首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In central nervous system gamma-aminobutyric acid (GABA) inhibits neuronal activity by acting on GABA type A (GABAA) receptors. These heterooligomeric integral membrane proteins include a GABA-gated Cl- channel and various allosteric modulatory sites where endogenous modulators and anxiolytic drugs act to regulate GABA action. In vivo, various anxiolytic drugs exhibit a wide range of variability in their modulatory efficacy and potency of GABA action. For instance, bretazenil modulatory efficacy is much lower than that of diazepam. Such low efficacy could be due either to a preferential modulation of specific GABAA receptor subtypes or to a low modulatory efficacy at every GABAA receptor subtype. To address these questions we studied drug-induced modifications of GABA-activated Cl- currents in native GABAA receptors of cortical neurons in primary cultures and in recombinant GABAA receptors transiently expressed in transformed human embryonic kidney cells (293) after transfection with cDNAs encoding different molecular forms of alpha, beta, and gamma subunits of GABAA receptors. In cortical neurons the efficacy of bretazenil was lower than that of diazepam, whereas the potency of the two drugs was similar. In cells transfected with gamma 2 subunits and various molecular forms of alpha and beta subunits bretazenil efficacy was always lower than that of diazepam. However, in cells transfected with gamma 1 or gamma 3 subunits and various forms of alpha and beta subunits the efficacy of both diazepam and bretazenil was lower and always of similar magnitude. When bretazenil and diazepam were applied together to GABAA receptors including a gamma 2 subunit, the action of diazepam was curtailed in a manner related to the dose of bretazenil.  相似文献   

2.
BACKGROUND: Previous research has implicated the alpha5-containing GABAA receptors of the hippocampus in the reinforcing properties of alcohol. In the present study, a selective GABAA alpha5 benzodiazepine inverse agonist (e.g., RY 023) was used in a series of in vivo and in vitro studies to determine the significance of the alpha5-receptor in the neurobehavioral actions of alcohol. METHODS: In experiment one, systemic injections of RY 023 (1 to 10 mg/kg IP) dose-dependently reduced ethanol-maintained responding by 52% to 86% of controls, whereas bilateral hippocampal infusions (0.3 to 20 microg) reduced responding by 66% to 84% of controls. Saccharin responding was reduced only with the highest intraperitoneal (e.g., 10 mg) and microinjected (e.g., 20 microg) doses. In experiment two, RY 023 (3.0 to 15 mg/kg IP) reversed the motor-impairing effects of a moderate dose of alcohol (0.75 g/kg) on an oscillating bar task in the absence of intrinsic effects. In the open field, RY 023 (3.0 to 7.5 mg/kg) produced intrinsic effects alone but attenuated the suppression of the 1.25 g/kg ethanol dose. Because the diazepam-insensitive receptors (e.g., alpha4 and alpha6) have been suggested to play a role in alcohol motor impairing and sedative actions, experiment three compared the efficacy of RY 023 with Ro 15-4513 and two prototypical benzodiazepine antagonists (e.g., flumazenil and ZK 93426) across the alpha4beta3gamma2-, alpha5beta3gamma2-, and alpha6beta3gamma2-receptor subtypes in Xenopus oocytes. RESULTS: RY 023 produced classic inverse agonism at all receptor subtypes, whereas Ro15-4513 and the two antagonists displayed a neutral or agonistic profile at the diazepam-insensitive receptors. CONCLUSIONS: Overall, the results extend our previous findings by demonstrating that an alpha5-subtype ligand is capable of attenuating not only the rewarding action of alcohol but also its motor impairing and sedative effects. We propose that these actions are mediated in part by the alpha5-receptors of the hippocampus. The hippocampal alpha5-receptors could represent novel targets in understanding the neuromechanisms regulating the neurobehavioral actions of alcohol in humans.  相似文献   

