首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 建立大鼠小体积肝移植模型,输注表达人肝细胞生长因子(human hepatocyte growth factor,hHGF)的骨髓间充质干细胞(mesenchymal stem cells,MSCs),研究其在移植早期对小移植肝促再生作用.方法 将已建立的表达hHGF和绿色荧光蛋白(green fluorescence protein,GFP)的MSCs,分别命名为HGF/MSCs,GFP/Mscs.建立大鼠30%肝移植模型.受体分为4组,实验组输注5×106HGF/MSCs;对照组则分别输注相同体积的生理盐水(PS),5×106 GFP/MSCs或1.0×109 pfu含hHGF的重组腺病毒液(Ad-HGF).分别于术后1,3,5,7 d各组随机抽取5只大鼠处死.取血检测血清ALT和hHGF.记录移植物湿重.取肝组织检测hHGF、c-met表达,以及肝细胞凋亡和增殖活性.另每组15只,分组同上,用于观察生存期.结果 PS组大鼠7 d生存率33.3%;组织学及血清学检查示术后肝脏损伤重,汇管区单核细胞浸润多;而实验组大鼠7 d生存率为73.3%.肝脏损伤轻,炎性细胞浸润少;实验组移植肝再生较PS组明显增加.结论 大鼠部分肝移植后,输注HGF/MSCs能够保护小体积移植肝,促进小移植肝再生,提高7 d生存率.  相似文献   

2.
3.
Bone marrow-derived cells (BMCs) are multipotent cells that have the potential to differentiate into bone, cartilage, fat, muscle, or neuronal lineages such as neurons and glial cells. A silicone tube model containing reverse-pedicled sural vessels was created in the sciatic nerves of Lewis rats. About 1 x 10(7) BMCs, removed from the bone marrow of synergetic rat femurs and cultured in vitro, were transplanted into the 15-mm-long chambers of the silicone tubes. Nerve regeneration in vessel-containing tubes that had received BMCs was significantly greater at 12 and 24 weeks after surgery than in tubes that did not receive cells. Transplantation of fibroblasts instead of BMCs into the vessel-containing tube resulted in reduced axonal regeneration, which was inferior to regeneration in the vessel-containing tube that did not receive cells. Polymerase chain reaction (PCR) studies revealed that in vessel-containing tubes containing transplanted BMCs, about 29% of cells in the regenerated nerve originated from BMCs. Cells identified by in situ hybridization and PKH26 prelabeling as being of BMC origin stained positively for S100 and GFAP. Transplanted BMCs differentiated into cells with phenotypes similar to those of Schwann cells under the influence of neurochemical factors and survived by obtaining nutrients from vessels that had been preinserted into the tube. They thus functioned similarly to Schwann cells, promoting nerve regeneration.  相似文献   

4.
It is known that osteogenic differentiation of mesenchymal stem cells (MSCs) can be promoted by suppression of adipogenesis of MSCs. We have recently found that the chemical chaperone tauroursodeoxycholic acid (TUDCA) significantly reduces adipogenesis of MSCs. In the present study, we examined whether TUDCA can promote osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMMSCs) by regulating Integrin 5 (ITGA5) associated with activation of ERK1/2 signal pathway and thereby enhance bone tissue regeneration by reducing apoptosis and the inflammatory response. TUDCA treatment promoted in vitro osteogenic differentiation of BMMSCs and in vivo bone tissue regeneration in a calvarial defect model, as confirmed by micro-computed tomography, histological staining, and immunohistochemistry for osteocalcin. In addition, TUDCA treatment significantly decreased apoptosis and the inflammatory response in vivo and in vitro, which is important to enhance bone tissue regeneration. These results indicate that TUDCA plays a critical role in enhancing osteogenesis of BMMSCs, and is therefore a potential alternative drug for bone tissue regeneration.  相似文献   

