首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impairment of rotarod ability and the convulsive activity of phencyclidine (PCP) and MK-801 were compared in male CD-1 mice. The putative interaction between nifedipine and PCP and MK-801 on these behavioral measurements was also quantitated and compared. MK-801 produced a dose dependent inhibition of rotarod ability with an ED50 of 0.5 mg/kg. Nifedipine potentiated the impairment of rotarod ability by MK-801. Both PCP and MK-801 produced convulsive behavior in mice which was characterized by jumping and wild running fits; the CD50 for MK-801 was 1.3 mg/kg. Nifedipine dose dependently inhibited the convulsions associated with MK-801 and PCP. PCP but not MK-801 increased [3H]nitrendipine binding to dihydropyridine (DHP) binding sites on mouse brain membranes. MK-801 blocked the effects of PCP on [3H]nitrendipine binding. These findings suggest that MK-801 is a potent PCP-like drug which interacts with nifedipine and neuronal DHP binding sites. Nifedipine's reduction of the hyperactivity and convulsions elicited by MK-801 may be of importance in the eventual development of MK-801 as an antiischaemic and anticonvulsant drug.  相似文献   

2.
Guanosine has been shown to modulate glutamate system by stimulating astrocytic glutamate uptake. Recent evidence suggest that the locomotor effects of NMDA receptor antagonists, an animal model of schizophrenia, is associated with activation of non-NMDA glutamatergic receptors caused by increased glutamate release. The present work was undertaken to evaluate whether guanosine could have influence on the hyperlocomotion induced in mice by dizocilpine (MK-801), a NMDA antagonist. We also evaluated the effect of guanosine on the hyperlocomotion induced by the indirect dopamine agonist amphetamine, and by the non-selective adenosine receptor antagonist caffeine. Guanosine (7.5 mg/kg) produced an attenuation of about 60% on the hyperlocomotion induced by dizocilpine (0.25 mg/kg), whereas it did not affect the hyperlocomotion induced by amphetamine (5 mg/kg) or caffeine (30 mg/kg). Guanosine pre-treatment did not affect total spontaneous locomotion in all experiments. To test neuronal pathway selectivity, we evaluated MK-801 against guanosine in a working memory paradigm (spontaneous alternation task). Guanosine did not reverted the impairment caused by MK-801 in the spontaneous alternation test, and when administered alone also presented an amnesic effect. The results are discussed based on the current hypothesis of locomotor activation induced by the psychoactive drugs studied. Further studies are necessary to evaluate if guanosine could have clinical utility for the treatment of schizophrenia.  相似文献   

3.
1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) is present in the human and rodent brain as a mixture of stereospecific (R)- and (S)-1MeTIQ enantiomers. The racemate, (R,S)-1MeTIQ, exhibits neuroprotective activity as shown in the earlier study by the authors, and In addition, it was suggested to play a crucial physiological role in the mammalian brain as an endogenous regulator of dopaminergic activity. In this article, we investigated the influence of stereospecific enantiomers of 1MeTIQ, (R)- and (S)-1MeTIQ (50 mg/kg i.p.) on rotenone-induced (3 mg/kg s.c.) behavioral and neurochemical changes in the rat. In behavioral study, in order to record dynamic motor function of rats, we measured locomotor activity using automated locomotor activity boxes. In biochemical studies, we analyzed in rat striatum the concentration of dopamine (DA) and its metabolites: intraneuronal DOPAC, extraneuronal 3-MT, and final HVA using HPLC with electrochemical detection. Otherwise, DA release was estimated by in vivo microdialysis study. The behavioral study has demonstrated that both acute and repeated (3 times) rotenone administration unimportantly depressed a basic locomotor activity in rat. (R)- and (S)-1MeTIQ stereoisomers (50 mg/kg i.p.) produced a modest behavioral activation both in naïve and rotenone-treated rats. The data from ex vivo neurochemical experiments have shown stereospecificity of 1MeTIQ enantiomers in respect of their effects on DA catabolism. (R)-1MeTIQ significantly increased both the level of the final DA metabolite, HVA (by about 70%), and the rate of DA metabolism (by 50%). In contrast to that, (S)-1MeTIQ significantly depressed DOPAC, HVA levels (by 60 and 40%, respectively), and attenuated the rate of DA metabolism (by about 60%). On the other hand, both the enantiomers increased the concentrations of DA and its extraneuronal metabolite, 3-MT in rat striatum. In vivo microdialysis study has shown that repeated but not acute administration of rotenone produced a deep and significant functional impairment of striatal DA release. Both (R)- and (S)- stereospecific enantiomers of 1MeTIQ antagonized rotenone-induced suppression of DA release; however, the effect of (R)-1MeTIQ was more strongly expressed in microdialysis study. In conclusion, we suggest that both chiral isomers of 1MeTIQ offer neuroprotection against rotenone-induced disturbances in the function of dopaminergic neurons and (R,S)-1MeTIQ will be useful as a drug with marked neuroprotective activity in the brain.  相似文献   