3.
The differential sensitivity of type A gamma-aminobutyric acid (GABAA) receptors to benzodiazepine ligands seen in the mammalian nervous system is thought to be generated by the existence of a number of different receptor subtypes, assembled from a range of closely related subunits (alpha 1-6, beta 1-3, gamma 1-3, and delta) encoded by discrete genes. The characteristics of a given subtype can be determined by the coexpression of cloned cDNAs encoding the subunits of interest. Two transient expression systems have so far been employed in the study of the ligand-binding characteristics and chloride channel properties of such GABAA receptors--Xenopus oocytes and transfected mammalian cells. Here we report on the use of a steroid-inducible promoter expression system for the production of a permanently transfected clonal cell line expressing the alpha 1 beta 1 gamma 2L GABAA receptor subtype. Using both immunoprecipitation by subunit-specific antisera and gel-exclusion chromatography, we have shown that the alpha 1, beta 1, and gamma 2L subunits coassemble to form receptor macromolecules that are of the same size as native GABAA receptors. Additionally, the recombinant receptors have the same benzodiazepine pharmacology as native alpha 1-containing GABAA receptors and function as GABA-gated chloride channels. Such cell lines expressing individual GABAA receptor subtypes will prove important tools in the study of the structure, function, and pharmacology of GABAA receptors and in the development of subtype-specific drugs.  相似文献   

4.
Recombinantly expressed gamma-aminobutyric acid type A (GABAA) receptors consisting of alpha 1, beta 2, and gamma 2 subunits contain a binding site for benzodiazepines that differs in its properties from that of alpha 3 beta 2 gamma 2 receptors. Amino acid substitutions between the GABAA receptor alpha subunits were analyzed for their effect on the binding of compounds to the benzodiazepine site. By converting ever smaller regions of the alpha 3 subunit sequence to that of the alpha 1 subunit, we show that a single substitution (glycine for glutamic acid) increases the affinity for several compounds approximately 10-fold without changing the affinity for nonselective compounds. Hence, the identified amino acids may interact directly with the ligand and define part of the benzodiazepine binding sites in these receptors.  相似文献   

5.
The extraordinary structural diversity of subunits forming type A gamma-aminobutyric acid (GABAA) receptors in the brain is expected to give rise to different modes of GABAergic synaptic inhibition and different profiles of modulatory drugs effective in anxiolytic, hypnotic, and antiepileptic therapy. To identify receptor subtypes in situ, the most prevalent subunits were visualized by double and triple immunofluorescence staining in rat brain, using polyclonal antibodies to the alpha 1, alpha 3, and gamma 2 subunits and a monoclonal antibody to locate both the beta 2 and the beta 3 subunit. At both cellular and subcellular levels five distinct patterns of subunit colocalization were identified: I, alpha 1 beta 2,3 gamma 2; II, alpha 3 beta 2,3 gamma 2; III, alpha 1 alpha 3 beta 2,3 gamma 2; IV, alpha 3 gamma 2; and V, alpha 1 alpha 3 gamma 2. As analyzed by confocal laser microscopy, different subunits displayed the same local variations of staining intensity ("hot spots") along the plasma membrane. The covisualized subunits appear therefore to be coassembled in receptor subtypes. Most neurons expressed only a single major receptor subtype with no apparent distinction between synaptic and extrasynaptic sites. However, in some neurons, most notably in Purkinje cells, the subunit composition varied between the soma and the dendrites, pointing to the existence of receptor heterogeneity within single neurons. Furthermore, different populations of neurons may be characterized by particular receptor subtypes. Cells displaying alpha 1-subunit immunoreactivity were mostly identified as GABAergic, whereas monoaminergic neurons displayed intense alpha 3-subunit immunoreactivity but virtually no alpha 1-subunit immunoreactivity. The allocation of defined GABAA receptor subtypes to identified neurons opens the way for a functional analysis of receptor heterogeneity.  相似文献   

