首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
We report an Xp11 translocation perivascular epithelioid cell tumor (PEComa) with a novel RBMX‐TFE3 gene fusion, resulting from a paracentric X chromosome inversion, inv(X)(p11;q26). The neoplasm occurred in an otherwise healthy 12‐year‐old boy who presented with a large left renal mass with extension into the inferior vena cava. The patient was found to have multiple pulmonary metastases at diagnosis and died of disease 3 months later. The morphology (epithelioid clear cells with alveolar and nested architecture) and immunophenotype (TFE3 and HMB45 strongly positive; actin, desmin, and PAX8 negative) was typical of an Xp11 translocation PEComa; however, TFE3 rearrangement was initially not detected by routine TFE3 break‐apart fluorescence in situ hybridization (FISH). Further RNA sequencing revealed a novel RBMX‐TFE3 gene fusion, which was subsequently confirmed by fusion assay FISH, using custom design RBMX and TFE3 come‐together probes. This report describes a novel TFE3 gene fusion partner, RBMX, in a pediatric renal PEComa patient associated with a fulminant clinical course. As documented in other intrachromosomal Xp11.2 inversions, such as fusions with NONO, RBM10, or GRIPAP1 genes, the TFE3 break‐apart might be below the FISH resolution, resulting in a false negative result.  相似文献   

3.
Eosinophilia‐associated myeloid neoplasms with rearrangement of chromosome bands 5q31‐33 are frequently associated with PDGFRB fusion genes, which are exquisitely sensitive to treatment with imatinib. In search for novel fusion partners of PDGFRB, we analyzed three cases with translocation t(5;20)(q33;p11), t(5;14)(q33;q32), and t(5;17;14)(q33;q11;q32) by 5′‐rapid amplification of cDNA ends polymerase chain reaction (5′‐RACE‐PCR) and DNA‐based long‐distance inverse PCR (LDI‐PCR) with primers derived from PDGFRB. LDI‐PCR revealed a fusion between CCDC88C exon 25 and PDGFRB exon 11 in the case with t(5;17;14)(q33;q11;q32) while 5′‐RACE‐PCR identified fusions between CCDC88C exon 10 and PDGFRB exon 12 and between DTD1 exon 4 and PDGFRB exon 12 in the cases with t(5;14)(q33;q32) and t(5;20)(q33;p11), respectively. The PDGFRB tyrosine‐kinase domain is predicted to be retained in all three fusion proteins. The partner proteins contained coiled‐coil domains or other domains, which putatively lead to constitutive activation of the PDGFRB fusion protein. In vitro functional analyses confirmed transforming activity and imatinib‐sensitivity of the fusion proteins. All three patients achieved rapid and durable complete hematologic remissions on imatinib. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
5.
6.
7.
Deletions of the terminal Xp regions, including the short‐stature homeobox (SHOX) gene, were described in families with hereditary Turner syndrome and Léri‐Weill syndrome. We report on a 10‐2/12‐year‐old girl and her 37‐year‐old mother with short stature and no other phenotypic symptoms. In the daugther, additional chromosome material was detected in the pseudoautosomal region of one X chromosome (46,X,add(Xp.22.3)) by chromosome banding analysis. The elongation of the X chromosome consisted of Giemsa dark and bright bands with a length one‐fifth of the size of Xp. The karyotype of the mother demonstrated chromosome mosaicism with three cell lines (46,X,add(X)(p22.3) [89]; 45,X [8]; and 47,X,add(X)(p22.3), add(X)(p22.3) [2]). In both daughter and mother, fluorescence in situ hybridization (FISH), together with data from G banding, identified the breakpoints in Xp22.1‐3 and Xq26, resulting in a partial trisomy of the terminal region of Xq (Xq26‐qter) and a monosomy of the pseudoautosomal region (Xp22.3) with the SHOX gene and the proximal region Xp22.1‐3, including the steroidsulfatase gene (STS) and the Kallmann syndrome region. The derivative X chromosome was defined as ish.der(X)t(X;X)(p22.1‐3;q26)(yWXD2540‐, F20cos‐, STS‐, 60C10‐, 959D10‐, 2771+, cos9++). In daughter and mother, the monosomy of region Xp22.1‐3 is compatible with fertility and does not cause any other somatic stigmata of the Turner syndrome or Léri‐Weill syndrome, except for short stature due to monosomy of the SHOX gene. © 2001 Wiley‐Liss, Inc.  相似文献   

8.
Recently, an increasing number of TFE3 rearrangement‐associated tumours have been reported, such as TFE3 rearrangement‐associated perivascular epithelioid cell tumours (PEComas), melanotic Xp11 translocation renal cancers and melanotic Xp11 neoplasms. We have suggested that these tumours belong to a single clinicopathological spectrum. ‘Xp11 neoplasm with melanocytic differentiation’ or ‘melanotic Xp11 neoplasm’ have been proposed to designate this unique neoplasm. Herein, we describe the first case of an Xp11 neoplasm with melanocytic differentiation to be described in the prostate, bearing the novel NONO–TFE3 gene fusion. This study both adds to the spectrum regarding melanotic Xp11 neoplasms and expands its gene fusion spectrum. Moreover, we discuss the relationship of these rare tumours to neoplasms such as conventional PEComas, alveolar soft part sarcomas, malignant melanomas, clear cell sarcomas and Xp11 translocation renal cancers.  相似文献   