4.
Clozapine, which is the most effective treatment option for treatment-refractory schizophrenia, has been reported to have both positive and negative effects on specific cognitive symptoms in patients with schizophrenia and in animal models of cognition. Clozapine has a major metabolite, N-desmethylclozapine (NDMC), which has been suggested to be more effective than clozapine itself to improve cognition. Enhancement of brain derived neurotrophic factor (BDNF) expression in the hippocampus has been proposed to contribute to the cognitive-enhancing effects of antipsychotic drugs. The aims of this study were to investigate the change in short and long term memory as assessed by the novel object recognition (NOR) test and BDNF expression in hippocampus produced by an acute hypoglutamatergic model of memory impairment in schizophrenia induced by administration of the NMDA receptor non-competitive antagonist, MK-801 and the ability of clozapine and NDMC to prevent the deleterious effects of MK-801. Both short (1 h) and long-term (24 h) memory were impaired in MK-801 (0.1 mg/kg) - and clozapine (5 mg/kg)-, but not NDMC (5 mg/kg)-treated rats. Neither NDMC (5 mg/kg) nor clozapine (5 mg/kg) reversed the effect of MK-801. Western blotting studies showed that BDNF levels in hippocampus were not different in rats administered MK-801 alone, clozapine or NDMC alone. These results show that in this model clozapine affects memory negatively, while NDMC does not. The absence of impairment of NOR with NDMC is consistent with previous evidence that it has a more benign effect on cognition than does the parent compound, and may support the efforts to study its effects on other cognitive functions. These findings do not provide any support for the role of BDNF in the MK-801-induced impairment in NOR or for differences between clozapine and NDMC.  相似文献   

5.
In the present study, we investigated the effects of ceruletide (CL), a cholecystokinin analog, on the neurochemical response to non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists, phencyclidine (PCP) and MK-801, of the dopaminergic neuron systems in the discrete regions of the rat brain. Systemically administered PCP (7.5 mg/kg, i.p.) or MK-801 (1.0 mg/kg, i.p.) produced significant increases in the tissue contents of dopamine metabolite, homovanillic acid (HVA), in the prefrontal cortex, the nucleus accumbens and the olfactory tubercle but not in the nucleus caudatus putamen after 60 min. The effects of NMDA receptor antagonists in the nucleus accumbens and the prefrontal cortex were partially antagonized by pretreatment with CL (80 and 400 micrograms/kg, i.p., at 60 min prior to the drugs). While CL alone decreased the dopaminergic metabolism only in the nigrostriatal pathways in naive rats, the present results indicated that CL also attenuates the activities of the meso-limbic and meso-cortical dopaminergic neuron systems when these are enhanced by either PCP or MK-801.  相似文献   