5.
We have previously shown the importance of dermal fibroblasts within skin substitutes for promoting the emergence of a functional neodermis after grafting in humans. However, the use of fibroblasts from sources other than the dermis needs to be evaluated for patients with extensive skin loss. Here we examined the capacity of human bone marrow-derived cells (BMDCs), selected for their ability to adhere to plastic culture dishes, to behave like human dermal fibroblasts when incorporated within a 3D in vitro reconstructed tissue that promotes dermal fibroblast differentiation. Like dermal fibroblasts, BMDCs contracted a collagen matrix and were growth regulated by the matrix environment. They had the same shape and their nuclei had the same form factor as dermal fibroblasts. In addition, both cell types expressed desmin and vimentin but not α-smooth muscle actin. BMDCs deposited collagen types I and III, and fibrillin-1 with similar efficiency to dermal fibroblasts. In addition, BMDCs have the potential to regulate this deposition, as they produced metalloproteinases (MMP1, MMP2, and MMP9) and metalloproteinase inhibitors (TIMP1) very similarly to dermal fibroblasts. BMDCs can thus be induced to express functions resembling those of dermal fibroblasts, including those involved in the wound healing process.  相似文献   

6.
Studies of tissue from recipients of bone marrow transplantation or organ allograft suggest that bone marrow-derived cells (BMDC) may differentiate into a variety of nonhematologic tissues, including renal tubular epithelium. The aims of this study were to examine whether BMDC contribute to recovery after acute renal injury and to assess the effects of cytokine mobilization on regeneration. Female mice (6 wk old) were lethally irradiated and transplanted with male bone marrow (BM) cells and later assigned into control, folic acid-treatment, and folic acid-treatment with granulocyte-colony stimulating factor (G-CSF), and control with G-CSF. Tritiated thymidine was given 1 h before death. Kidney sections were stained for a tubular epithelial marker, Y chromosome (in situ hybridization), periodic acid-Schiff staining, and subjected to autoradiography. Renal tubular epithelial cells in S-phase were scored as female (indigenous) or male (BM-derived). This is the first report to show that BMDC can respond by engrafting the renal tubules and undergo DNA synthesis after acute renal injury. BMDC contributed to the renal tubular epithelial cell population, although most (90%) renal tubular regeneration came from female indigenous cells. Some evidence was found for cell fusion between indigenous renal tubular cells and BMDC, but this was infrequent and the significance and consequences of cell fusion in the kidney are unresolved. G-CSF treatment nearly doubled the frequency of thymidine-labeled BM-derived tubular cells and might facilitate the recovery of renal tubular epithelium.  相似文献   

7.

Background

Numerous congenital and acquired liver diseases could benefit from a successful hepatic cell therapy strategy. Hepatotypic cells derived from bone marrow have been recognized during liver injury, repair, and regeneration. To study this phenomenon, we compared the effect of several modes of experimental hepatic injury on hepatotypic protein expression in a mouse model after bone marrow transplantation.

Methods

Male mice transgenic for the liver-specific protein human α-1 antitrypsin (hAAT) were used as bone marrow donors. Syngeneic wild-type recipient mice were subjected to 1 of 3 hepatic injuries: (1) sublethal irradiation, (2) injection of a hepatotoxic adenoviral construct, and (3) administration of a hepatotoxic diet. Bone marrow-derived hepatotypic (BMdH) transgene expression was determined by serial serum enzyme-linked immunosorbent assay for hAAT.

Results

In both acute injury models, hAAT expression was detected as early as 1 week, whereas the control group never elicited hAAT expression. The adenovirus-treated group demonstrated transient hAAT level expression lasting up to 2 weeks postinjury, whereas the irradiated group maintained persistent hAAT expression through 4 months. In the chronic injury (hepatotoxin) model, hAAT expression persisted and was noted to increase over time to 200 to 300 ng/mL.

Conclusions

Irradiation favors long-term establishment of BMdH transgene expression, and chronic injury further promotes this phenomenon.  相似文献   

8.
The interaction between vascular endothelial cells (VECs) and osteoblasts (OBs) is the focus of this recent research. Vascular endothelial cells secrete bone morphogenetic protein, which promotes OB differentiation and stimulates OBs and their precursor cells to secrete vascular endothelial growth factor. Vascular endothelial growth factor is important in angiogenesis and angiopoiesis. Cloning studies have shown that adipose-derived stem cells (ADSCs) have the potential to differentiate into fat, bone, cartilage, and skeletal and smooth muscle cells, among others. Adipose-derived stem cells can express multiple growth factors, including vascular endothelial growth factor and hepatocyte growth factor. Our study examined the influence of coculturing VECs and ADSCs on osteogenic differentiation. Cord blood-derived VECs and ADSCs were isolated from rats and characterized with immunofluorescence staining and morphological observation. Coculture of third-generation ADSCs and VECs was induced for 6 weeks. Cell growth was analyzed using a modified MTT assay. Alkaline phosphatase (ALP) and osteocalcin (OC) was analyzed using immunofluorescence staining. When ADSCs and VECs were cocultured, the absorbance of cells gradually increased, reaching a peak on day 12. The highest absorbance was seen in a coculture system with a ratio of ADSCs and VECs of 1:1. The secretion of ALP and OC gradually increased in these cells and was significantly higher than controls (P < 0.01). Coculturing of ADSCs and VECs at a 1:1 ratio gave the highest secretion of ALP and OC at every time point, and was significantly higher than other groups (P < 0.01). Our results indicated that ADSCs can be induced to osteogenic differentiation by VECs in vitro, suggesting a coculture system of VECs and ADSC as a novel source of cells for bone engineering.  相似文献   