9.
The cell-cycle timing of somatic chromosomal translocations in cancer remains poorly understood but may be relevant to their etiology and the mechanism of their formation. Alveolar soft-part sarcoma (ASPS) is a rare malignant soft-tissue tumor of uncertain lineage that provides an opportunity to address this question. The great majority of ASPSs have relatively simple near-diploid karyotypes characterized by an unbalanced der(17)t(X;17)(p11.2;q25), resulting in nonreciprocal fusion of TFE3 with ASPSCR1 (a.k.a. ASPL), with consequent net gain of Xp11.2-->pter and loss of 17q25-->qter. The presence of a normal X along with the der(17)t(X;17) in ASPSs that occur in men has been well described in previous cytogenetic reports and is most readily explained by a translocation in the G2 phase of the cell cycle. To establish whether formation in G2 is a general feature of the t(X;17), we examined polymorphic loci in Xp11.2-->qter in ASPS from 9 women, including 7 with an unbalanced t(X;17). Our analysis showed that all 7 displayed retention of heterozygosity at all informative markers on Xp11.2-->qter, supporting preferential formation of the t(X;17) in the G2 phase of the cell cycle. Given that the two derivative chromosomes of a translocation in G2 would be expected to segregate together half the time, the predominance of an unbalanced der(17)t(X;17) also raises the possibility of a selective advantage in ASPS cells for gain of Xp11.2-->pter or loss of 17q25.3-->qter or retention of an active copy of TFE3.  相似文献   

10.
11.
12.
A new case of translocation t(6;11)(q21;q23) in a patient with therapy-related acute myeloblastic leukemia is reported. The translocation results in fusion of the MLL and AF6q21 genes. The breakpoint with AF6q21 is located within the sequences encoding the AF6q21 fork head motif. The similar location of the localization of the chromosome 6 breakpoints in the present case and in the first case reported suggests their nonrandom localization. In addition, treatment for Hodgkin's disease prior to leukemia in both t(6;11)(q21;q23) cases suggests an association of this translocation with therapy-related leukemias, as reported for the recently described t(11;16)(q23;p13.3). Genes Chromosomes Cancer 22:221–224, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
We previously reported that activation of the B‐cell‐activating factor (BAFF) pathway upregulates nuclear factor‐κB (NF‐κB) and induces BCL3 and BCL10 nuclear translocation in Helicobacter pylori (HP)‐independent gastric diffuse large B‐cell lymphoma (DLBCL) tumours with evidence of mucosa‐associated lymphoid tissue (MALT). However, the significance of BAFF expression in HP independence of gastric low‐grade MALT lymphomas without t(11;18)(q21;q21) remains unexplored. Sixty‐four patients who underwent successful HP eradication for localized HP‐positive gastric MALT lymphomas without t(11;18)(q21;q21) were studied. BAFF expression was significantly higher in the HP‐independent group than in the HP‐dependent group [22/26 (84.6%) versus 8/38 (21.1%); p < 0.001]. Similarly, BAFF receptor (BAFF‐R) expression (p = 0.004) and nuclear BCL3 (p = 0.004), BCL10 (p < 0.001), NF‐κB (p65) (p = 0.001) and NF‐κB (p52) (p = 0.005) expression were closely correlated with the HP independence of these tumours. Moreover, BAFF overexpression was significantly associated with BAFF‐R expression and nuclear BCL3, BCL10, NF‐κB (p65) and NF‐κB (p52) expression. These findings were further validated in an independent cohort, including 40 HP‐dependent cases and 18 HP‐independent cases of gastric MALT lymphoma without t(11;18)(q21;q21). The biological significance of BAFF signalling in t(11;18)(q21;q21)‐negative lymphoma cells was further studied in two types of lymphoma B cell: OCI‐Ly3 [non‐germinal centre B‐cell origin DLBCL without t(11;18)(q21;q21) cell line] and MA‐1 [t(14;18)(q32;q21)/IGH‐MALT1‐positive DLBCL cell line]. In both cell lines, we found that BAFF activated the canonical NF‐κB and AKT pathways, and induced the formation of BCL10–BCL3 complexes, which translocated to the nucleus. BCL10 and BCL3 nuclear translocation and NF‐κB (p65) transactivation were inhibited by either LY294002 or by silencing BCL3 or BCL10 with small interfering RNA. BAFF also activated non‐canonical NF‐κB pathways (p52) through tumour necrosis factor receptor‐associated factor 3 degradation, NF‐κB‐inducing kinase accumulation, inhibitor of κB kinase (IKK) α/β phosphorylation and NF‐κB p100 processing in both cell lines. Our data indicate that the autocrine BAFF signal transduction pathway contributes to HP independence in gastric MALT lymphomas without the t(11;18)(q21;q21) translocation. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