6.
Summary The effects of typical and atypical neuroleptics on MK-801-induced locomotor activity and stereotyped sniffing were tested. Pretreatment with the typical neuroleptic haloperidol (0.01,0.05, 0.1,0.5 mg/kg SC) and the dopamine D 2 receptor selective antagonist eticlopride (0.005, 0.01, 0.05 mg/kg SC) each resulted in significant and dose-dependent reductions of locomotor activity and sniffing. The atypical neuroleptic clozapine (1.0, 5.0, 10.0 mg/kg SC) was some-what unique in that all doses reduced locomotor activity, but only the highest dose (10.0 mg/kg) significantly reduced sniffing. The data support a functional interaction between glutamate and dopamine systems, and suggest that the behavioral activation associated with MK-801 may represent a valid model for detecting potential therapeutic agents in the treatment of schizophrenia. The data should be viewed as preliminary, however, until neuroleptics are characterized in other glutamate-based models that minimize or exclude the possible influence of nonspecific motor effects.  相似文献   

7.
The mesocorticolimbic circuitry has been implicated in the pathophysiology of several neuropsychiatric syndromes like chronic pain and addiction. The aim of this study was to evaluate the effects of dizocilpine (MK-801), a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, on sensorimotor behaviors and the consequent changes in the dopamine, glutamate, and opiate systems in rats. Five groups of rats were subjected to acute tests for nociception (hot plate and paw pressure) before and after MK-801 (0.05, 0.1, 0.2 and 0.4 mg/kg, i.p.) or saline. Another two groups received daily i.p. saline or MK-801 (0.4 mg/kg) for 15 days. The nociceptive tests were performed on days 1, 7, and 14. On day 15 the rats received the last injection and were immediately sacrificed. We measured the mRNA expression, by in situ hybridization (ISH), of various dopamine and glutamate receptors, and enkephalin (Enk), dynorphin (Dyn), and substance P (SP) in the striatum, nucleus accumbens (NAC), piriform and cingulate cortex. Acute MK-801, dose-dependently, resulted in hyperalgesia. The chronic effects of 0.4 mg/kg MK-801 showed an extinction of the acute hyperalgesic effects especially with the hot plate test. The ISH studies revealed a decrease in mRNA expression of Enk and SP in the striatum and NAC. Our results indicate that the reversal of acute MK-801-induced hyperalgesia, with repeated exposure to systemic MK-801, is not directly related to changes in dopamine and glutamate receptors and might involve alteration of the striatal neuropeptide system.  相似文献   

8.
T-817MA [1-{3-[2-(1-benzothiophen-5-yl)ethoxy]propyl}azetidin-3-ol maleate] is a newly synthesized neuroprotective agent for the treatment of psychiatric disorders characterized by cognitive disturbances, such as Alzheimer's disease. Cognitive impairment has also been suggested to be a cardinal feature of schizophrenia. We sought to determine whether T-817MA would ameliorate sensorimotor gating deficits and loss of parvalbumin (PV)-positive γ-aminobutyric acid (GABA) neurons in the brain of rats transiently exposed to MK-801, an N-methyl-d-aspartate receptor blocker, in the neonatal stage, as an animal model of schizophrenia. Prepulse inhibition (PPI) was examined in rats treated neonatally with MK-801 (postnatal day; PD 7-10, 0.2 mg/kg/day, s.c.) or vehicle at PD 35 and PD 63. The number of PV-positive GABAergic neurons in the medial prefrontal cortex (mPFC) and the hippocampus was measured after the behavioral assessments. T-817MA (10 or 20 mg/kg) or vehicle was administered for 14 days (on PD 49-62). Administration of T-817MA at 20 mg/kg, but not 10 mg/kg, ameliorated PPI deficits and completely reversed the decrease in the number of PV-positive GABAergic neurons in rats given MK-801. These results indicate that T-817MA may provide a novel therapeutic approach for the treatment of cognitive deficits of schizophrenia.  相似文献   