9.
10.
Stroke remains a major cause of death in the US and around the world. Over the last decade, stem cell therapy has been introduced as an experimental treatment for stroke. Transplantation of stem cells or progenitors into the injured site to replace the nonfunctional cells, and enhancement of proliferation or differentiation of endogenous stem or progenitor cells stand as the two major cell-based strategies. Potential sources of stem/progenitor cells for stroke include fetal neural stem cells, embryonic stem cells, neuroteratocarcinoma cells, umbilical cord blood-derived nonhematopoietic stem cells, and bone marrow-derived stem cells. The goal of this article is to provide an update on the preclinical use of bone marrow-derived stem cells with major emphasis on mesenchymal stem cells (MSCs) and multipotent adult progenitor cells (MAPCs) because they are currently most widely applied in experimental stroke studies and are now being phased into early clinical trials. The phenotypic features of MSCs and MAPCs, as well as their application in stroke, are described.  相似文献   

11.
Bone marrow stem cells (BMSCs) transplantation alone may not be sufficient for treatment of liver fibrosis because of complicated histopathologic changes in the liver. Interleukin-10 (IL-10) is an anti-fibrosis cytokine. IL-10 gene transfer of beta2m(-)/Thy-1+ bone marrow-derived hepatocyte stem cells (BDHSCs) may be useful for treating liver fibrosis. To determine the effect of liver fibrosis in rats by transplanting BDHSCs transduced with adenovirus-mediated IL-10 gene (AdIL-10), rat BDHSCs were isolated by magnetic bead cell sorting, characterized for liver-associated phenotypes, transduced with AdIL-10, and transplanted into liver-fibrotic rats. We show that BDHSCs secreted high-level IL-10 and retained their albumin expression after AdIL-10 transfer in vitro. Intra-portal-infused BDHSCs were implanted into the liver 2 weeks after transplantation. Transplanting AdIL-10-transduced BDHSCs into liver-fibrotic rats downregulated inflammatory response, promoted liver regeneration, suppressed activation of hepatic stellate cells and improved liver histopathology and liver function. These findings demonstrated the potential utility of this novel combined strategy of IL-10 gene and BDHSCs for the treatment of liver fibrosis.  相似文献   

12.
Background An autograft of cultured bone marrow-derived mesenchymal stem cells has already been used in clinical practice. In those patients whose bone marrow cannot be used, a cell allograft with the use of immunosuppressant drugs will be an option in the future. However, little is known about the effects of immunosuppressant drugs on mesenchymal stem cells. This study assessed the effects of immunosuppressant drugs on osteogenic differentiation of mesenchymal stem cells and analyzed the manner in which immunosuppressant drugs modulate the osteogenic effect of dexamethasone. Methods Rat bone marrow cells were cultured with or without dexamethasone as an osteogenic supplement. In each experimental group, one of three immunosuppressants (rapamycin, cyclosporine A, or FK506) was added. As a control, cells were cultured without immunosuppressants. Histologically, mineralization was assessed by alizarin red S staining and phase-contrast microscopy. Biochemically, alkaline phosphatase activity, calcium content, and osteocalcin content were assessed. Results On histological analysis, no mineralized nodules were seen on alizarin red S staining or phase-contrast microscopy in the groups not treated with dexamethasone, except in the group that was treated with FK506. Mineralized nodules were seen in the groups treated with dexamethasone, except in the group that was treated with rapamycin. On biochemical analysis, it was found that, compared to the control group, rapamycin reduced alkaline phosphatase activity and the calcium content of mesenchymal stem cells; FK506 increased alkaline phosphatase activity, calcium content, and osteocalcin content; and cyclosporine A had negligible effects. Dexamethasone increased alkaline phosphatase activity, calcium content, and osteocalcin content, but these effects were decreased by rapamycin. Conclusions Rapamycin did not have an osteogenic effect on mesenchymal stem cells, but inhibited the effect of osteogenic differentiation induced by dexamethasone. In contrast, FK506 had an osteogenic effect on mesenchymal stem cells. Therefore, FK506 might be more useful than rapamycin in allogeneic transplantation of mesenchymal stem cells.  相似文献   

