene Level Association Studies of Complex Traits
下载免费PDF全文
![点击此处可从《Genetic epidemiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Ruzong Fan Chi‐yang Chiu Jeesun Jung Daniel E. Weeks Alexander F. Wilson Joan E. Bailey‐Wilson Christopher I. Amos Zhen Chen James L. Mills Momiao Xiong 《Genetic epidemiology》2016,40(8):702-721
In association studies of complex traits, fixed‐effect regression models are usually used to test for association between traits and major gene loci. In recent years, variance‐component tests based on mixed models were developed for region‐based genetic variant association tests. In the mixed models, the association is tested by a null hypothesis of zero variance via a sequence kernel association test (SKAT), its optimal unified test (SKAT‐O), and a combined sum test of rare and common variant effect (SKAT‐C). Although there are some comparison studies to evaluate the performance of mixed and fixed models, there is no systematic analysis to determine when the mixed models perform better and when the fixed models perform better. Here we evaluated, based on extensive simulations, the performance of the fixed and mixed model statistics, using genetic variants located in 3, 6, 9, 12, and 15 kb simulated regions. We compared the performance of three models: (i) mixed models that lead to SKAT, SKAT‐O, and SKAT‐C, (ii) traditional fixed‐effect additive models, and (iii) fixed‐effect functional regression models. To evaluate the type I error rates of the tests of fixed models, we generated genotype data by two methods: (i) using all variants, (ii) using only rare variants. We found that the fixed‐effect tests accurately control or have low false positive rates. We performed simulation analyses to compare power for two scenarios: (i) all causal variants are rare, (ii) some causal variants are rare and some are common. Either one or both of the fixed‐effect models performed better than or similar to the mixed models except when (1) the region sizes are 12 and 15 kb and (2) effect sizes are small. Therefore, the assumption of mixed models could be satisfied and SKAT/SKAT‐O/SKAT‐C could perform better if the number of causal variants is large and each causal variant contributes a small amount to the traits (i.e., polygenes). In major gene association studies, we argue that the fixed‐effect models perform better or similarly to mixed models in most cases because some variants should affect the traits relatively large. In practice, it makes sense to perform analysis by both the fixed and mixed effect models and to make a comparison, and this can be readily done using our R codes and the SKAT packages. 相似文献
19.
Clement Ma Michael Boehnke Seunggeun Lee the GoTD Investigators 《Genetic epidemiology》2015,39(7):499-508
Although genome‐wide association studies (GWAS) have identified thousands of trait‐associated genetic variants, there are relatively few findings on the X chromosome. For analysis of low‐frequency variants (minor allele frequency <5%), investigators can use region‐ or gene‐based tests where multiple variants are analyzed jointly to increase power. To date, there are no gene‐based tests designed for association testing of low‐frequency variants on the X chromosome. Here we propose three gene‐based tests for the X chromosome: burden, sequence kernel association test (SKAT), and optimal unified SKAT (SKAT‐O). Using simulated case‐control and quantitative trait (QT) data, we evaluate the calibration and power of these tests as a function of (1) male:female sample size ratio; and (2) coding of haploid male genotypes for variants under X‐inactivation. For case‐control studies, all three tests are reasonably well‐calibrated for all scenarios we evaluated. As expected, power for gene‐based tests depends on the underlying genetic architecture of the genomic region analyzed. Studies with more (haploid) males are generally less powerful due to decreased number of chromosomes. Power generally is slightly greater when the coding scheme for male genotypes matches the true underlying model, but the power loss for misspecifying the (generally unknown) model is small. For QT studies, type I error and power results largely mirror those for binary traits. We demonstrate the use of these three gene‐based tests for X‐chromosome association analysis in simulated data and sequencing data from the Genetics of Type 2 Diabetes (GoT2D) study. 相似文献
20.
In the increasing number of sequencing studies aimed at identifying rare variants associated with complex traits, the power of the test can be improved by guided sampling procedures. We confirm both analytically and numerically that sampling individuals with extreme phenotypes can enrich the presence of causal rare variants and can therefore lead to an increase in power compared to random sampling. Although application of traditional rare variant association tests to these extreme phenotype samples requires dichotomizing the continuous phenotypes before analysis, the dichotomization procedure can decrease the power by reducing the information in the phenotypes. To avoid this, we propose a novel statistical method based on the optimal Sequence Kernel Association Test that allows us to test for rare variant effects using continuous phenotypes in the analysis of extreme phenotype samples. The increase in power of this method is demonstrated through simulation of a wide range of scenarios as well as in the triglyceride data of the Dallas Heart Study. 相似文献