14.
15.
16.
A cytogenetic study of an alveolar soft-part sarcoma, a rare tumor of probably myogenic origin, demonstrated a t(X;17)(p11;q25) as the sole chromosomal abnormality. Dual- and triple-color fluorescence in situ hybridization, performed on metaphase and interphase cells, confirmed the translocation between chromosomes X and 17 and demonstrated that this translocation resulted in loss of 17q25. Involvement of 17q25 has been described in four previously published cases of alveolar soft-part sarcoma, but without further characterization. Compared to our karyotype, it seems that the derivative chromosome 17 observed in the reported cases could also be the result of a t(X;17) with possible loss of the 17q25 band. If so, a 17q25 deletion and/or chromosome rearrangement between Xp and 17q leading either to a gene fusion or gene disruption could play an important role in the pathogenesis of alveolar soft-part sarcoma. Genes Chromosomes Cancer 23:194–197, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
We describe the clinical features, outcome, pathology, cytogenetics, and molecular aspects of 13 pediatric papillary renal cell carcinomas during a 19-year period. Seven cases (54%) had translocations involving Xp11.2 (TFE3). They were identified by cytogenetic, molecular, and/or immunohistochemical analyses. All Xp11.2+ translocations were TFE3+ by immunostaining. Cytogenetic and/or polymerase chain reaction analyses identified 3 cases with t(X17) and 1 case with t(1;17), and all had additional translocations. Histologic features in common in TFE3+ tumors also were present in some TFE3- tumors. One TFE3- tumor had complex cytogenetic abnormalities, 55XY,+2,del(3)(p14),+7,+8,+12,+13,+16,+17,+20[11 ], and 2 cases had normal karyotypes. None had t(6;11)/TFEB+ immunostaining. Five cases had focal, weak MITF tumor immunostaining. The key clinical findings were as follows: (1) The presence of an Xp11.2 (TFE3) translocation frequently is associated with advanced stage at initial examination. (2) All patients who underwent complete, partial nephrectomy with clear margins (adequate only for stage 1) and resection of metastases were alive and relapse-free at last follow-up. (3) The mean +/- SD event-free survival and overall survival rates at 5 years were both 92% +/- 7.4%. (4) One patients with a TFE3+ and MITF+ tumor and 66-87,XXY,der(1)t(1;8)del(4)(q?) der(11)t(11;15)der17t(X;17 abnormalities died 9 months after diagnosis.  相似文献   

18.
In eosinophilia‐associated myeloproliferative neoplasms (MPN‐eo), constitutive activation of protein tyrosine kinases (TK) as consequence of translocations, inversions, or insertions and creation of TK fusion genes is recurrently observed. The most commonly involved TK and their potential TK inhibitors include PDGFRA at 4q12 or PDGFRB at 5q33 (imatinib), FGFR1 at 8p11 (ponatinib), and JAK2 at 9p24 (ruxolitinib). We here report the identification of three new PDGFRB fusion genes in three male MPN‐eo patients: MPRIPPDGFRB in a case with t(5;17)(q33;p11), CPSF6PDGFRB in a case with t(5;12)(q33;q15), and GOLGB1‐PDGFRB in a case with t(3;5)(q13;q33). The fusion proteins identified by 5′‐rapid amplification of cDNA ends polymerase chain reaction (PCR) or DNA‐based long distance inverse PCR are predicted to contain the TK domain of PDGFRB. The partner genes contain domains like coiled‐coil structures, which are likely to cause dimerization and activation of the TK. In all patients, imatinib induced rapid and durable complete remissions. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
The survival rate for children with osteosarcoma (OS) has improved dramatically with the introduction of multiagent chemotherapy. As the number of pediatric cancer survivors increases, there is a concern about the development of secondary malignant neoplasms. Secondary acute myeloid leukemia (AML) has been rarely reported after treatment for OS. We describe a 14-year-old boy with OS of the left ileum who developed secondary AML 15 months after completion of treatment. Cytogenetic analysis of the leukemic cells demonstrated deletion 11q23, whereas fluorescence in situ hybridization revealed rearrangement of the MLL gene. Only the addition of the long-distance inverse polymerase chain reaction technique identified the SEPT2 as the MLL fusion partner resulting in t(2;11)(q37;q23) that was reported in a very few secondary AML cases. Because of the cryptic nature of MLL translocations that cannot be detected by conventional cytogenetics or may misinterpreted as deletion, additional molecular techniques are required to identify the precise translocation partner. Because long-distance inverse polymerase chain reaction is not available in most molecular laboratories, the true incidence of t(2;11)(q37;q23) and the involvement of SEPT2 as the MLL translocation partner could be more prevalent in secondary AML.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号