6.
The amounts of mRNAs encoding alpha 1, alpha 6, beta 2, beta 3, gamma 2, and delta subunits of gamma-aminobutyrate type A (GABAA) receptors and the gold immunolabeling density of their translation products were monitored during the growth of neonatal rat granule cells in primary culture. We investigated possible correlations (i) between temporal changes in mRNA content and expression density of their respective translation products and (ii) between the quantitative changes of receptor subunit expression, the GABA EC50 for Cl- channel activation, and diazepam efficacy in modulating GABA action on the Cl- channels. At 3 days in vitro, the amount of GABAA receptor subunit mRNAs and the expression of their respective translation products were very low. During the next 2 weeks both parameters for every subunit studied increased asynchronously; moreover, at 14 days in vitro the sum of gamma 2 and delta subunit expression was smaller than the expression of the alpha 1 or alpha 6 or beta 2/beta 3 subunits. This suggests that during in vitro maturation each subunit may be regulated independently and invites speculation as to possible changes in specific GABAA receptor subtype abundance during development in vitro. The maximal current intensity elicited by GABA failed to increase from 5 to 14 days in vitro, though the amount of mRNA encoding various subunits and the expression density of their respective translation products increased. Thus, qualitative changes in the GABAA receptor subtypes expressed and/or abnormalities in the subunit assembly very likely account for the uniformity of the maximal current intensity elicited by GABA during in vitro development. Also, during maturation of neuronal cultures from 5 to 20 days in vitro the extent of the positive modulation of GABA action by diazepam decreased dramatically. This finding might be related to an increase in the abundance of GABAA receptors including the alpha 6 subunit and/or to the expression, during granule cell maturation in vitro, of GABAA receptors devoid of gamma 2 subunits.  相似文献   

7.
8.
9.
The gamma-aminobutyric acid (GABA) receptors are the major inhibitory neurotransmitter receptors in the brain and the site of action of a number of important pharmacological agents including barbiturates, benzodiazepines, and ethanol. The gamma 1 and gamma 2 subunits have been shown to be important in mediating responses to benzodiazepines, and a splicing variant of the gamma 2 subunit, gamma 2L, has been shown to be necessary for ethanol actions on the receptor, raising the possibility that the gamma 2 gene may be involved in human genetic predisposition to the development of alcoholism. We have assigned the human genes encoding the gamma 1 and gamma 2 subunits of the GABAA receptor to chromosomes 4 and 5, respectively, by PCR amplification of human-specific products from human-hamster somatic cell hybrid DNAs. Using panels of chromosome-specific natural deletion hybrids, we have further localized the gamma 1 gene (GABRG1) to 4p14-q21.1 and the gamma 2 gene (GABRG2) to 5q31.1-q33.2. These data indicate that the gamma 1 gene may be clustered together with the previously mapped alpha 2 and beta 1 genes on chromosome 4 and that the gamma 2 gene may be close to the previously localized alpha 1 gene on chromosome 5. To further examine the latter possibility the alpha 1 gene was mapped using the chromosome 5 deletion hybrids and shown to be within the same region as the gamma 2 gene, 5q31.1-q33.2. A PCR-based screening strategy was used to isolate a 450-kilobase human genomic yeast artificial chromosome clone containing both the alpha 1 and gamma 2 genes. Pulsed-field gel restriction mapping of the yeast artificial chromosome indicates that the two genes are within 200 kilobases of each other. The data presented here provide further evidence for the nonrandom organization of the human genome by demonstrating that members of the GABAA receptor gene family often occur in small gene clusters widely distributed in the genome.  相似文献   

10.
gamma-aminobutyric acid type A (GABAA) receptors are the major sites of fast synaptic inhibition in the brain. They are constructed from four subunit classes with multiple members: alpha (1-6), beta (1-4), gamma (1-4), and delta (1). The contribution of subunit diversity in determining receptor subcellular targeting was examined in polarized Madin-Darby canine kidney (MDCK) cells. Significant detection of cell surface homomeric receptor expression by a combination of both immunological and electrophysiological methodologies was only found for the beta 3 subunit. Expression of alpha/beta binary combinations resulted in a nonpolarized distribution for alpha 1 beta 1 complexes, but specific basolateral targeting of both alpha 1 beta 2 and alpha 1 beta 3 complexes. The polarized distribution of these alpha/beta complexes was unaffected by the presence of the gamma 2S subunit. Interestingly, delivery of receptors containing the beta 3 subunit to the basolateral domain occurs via the apical surface. These results show that beta subunits can selectively target GABAA receptors to distinct cellular locations. Changes in the spatial and temporal expression of beta-subunit isoforms may therefore provide a mechanism for relocating GABAA receptor function between distinct neuronal domains. Given the critical role of these receptors in mediating synaptic inhibition, the contribution of different beta subunits in GABAA receptor function, may have implications in neuronal development and for receptor localization/clustering.  相似文献   