9.
MK-801 and ketamine are noncompetitive N-methyl-D-aspartate (NMDA) receptor blockers that decrease brain injury in animal models of focal and global ischemia. Recent reports, however, suggested that MK-801 itself can damage neurons. Here we show that MK-801 (0.1 to 5.0 mg/kg) and ketamine (40 to 100 mg/kg) typically induce heat shock protein HSP72 mainly in layer 3 neurons of the posterior cingulate and retrosplenial cortex of the rat. These HSP72-immunoreactive neurons contain abnormal cytoplasmic vacuoles visualized by electron microscopy. The HSP72 immunoreactivity is maximal at 24 hours with 1.0-mg/kg doses of MK-801 and disappears by 2 weeks. Based on these data, we propose: (1) MK-801 and ketamine injure selected neurons, which express HSP72 in response to that injury. (2) Since HSP72 is induced for 1 to 2 weeks, the prolonged psychological side effects of MK-801, ketamine, phencyclidine, and related drugs could be related to this injury. (3) The neuroprotective effect of MK-801 is probably not related to HSP72 induction. (4) HSP72 immunocytochemistry is useful for studying nonlethal neuronal injury from a wide variety of brain insults.  相似文献   

10.
The neurotransmitter glutamate activates the N-methyl-D-aspartate (NMDA), quisqualate and kainate receptors. It has been proposed, but also disputed, that local release of glutamate would play a pivotal role in cortical spreading depression (SD). We tested this hypothesis by investigating the influence of NMDA antagonists on SD, using the non-competitive NMDA antagonists ketamine, phencyclidine (PCP) and MK-801 and the competitive NMDA antagonist DL-2-amino-7-phosphonoheptanoate (2-APH), injected intraperitoneally in rats anesthetized with alfentanil. SD was elicited by cathodal DC-stimulation of the frontal cortex. SD propagation was followed using two ion-sensitive microelectrodes placed in the parietal and occipital cortex. The NMDA antagonists increased SD threshold, decreased the propagation velocity and decreased the duration of the accompanying extracellular DC, K+ and Ca2+ changes at the following doses: 40 mg/kg ketamine, 10 mg/kg PCP, 0.63 mg/kg MK-801, 10 and 40 mg/kg 2-APH. With each NMDA antagonist failure of SD propagation between both microelectrodes could be observed. SD elicitation (or propagation) was inhibited completely with 80 mg/kg ketamine, 3.1 mg/kg MK-801 and 160 mg/kg 2-APH. These NMDA antagonists have also anticonvulsant properties. None of these effects on SD were observed with high doses of other anticonvulsants such as 80 mg/kg phenytoin or 40 mg/kg diazepam. These experiments indicate that endogenous release of excitatory amino acids and their action on the NMDA receptor play an important role in the initiation, propagation and duration of SD.  相似文献   

11.
Neonatal lesions of the ventral hippocampus in rats lead to post- but not pre-pubertal behavioral changes suggesting adolescent onset of dopaminergic hypersensitivity and providing an animal model of schizophrenia. Neonatal exposure to glutamate receptor antagonists produces accelerated apoptosis leading to neuronal loss in central nervous system structures including the hippocampus. This suggested that neonatal MK-801 might lead to behavioural changes like those reported following ventral hippocampal lesions. Thus, rats received MK-801 (0, 0.5, 1.0 mg/kg ip) on postnatal day 3 (P3) and were tested pre- (P35) and post-pubertally (P56). MK-801 produced an increase in TUNEL staining in the hippocampus and other forebrain structures, confirming the induction of apoptosis. Results showed little difference in locomotor activity between neonatal saline- and MK-801-treated groups during habituation or following saline injection but increased activity was seen in the 0.5 mg/kg MK-801 group following amphetamine (1.5 mg/kg i.p.) at P35 but not P56. In tests of pre-pulse inhibition (PPI), neonatal saline and MK-801 groups showed stable startle amplitudes, minimal responding to the pre-pulse stimuli alone, an increase in PPI with increases in pre-pulse intensity, and reduced PPI with apomorphine (0.1 mg/kg s.c.). At P56, neonatal MK-801 groups tested following vehicle showed less sensitivity to changes in pre-pulse intensity. It was concluded that neonatal MK-801 increases apoptotic cell loss in the hippocampus but does not produce behavioural effects like those seen after neonatal ventral hippocampal lesions. However, neonatal MK-801 did lead to increases in locomotor activity in juveniles but not adults and reduced sensitivity to pre-pulse intensity in PPI tests in adulthood.  相似文献   