13.
The relative importance of donor marrow-derived cells in the immunogenicity of bone and skin allografts was compared. Radiation chimeras were created to have marrow-derived cells (MDCs) of a different genotype from their nonmarrow-derived cells (NMDCs). Such animals were used as donors of bone or skin for recipients chosen so that either the MDCs or the NMDCs of the graft would be incompatible. Immunogenicity was determined by measuring the recipient antibody response. The effect of the immune response on the bone graft (rejection) was determined by impaired bone healing. When MDCs alone were H-2 disparate with the recipient, bone grafts were immunogenic, and the bone graft healing was impaired. In contrast, skin grafts in the same combinations were immunogenic but were not rejected if the differences were only expressed on the MDCs of the graft. The role of NMDCs in all of these experiments was more difficult to interpret, but the results suggested that NMDCs are relatively unimportant for healing of bone grafts, although critical for rejection of skin grafts. We conclude that, unlike the situation with skin grafts, the major inducers and targets of the immune response to bone allografts are marrow derived.  相似文献   

14.
OBJECTIVE: The objective of this study is to investigate if bone marrow-derived cells (BMCs) regenerate vascular tissues and improve patency in tissue-engineered small-diameter (internal diameter = 3 mm) vascular grafts. SUMMARY BACKGROUND DATA: BMCs have demonstrated the ability to differentiate into endothelial-like cells and vascular smooth muscle-like cells and may offer an alternative cell source for vascular tissue engineering. Thus, we tissue-engineered small-diameter vascular grafts with BMCs and decellularized arteries. METHODS: Canine BMCs were differentiated in vitro into smooth muscle alpha-actin/smooth muscle myosin heavy-chain-positive cells and von Willebrand factor/CD31-positive cells and seeded onto decellularized canine carotid arteries (internal diameter = 3 mm). The seeded grafts were implanted in cell donor dogs. The vascular-tissue regeneration and graft patency were investigated with immunohistochemistry and angiography, respectively. RESULTS: The vascular grafts seeded with BMCs remained patent for up to 8 weeks in the canine carotid artery interposition model, whereas nonseeded grafts occluded within 2 weeks. Within 8 weeks after implantation, the vascular grafts showed regeneration of the 3 elements of artery (endothelium, media, and adventitia). BMCs labeled with a fluorescent dye prior to implantation were detected in the retrieved vascular grafts, indicating that the BMCs participated in the vascular tissue regeneration. CONCLUSIONS: Here we show that BMCs have the potential to regenerate vascular tissues and improve patency in tissue-engineered small-diameter vascular grafts. This is the first report of a small-diameter neovessel engineered with BMCs as a cell source.  相似文献   

15.
Mesenchymal stem cells (MSCs) are immunoprivileged and the allogeneic MSCs implantation has been used to facilitate tissue repairs such as bone and cartilage defect. The present study aimed to investigate the feasibility of xenogeneic MSCs implantation. Green fluorescent protein (GFP) transgenic rat bone marrow-derived MSCs were loaded into HA/TCP Skelite blocks and implanted intramuscularly into the quadriceps of the MF1 and SCID mice. After 11 weeks, the implants were harvested and processed for further examinations. The peripheral blood mononuclear cells of each animal were also collected to measure the in vitro immune responses using mixed lymphocyte culture and cytotoxic assay. In the MF1 mice, some surviving MSCs were found in the explants after 11 weeks of implantation, but there was no sign of new bone formation as neither osteocalcin mRNA nor osteoid tissues were detected in the explants; the lymphocyte proliferation and cytotoxicity against donor MSCs were significantly increased in the animals with the xenogeneic MSCs implantation compared with the control littermates without transplantation. In the control SCID mice, osteoid tissues derived from the implanted MSCs were found in the explants; no difference of lymphocyte proliferation and cytotoxicity against the donor MSCs was detected between the SCID mice with or without MSCs implantation. The data suggested that rat MSCs survived the 11 weeks of xenotransplantation in the MF1 mice, but the increased host immune sensitization led to the impaired in vivo osteogenesis potential of MSCs.  相似文献   