11.
Ligands acting at the benzodiazepine (BZ) site of gamma-aminobutyric acid type A (GABA(A)) receptors currently are the most widely used hypnotics. BZs such as diazepam (Dz) potentiate GABA(A) receptor activation. To determine the GABA(A) receptor subtypes that mediate the hypnotic action of Dz wild-type mice and mice that harbor Dz-insensitive alpha1 GABA(A) receptors [alpha1 (H101R) mice] were compared. Sleep latency and the amount of sleep after Dz treatment were not affected by the point mutation. An initial reduction of rapid eye movement (REM) sleep also occurred equally in both genotypes. Furthermore, the Dz-induced changes in the sleep and waking electroencephalogram (EEG) spectra, the increase in power density above 21 Hz in non-REM sleep and waking, and the suppression of slow-wave activity (SWA; EEG power in the 0.75- to 4.0-Hz band) in non-REM sleep were present in both genotypes. Surprisingly, these effects were even more pronounced in alpha1(H101R) mice and sleep continuity was enhanced by Dz only in the mutants. Interestingly, Dz did not affect the initial surge of SWA at the transitions to sleep, indicating that the SWA-generating mechanisms are not impaired by the BZ. We conclude that the REM sleep inhibiting action of Dz and its effect on the EEG spectra in sleep and waking are mediated by GABA(A) receptors other than alpha1, i.e., alpha2, alpha3, or alpha5 GABA(A) receptors. Because alpha1 GABA(A) receptors mediate the sedative action of Dz, our results provide evidence that the hypnotic effect of Dz and its EEG "fingerprint" can be dissociated from its sedative action.  相似文献   

12.
Type A gamma-aminobutyric acid (GABAA) receptors of the mammalian nervous system are a family of ligand-gated ion channels probably formed from the coassembly of different subunits (alpha 1-6, beta 1-3, gamma 1-3, delta) in the arrangement alpha beta gamma or alpha beta delta. The activation of these receptors by GABA can be modulated by a range of compounds acting at distinct allosteric sites. One such compound is the broad-spectrum anticonvulsant loreclezole, which we have recently shown to act via a specific modulatory site on the beta subunit of the GABAA receptor. The action of loreclezole depends on the type of beta subunit present in the receptor complex; receptors containing beta 2 or beta 3 subunits have > 300-fold higher affinity for loreclezole than receptors containing a beta 1 subunit. We have used this property to identify the amino acid residue in the beta subunit that determines the subunit selectivity of loreclezole. Chimeric beta 1/beta 2 human GABAA receptor subunits were constructed and coexpressed in Xenopus oocytes with human alpha 1 and gamma 2s subunits. The chimera beta 1/beta 2Lys237-Gly334 conferred sensitivity to 1 microM loreclezole. Within this region there are four amino acids that are conserved in beta 2 and beta 3 but differ in beta 1. By mutating single amino acids of the beta 1 subunit to the beta 2/beta 3 equivalent, only the beta 1 mutation of Ser-290-->Asn conferred potentiation by loreclezole. Similarly, mutation of the homologous residue in the beta 2 and beta 3 subunits to the beta 1 equivalent (Asn-->Ser) resulted in loss of sensitivity to loreclezole. The affinity for GABA and the potentiation by flunitrazepam were unchanged in receptors containing the mutated beta subunits. Thus, a single amino acid, beta 2 Asn-289 (beta 3 Asn-290), located at the carboxyl-terminal end of the putative channel-lining domain TM2, confers sensitivity to the modulatory effects of loreclezole.  相似文献   

13.
Using a competitive polymerase chain reaction assay, we have quantitated the absolute amounts of mRNA encoding 14 distinct subunits of the gamma-aminobutyric acid type A (GABAA) receptor in primary cultures of rat cerebellar granule neurons and cerebellar astrocytes. We found that the total amount of GABAA receptor subunit mRNA in astrocytes was 2 orders of magnitude lower than in neuronal cells. Furthermore, granule cell cultures expressed all 14 different GABAA subunit mRNAs, while the astroglial cultures contained detectable amounts of all the subunits expressed by granule cells except the alpha 6 and the gamma 2L subunits. Of the alpha subunit family members, the alpha 1, alpha 5, and alpha 6 mRNAs were prominent in granule cells, while the alpha 1 and alpha 2 mRNAs were abundant in astrocytes. Of the beta receptor subunit mRNAs, the beta 1 and beta 3 mRNAs were abundantly expressed in both cultures. The gamma 2S and gamma 2L mRNAs constituted the great majority of gamma subunit mRNAs in neurons, while the gamma 1 subunit mRNA was the most abundant gamma subunit mRNA in astrocytes. When various allosteric modulators of GABAA receptors were tested electrophysiologically, methyl 6,7-dimethoxy-4-ethyl-beta-carboline- 3-carboxylate (DMCM) was the only one to modulate chloride currents elicited by GABA in a significantly different manner in granule cells (negative modulation) compared with astrocytes (positive modulation). The latter effect was previously observed in transiently expressed recombinant GABAA receptors containing a gamma 1 instead of a gamma 2 subunit. Our quantitative mRNA results suggest that an important molecular determinant responsible for the DMCM-positive modulatory effect on astroglial native GABAA receptors is the presence of the gamma 1 subunit in the receptor assembly.  相似文献   