12.
The etiology of Parkinson’s disease (PD) may involve endogenous and exogenous factors. 1-Benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ), which was shown to be neurotoxic for dopaminergic neurons, is one of such factors, thus it can be used to construct an animal model of PD. In contrast, 1,2,3,4-tetrahydroisoquinoline (TIQ) and 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) produce neuroprotective effects acting as monoamino oxidase (MAO) inhibitors and free radical scavengers that reduce oxidative stress in the mammalian brain. In this study, we aimed to investigate the effects of neuroprotective compounds, TIQ and 1MeTIQ, on the dopamine release in vivo in an animal model of PD induced by chronic administration of 1BnTIQ (25 mg/kg i.p.). Using an in vivo microdialysis methodology, we measured the impact of both acute and chronic treatment with TIQ and 1MeTIQ (50 mg/kg i.p.) on 1BnTIQ-induced changes in dopamine release in the rat striatum. Additionally, the behavioral test was carried out to check the influence of repeated administrations of the investigated compounds on the locomotor activity of rats. The behavioral studies showed that the chronic administration of 1BnTIQ produced a significant elevation of exploratory locomotor activity, and both the investigated amines, TIQ and 1MeTIQ, administered together with 1BnTIQ completely prevented 1BnTIQ-produced hyperactivity. The in vivo microdialysis studies demonstrated that the chronic treatment with 1BnTIQ caused a significant and long-lasting increase in the dopamine release (approximately 300 %) to the extracellular space in the rat striatum, which was demonstrated in the basal samples 24 h after 1BnTIQ injection. The combined chronic administration of 1BnTIQ and the investigated compounds, TIQ or 1MeTIQ, completely antagonized the 1BnTIQ-induced essential disturbances of the dopamine releasing to the extracellular space in the striatum. In conclusion, we suggest that higher concentrations of 1BnTIQ in the brain produced distinct impairment in the dopamine release, whereas TIQ and 1MeTIQ (compounds with previously revealed neuroprotective properties) completely prevented 1BnTIQ-induced abnormalities in the function of dopamine neurons and restored the dopamine release to the control values.  相似文献   

13.
We have previously shown that lurasidone, a novel atypical antipsychotic, potently reverses learning impairment induced by the N-methyl-D-aspartate receptor antagonist MK-801 in the rat passive avoidance test. However, the effects of lurasidone in other learning and memory tasks remain to be investigated. We investigated the effects of lurasidone and other marketed antipsychotics (risperidone, clozapine, aripiprazole, and haloperidol) on MK-801-induced impairment of learning and memory in the Morris water maze (MWM) and radial-arm maze (RAM) tests in rats. Learning and memory impairment in the MWM test, as measured by escape latency, escape distance, and diving behavior, and in the RAM test, as measured by reference and working memory errors, was induced by MK-801 (i.p.) at doses of 0.15 and 0.2 mg/kg, respectively. In the MWM test, lurasidone (1 and 3 mg/kg p.o.) potently reversed MK-801-induced learning impairment. In the RAM test, lurasidone (1 and 3 mg/kg p.o.) potently reversed MK-801-induced reference memory impairment and moderately but not significantly attenuated MK-801-induced working memory impairment. Risperidone (0.3 and 1mg/kg p.o.), clozapine (3 and 10 mg/kg p.o.), aripiprazole (0.3 and 1mg/kg p.o.), and haloperidol (0.3 and 1mg/kg p.o.) did not reverse MK-801-induced impairment of learning and memory in both tasks. Lurasidone, but not the other antipsychotics tested in this study, reverses MK-801-induced impairment of learning and memory in both the MWM test and the RAM test. These results suggest that lurasidone would be more effective in treating schizophrenics with cognitive dysfunction than current antipsychotics.  相似文献   