16.
Adult stem cells are self-renewing, pluripotent, and able to repopulate the tissue in which they reside. Cells endowed with these properties have been isolated from several tissues and an increasing number of reports provide evidence of their ability, following transplantation, to engraft host tissues other than those of their origin. In this setting, interest in the well-documented capacity of bone marrow stromal cells to undergo multilineage differentiation is growing. Neural and cardiomyogenic lineages have recently been proposed as additional differentiative pathways of these cells. However, culture conditions and inductive molecules can alter the behavior of bone marrow stromal cells and the microenvironment is critical for proper in vivo delivery. The maintenance of their stem properties and the possibility of reprogramming their commitment is a field of primary interest given the potential use of these cells in regenerative medicine. We discuss here how the microenvironmental cues, and the growth factors that physiologically govern commitment and subsequent differentiation, influence the properties of bone marrow stromal cells and modulate their engraftment into host tissues.  相似文献   

17.
18.
Immunotherapy of NOD mice with bone marrow-derived dendritic cells   总被引:10,自引:0,他引:10  
We evaluated two bone marrow-derived dendritic cell (DC) populations from NOD mice, the murine model for type 1 human diabetes. DCs derived from GM-CSF [granulocyte/macrophage colony-stimulating factor] + interleukin (IL)-4 cultures expressed high levels of major histocompatibility complex (MHC) class II, CD40, CD80, and CD86 molecules and were efficient stimulators of naive allogeneic T-cells. In contrast, DCs derived from GM-CSF cultures had low levels of MHC class II costimulation/activation molecules, were able to take up mannosylated bovine serum albumin more efficiently than GM + IL-4 DCs, and were poor T-cell stimulators. The two DC populations migrated to the spleen and pancreas after intravenous injection. To determine the ability of the two DC populations to modulate diabetes development, DCs were pulsed with a mixture of three islet antigen-derived peptides or with medium before injection into prediabetic NOD mice. Despite phenotypic and functional differences in vitro, both populations prevented in vivo diabetes development. Pulsing of the DCs with peptide in vitro did not significantly improve the ability of DCs to prevent disease, which suggests that DCs may process and present antigen to T-cells in vivo. In addition, we detected GAD65 peptide-specific IgG1 antibody responses in DC-treated mice. Overall, these results suggest that a Th2 response was generated in DC-treated mice. This response was optimal when using GM + IL-4 DCs, which suggests that the balance between regulatory Th2 and effector Th1 cells may have been altered in these mice.  相似文献   

19.
Transplantation of disaggregated myoblasts from normal donor to the muscles of a diseased host, or reimplantation of genetically modified host myoblasts, has been suggested as a possible route to therapy for inherited myopathies such as Duchenne muscular dystrophy, or to supply missing proteins that are required systemically in diseases such as hemophilia. With two exceptions, studies of myoblast transfer in the mouse have involved transplantation of donor myoblasts isolated from adult or neonatal skeletal muscle satellite cells. In this study we present evidence that thymic myoid cells are capable of participating in the regeneration of postnatal skeletal muscle, resulting in the expression of donor-derived proteins such as dystrophin and retrovirally encoded proteins such as beta-galactosidase within host muscles. This leads us to conclude that thymic myoid cells may provide an alternative to myoblasts derived from skeletal muscle as a source of myogenic cells for myoblast transfer.  相似文献   

20.
Adult mesenchymal stem cells are a resource for autologous and allogeneic cell therapies for immune-modulation and regenerative medicine. However, patients most in need of such therapies are often of advanced age. Therefore, the effects of the aged milieu on these cells and their intrinsic aging in vivo are important considerations. Furthermore, these cells may require expansion in vitro before use as well as for future research. Their aging in vitro is thus also an important consideration. Here, we focus on bone marrow mesenchymal stem cells (BMSCs), which are unique compared to other stem cells due to their support of hematopoietic cells in addition to contributing to bone formation. BMSCs may be sensitive to age-related diseases and could perpetuate degenerative diseases in which bone remodeling is a contributory factor. Here, we review (1) the characterization of BMSCs, (2) the characterization of in vivo-aged BMSCs, (3) the characterization of in vitro-aged BMSCs, and (4) potential approaches to optimize the performance of aged BMSCs. This article is part of a Special Issue entitled “Stem Cells and Bone”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号