14.
Diversity of gamma-aminobutyrate type A (GABAA) receptors has recently been proposed to be achieved by assembly of receptor subtypes from a multitude of subunits (alpha 1-6, beta 1-3, gamma 1-2, and delta) encoded by different genes. Here we report a further mechanism for creating GABAA receptor diversity: alternative RNA splicing. Two forms of bovine gamma 2 subunit cDNA were isolated (gamma 2S and gamma 2L) that differed by the presence or absence of a 24-base-pair (8-amino acid) insertion in the cytoplasmic domain between the third and fourth putative membrane-spanning regions. Polymerase chain reaction from RNA demonstrated that the two forms of gamma 2 subunit are expressed in bovine, human, and rat brain. Sequencing of genomic DNA clones encoding the gamma 2 subunit demonstrated that the 24-base-pair insert is organized as a separate exon. Analysis of the sequence of the 8-amino acid insert revealed that it contains a protein kinase C consensus phosphorylation site. Expression of the large cytoplasmic loop domains of gamma 2S and gamma 2L in Escherichia coli, followed by phosphorylation of the recombinant proteins by protein kinase C, demonstrated that gamma 2L, but not gamma 2S, could be phosphorylated. Thus the two forms of gamma 2 subunit differ by the presence or absence of a protein kinase C phosphorylation site. This mechanism for creating GABAA receptor diversity may allow differential regulation of the function of receptor subtypes.  相似文献   

15.
The gamma-aminobutyric acid type A (GABAA) receptor is the predominant Cl- channel protein mediating inhibition in the olfactory bulb and elsewhere in the mammalian brain. The olfactory bulb is rich in neurons containing both GABA and dopamine. Dopamine D1 and D2 receptors are also highly expressed in this brain region with a distinct and complementary distribution pattern. This distribution suggests that dopamine may control the GABAergic inhibitory processing of odor signals, possibly via different signal-transduction mechanisms. We have observed that GABAA receptors in the rat olfactory bulb are differentially modulated by dopamine in a cell-specific manner. Dopamine reduced the currents through GABA-gated Cl- channels in the interneurons, presumably granule cells. This action was mediated via D1 receptors and involved phosphorylation of GABAA receptors by protein kinase A. Enhancement of GABA responses via activation of D2 dopamine receptors and phosphorylation of GABAA receptors by protein kinase C was observed in mitral/tufted cells. Decreasing or increasing the binding affinity for GABA appears to underlie the modulatory effects of dopamine via distinct receptor subtypes. This dual action of dopamine on inhibitory GABAA receptor function in the rat olfactory bulb could be instrumental in odor detection and discrimination, olfactory learning, and ultimately odotopic memory formation.  相似文献   