14.
3H]MK-801 binding sites in neonate rat brain   总被引:1,自引:0,他引:1  
[3H]MK-801 binding sites are present in neonate rat brain as early as 3 days after birth. Immature hippocampus and cortex contain approximately one sixth the concentration of binding sites of the adult, while brainstem concentration is twice as high as that of adult. [3H]MK-801 binding is stimulated by glutamate and glycine and blocked by phencyclidine and Mg2+ both in 7-day-old neonate and adult, indicating that as early as 7 days postnatally, the N-methyl-D-aspartate-type glutamate receptor and MK-801 binding site are functionally coupled.  相似文献   

15.
We previously reported that chronic administration of N-methyl-D-aspartate (NMDA) antagonists reduced the density of vasopressin V1a receptors in several brain regions in rats that demonstrated social interaction deficits and increased locomotor activity. These observations indicate the ability of arginine-vasopressin (AVP), or its analogues, to modulate behavioral abnormalities associated with blockade of NMDA receptors. The present study was performed to investigate the effect of NC-1900, an AVP analogue, on social behavior and locomotor activity in rats treated with MK-801, a non-competitive NMDA receptor antagonist. Male Wistar rats were administered MK-801 (0.13 mg/kg/day ip) or saline for 14 days. Social behavior and locomotor activity were measured 45 min after the injection of NC-1900 (10 ng/kg sc) or saline together with the last MK-801 or vehicle administration. Social interaction was quantified by an automated video-tracking system, and stereotyped behavior and ataxia were manually measured. Acute administration of NC-1900 partially reversed MK-801-induced hyperlocomotion and deficits in social interaction, while NC-1900 itself did not affect these behavioral measures in animals chronically treated with vehicle saline. These results suggest that the central AVP system may interact with glutamatergic and dopaminergic transmissions, and indicate potential therapeutic effects of AVP analogues on positive and negative symptoms of schizophrenia.  相似文献   

16.
The simultaneous effect of MK-801 on the baseline- and depolarization (20 microM veratridine or 30 mM high K+)-evoked release of endogenous dopamine, glutamate (Glu), aspartate (Asp), and GABA is investigated in the same preparation of rat striatum isolated nerve endings. MK-801, in the microM range, selectively increases the baseline and high K+ depolarization-evoked release of dopamine, without causing any effect on the baseline or on the high K+-evoked release of Glu, Asp and GABA. In addition to this selective action on dopamine release, MK-801 inhibits the veratridine depolarization-evoked release of all the neurotransmitters tested, including dopamine. In SBFI and fura-2 preloaded striatal synaptosomes, MK-801 inhibits the elevation of internal Na+ (Na(i)) and the elevation of internal Ca2+ (Ca(i)) induced by veratridine depolarization. The elevation of Ca(i) induced by high K+ depolarization is unchanged by MK-801. This study reveals two separate MK-801 actions. (1) The voltage-independent action, which increases dopamine release selectively, and might contribute to the effects of MK-801 on motor coordination. (2) The voltage-dependent action, which inhibits all the veratridine-evoked responses including the evoked release of the excitatory amino acids (which are particularly concentrated in striatum nerve endings), and might contribute to the anticonvulsant and neuroprotective effects of MK-801.  相似文献   

17.
Compounds enhancing N-methyl-d-aspartate (NMDA) glutamate receptor function have been reported to improve cognitive deficits. Since cognitive deficits are considered to be the core symptom of schizophrenia, enhancing NMDA receptor function represents a promising approach to treating schizophrenia. In the present study, we investigated whether d-serine or a glycine transporter inhibitor N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS), both of which enhance NMDA receptor function, could improve MK-801-induced cognitive deficits in rats, and compared their effects with those of the atypical antipsychotic clozapine and of the typical antipsychotic haloperidol. To assess cognitive function, we used a novel object recognition test in rats that measured spontaneous exploratory activity of a novel object when paired with a familiar object. We then evaluated the effects of the compounds on cognitive deficits induced by treatment with MK-801, the NMDA receptor antagonist. Pretreatment with clozapine (1, 5 mg/kg, i.p.) but not haloperidol (0.03, 0.1 mg/kg, i.p.) significantly improved MK-801-induced cognitive deficits. Pretreatment with D-serine at 800 mg/kg (i.p.) or NFPS (0.3, 1 mg/kg, i.p.) significantly improved MK-801-induced cognitive deficits under this test paradigm. These findings suggest that impaired preference for novel objects induced by MK-801 in the novel object recognition test could be a useful animal model for evaluating the efficacy of compounds targeting the cognitive deficits observed in schizophrenic patients. The results also suggest that enhancing NMDA receptor function is an effective way for treating the cognitive deficits associated with schizophrenia.  相似文献   

18.
The effect of MK-801 on striatal dopamine (DA) release was investigated by using an in vivo microdialysis technique in the freely moving rat. Systemic injection of MK-801 (0.25, 0.5, 1, 2 mg/kg, i.p.) reduced the extracellular level of DA significantly and produced no change in the level of 3,4-dihydroxyphenylacetic acid. The behavioral observation, recorded simultaneously, revealed that MK-801, with smaller doses, produced ipsilateral circling toward the side with the dialysis probe. At larger doses, MK-801 predominantly evoked ataxia. These findings indicate that the behavioral effect of MK-801 may not be mediated via the release of DA.  相似文献   

19.
The neurotransmitter glutamate activates the N-methyl-d-aspartate (NMDA), quisqualate and kainate receptors. It has been proposed, but also disputed, that local release of glutamate would play a pivotal role in cortical spreading depression (SD). We tested this hypothesis by investigating the influence of NMDA antagonists on SD, using the non-competitive NMDA antagonists ketamine, phencyclidine (PCP) and MK-801 and the competitive NMDA antagonist dl-2-amino-7-phosphonoheptanoate (2-APH), injected intraperitoneally in rats anesthetized with alfentanil. SD was elicited by cathodal DC-stimulation of the frontal cortex. SD propagation was followed using two ion-sensitive microelectrodes placed in the parietal and occipital cortex. The NMDA antagonists increased SD threshold, decreased the propagation velocity and decreased the duration of the accompanying extracellular DC, K+ and Ca2+ changes at the following doses: 40 mg/kg ketamine, 10 mg/kg PCP, 0.63 mg/kg MK-801, 10 and 40 mg/kg 2-APH. With each NMDA antagonist failure of SD propagation between both microelectrodes could be observed. SD elicitation (or propagation) was inhibited completely with 80 mg/kg ketamine, 3.1 mg/kg MK-801 and 160 mg/kg 2-APH. These NMDA antagonists have also anticonvulsant properties. None of these effects on SD were observed with high doses of other anticonvulsants such as 80 mg/kg phenytoin or 40 mg/kg diazepam. These experiments indicate that endogenous release of excitatory amino acids and their action on the NMDA receptor play an important role in the initiation, propagation and duration of SD.  相似文献   

20.
This study aims to propose a comprehensive new model for schizophrenia, which shows PPI disruption at baseline state as an endophenotype, the development of cross-sensitization to an NMDA receptor antagonist, MK-801 as a clinical phenotype of the progression into treatment-resistance, and accompanied induction of apoptosis in the medial prefrontal cortex as a critical possibility during the progression. Repeated administration of a high dose of methamphetamine (METH) (2.5 mg/kg), which could increase glutamate levels in the medial prefrontal cortex (mPFC), induced TUNEL-positive cells in this region, accompanied development of behavioral cross-sensitization to MK-801 in response to a challenge injection of MK-801, and PPI disruption at baseline state without a challenge injection. Olanzapine (OLZ) (1.0 mg/kg) and risperidone (RIS) (0.1 mg/kg), which inhibited and remarkably attenuated METH (2.5 mg/kg)-induced increases in glutamate levels, respectively, blocked not only the induction of TUNEL-positive cells in the mPFC but also the accompanied development of above behavioral abnormalities. These findings suggest that repeating the METH-induced glutamate release produces behavioral abnormalities as a clinical phenotype of schizophrenia, accompanied apoptosis as a critical possibility during the progression, and suggest that sufficient dose of olanzapine and risperidone can block the development of these behavioral abnormalities and accompanied apoptosis during the progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号