16.
OBJECTIVE: The expression of alpha1-adrenergic receptor subtypes in peripheral blood lymphocytes was investigated in 28 essential hypertensive patients as well as in the peripheral blood lymphocytes and aorta of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats. METHODS: Alpha1-adrenergic receptors were quantified by radioligand binding assays, employing [3H]-prazosin as the radioligand in association with compounds displaying different degrees of selectivity for alpha1A-, alpha1B- and alpha1D-adrenergic receptor subtypes. RESULTS: The affinity of [3H]-prazosin binding was similar in peripheral blood lymphocytes of different stage essential hypertensive and normotensive subjects or of SHR and age-matched normotensive WKY rats as well as in the aortas of SHR and WKY rats. The radioligand binding assay revealed no change in the expression of alpha1-adrenergic receptors in peripheral blood lymphocytes of essential hypertensives compared with normotensive subjects; a moderate decrease of alpha1B-adrenergic receptors and an increase of alpha1D-adrenergic receptors. The relative densities of the alpha1-adrenergic receptor subtypes were similar in the three groups of essential hypertensives. In peripheral blood lymphocytes and in aorta of SHR, [3H]-prazosin binding was significantly reduced compared with normotensive WKY rats. The expression of alpha1-adrenergic receptor subtypes in peripheral blood lymphocytes of SHR was similar to that found in peripheral blood lymphocytes of essential hypertensives. CONCLUSIONS: Changes of lymphocyte alpha1-adrenergic receptor subtypes in essential hypertensives are similar to those observed in lymphocytes and vascular tissues of animal models of hypertension. This suggests that assays of lymphocyte alpha1-adrenergic receptors may represent an indirect marker of their involvement in essential hypertension.  相似文献   

17.
By using Vogel's method to test the anxiolytic action of benzodiazepines and reducing the intensity of the current delivered to the drinking tube, it is possible to distinguish the pharmacological activity of three types of ligands for the benzodiazepine recognition site. An anticonflict action typical of anxiolytic benzodiazepines, a proconflict action typical of many beta-carbolines, including FG 7142 (beta-carboline-3-carboxylic acid ethyl ester methyl amide), and an antagonistic action of the proconflict and anticonflict actions typical of RO 15-1788 (ethyl-8-fluoro-5, 6-dihydro-5-methyl-6-oxo-4H-imidazol[1,5-alpha]-[1, 4]-benzodiazepine-3-carboxylate) and CGS 8216 (2-phenylpyrazolo[4,3-c]quinolin-3-(5H)-one). Pentylenetetrazole, which causes convulsions by interacting with a subunit of the gamma-aminobutyric acid receptor that is different from the benzodiazepine recognition site, also induces a proconflict action that is antagonized by anxiolytic benzodiazepines but not by RO 15-1788.  相似文献   

18.
19.
Subjective effects of two benzodiazepines--alprazolam and lorazepam--were compared with two drugs of known abuse potential--diazepam and methaqualone--and placebo. This double-blind, crossover trial tested 30 casual recreational sedative users in a seminaturalistic setting. Methaqualone was more euphoriant and less sedative than the benzodiazepines. Diazepam and lorazepam were more euphoriant than placebo; alprazolam's euphoriant effect did not differ from these treatments. On other measures of abuse liability the benzodiazepines rated similarly, diazepam rating highest.  相似文献   

20.
Fast synaptic inhibitory transmission in the CNS is mediated by gamma-aminobutyric acid type A (GABA(A)) receptors. They belong to the ligand-gated ion channel receptor superfamily, and are constituted of five subunits surrounding a chloride channel. Their clinical interest is highlighted by the number of therapeutic drugs that act on them. It is well established that the subunit composition of a receptor subtype determines its pharmacological properties. We have investigated positional effects of two different alpha-subunit isoforms, alpha(1) and alpha(6), in a single pentamer. For this purpose, we used concatenated subunit receptors in which subunit arrangement is predefined. The resulting receptors were expressed in Xenopus oocytes and analyzed by using the two-electrode voltage-clamp technique. Thus, we have characterized gamma(2)beta(2)alpha(1)beta(2)alpha(1), gamma(2)beta(2)alpha(6)beta(2)alpha(6), gamma(2)beta(2)alpha(1)beta(2)alpha(6), and gamma(2)beta(2)alpha(6)beta(2)alpha(1) GABA(A) receptors. We investigated their response to the agonist GABA, to the partial agonist piperidine-4-sulfonic acid, to the noncompetitive inhibitor furosemide and to the positive allosteric modulator diazepam. Each receptor isoform is characterized by a specific set of properties. In this case, subunit positioning provides a functional signature to the receptor. We furthermore show that a single alpha(6)-subunit is sufficient to confer high furosemide sensitivity, and that the diazepam efficacy is determined exclusively by the alpha-subunit neighboring the gamma(2)-subunit. By using this diagnostic tool, it should become possible to determine the subunit arrangement of receptors expressed in vivo that contain alpha(1)- and alpha(6)-subunits. This method may also be applied to the study of other ion channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号