首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Within a particular animal taxon, larger bodied species generally have larger brains. Increased brain size usually correlates with increased behavioral repertoires and often with superior cognitive abilities. Bumblebees are eusocial insects that show pronounced size polymorphism among workers, whereas in honey bees size variation is much less pronounced. Recent studies suggest that within a given colony, large bumblebee workers are more efficient foragers and are better learners than their smaller sisters. Here we examine the allometric relationship between brain and body size of worker bumblebees and honey bees. We find that larger bees have larger brains and that most brain components show a similar size increase as the overall brain. One particular brain structure, the central body, is relatively smaller in large bumblebees compared to small bees. The same is true for the mushroom body lobes, whereas the mushroom body calyces, which receive sensory input, are not reduced in larger bumblebees or honey bees. Honey bees have relatively smaller brains, as well as smaller mushroom bodies, than bumblebee workers. We discuss why brain or mushroom body size does not necessarily correlate with the degree of a species' social organization.  相似文献   

2.
Mushroom bodies are higher centers in the brains of insects. Studies on honey bees and species of ants suggest that these centers are particularly prominent in social insects. The present study confirms the presence of large mushroom bodies in five subfamilies of vespid wasps, while at the same time showing significant departures from the mushroom body organization that typifies bees and ants. Although the basic organizational plan of the insect mushroom body into calyces, peduncle, and lobes is maintained, as is the arrangement of axons of intrinsic neurons, the size and arrangements of the vespid mushroom body lobes differ markedly from those known from other Hymenoptera. Furthermore, considerable variation is found both between and within vespid subfamilies. The present results are discussed with respect to current hypotheses about functional attributes of mushroom bodies and the phylogeny of the Vespidae.  相似文献   

3.
Electron microscopical observations of the hemiellipsoid bodies of the land hermit crab Coenobita clypeatus resolve microglomerular synaptic complexes that are comparable to those observed in the calyces of insect mushroom bodies and which characterize olfactory inputs onto intrinsic neurons. In an adult hermit crab, intrinsic neurons and one class of efferent neurons originate from neuronal somata of globuli cells covering the hemiellipsoid bodies. Counts of their nucleoli show that about 120,000 globuli cells supply each hemiellipsoid body in an adult hermit crab. This number is comparable to the number of globuli cells supplying mushroom bodies of certain insects, such as honey bees and cockroaches. Counts of axons in tracts leading from the olfactory lobes to the hemiellipsoid bodies resolve 20,000 afferent axons, however, an order of magnitude greater than known for any insect. These afferent axons provide numerous swollen varicosities, each presynaptic to many small profiles, and thus comparable to the microglomeruli that characterize insect mushroom body calyces. Also, common to mushroom bodies and hemiellipsoid bodies are arrangements of intrinsic neurons, afferent neurons containing dense core vesicles, and systems of serial synaptic complexes that relate to postsynaptic profiles of efferent neurons. Together, the ultrastructural organization of the hemiellipsoid bodies of C. clypeatus supports the proposition that this center may share a common origin with the insect mushroom body despite obvious divergent evolution of overall shape.  相似文献   

4.
The mushroom bodies are prominent lobed centers in the forebrain, or protocerebrum, of most insects. Previous studies on mushroom bodies have focused on higher olfactory processing, including olfactory-based learning and memory. Anatomical studies provide strong support that in terrestrial insects with mushroom bodies, the primary input region, or calyces, are predominantly supplied by olfactory projection neurons from the antennal lobe glomeruli. In aquatic species that generally lack antennal lobes, the calyces are vestigial or absent. Here we report an exception to this in the whirligig beetle Dineutus sublineatus (Coleoptera: Gyrinidae). This aquatic species lives on water and is equipped with two separate pairs of compound eyes, one pair viewing above and one viewing below the water surface. As in other aquatic insects, the whirligig beetle lacks antennal lobes, but unlike other aquatic insects its mushroom bodies possess robust calyces. Golgi impregnations and fluorescent tracer injections revealed that the calyces are exclusively supplied by visual neurons from the medulla of the dorsal eye optic lobes. No other sensory inputs reach the calyces, thereby showing a complete switch of calyx modality from olfaction to vision. Potential functions of the mushroom bodies of D. sublineatus are discussed in the context of the behavioral ecology of whirligig beetles.  相似文献   

5.
In most insects with olfactory glomeruli, each side of the brain possesses a mushroom body equipped with calyces supplied by olfactory projection neurons. Kenyon cells providing dendrites to the calyces supply a pedunculus and lobes divided into subdivisions supplying outputs to other brain areas. It is with reference to these components that most functional studies are interpreted. However, mushroom body structures are diverse, adapted to different ecologies, and likely to serve various functions. In insects whose derived life styles preclude the detection of airborne odorants, there is a loss of the antennal lobes and attenuation or loss of the calyces. Such taxa retain mushroom body lobes that are as elaborate as those of mushroom bodies equipped with calyces. Antennal lobe loss and calycal regression also typify taxa with short nonfeeding adults, in which olfaction is redundant. Examples are cicadas and mayflies, the latter representing the most basal lineage of winged insects. Mushroom bodies of another basal taxon, the Odonata, possess a remnant calyx that may reflect the visual ecology of this group. That mushroom bodies persist in brains of secondarily anosmic insects suggests that they play roles in higher functions other than olfaction. Mushroom bodies are not ubiquitous: the most basal living insects, the wingless Archaeognatha, possess glomerular antennal lobes but lack mushroom bodies, suggesting that the ability to process airborne odorants preceded the acquisition of mushroom bodies. Archaeognathan brains are like those of higher malacostracans, which lack mushroom bodies but have elaborate olfactory centers laterally in the brain. J. Comp. Neurol. 513:265–291, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Ants, eusocial insects, have highly elaborate chemical communication systems using a wide variety of pheromones. In the carpenter ant, Camponotus japonicus, workers and queens have the female-specific basiconic sensilla on antennae. The antennal lobe, the primary processing center, in female carpenter ants contains about 480 glomeruli, which are divided into seven groups (T1–T7 glomeruli) based on sensory afferent tracts. The axons of sensory neurons in basiconic sensilla are thought to project to female-specific T6 glomeruli. Therefore, these sensilla and glomeruli are thought to relate to female-specific social tasks in the ants. By using dye filling into local neurons (LNs) and projection neurons (PNs) in the antennal lobe, we neuroanatomically revealed the existence of an isolated processing system for signals probably relating to social tasks in the worker ant. In the antennal lobe, two categories of glomeruli, T6 glomeruli and non-T6 glomeruli, are clearly segregated by LNs. Furthermore, axon terminals of uniglomerular PNs from the respective categories of glomeruli (T6 uni-PNs and non-T6 uni-PNs) are also segregated in the secondary olfactory centers, the calyces of the mushroom body and the lateral horn: T6 uni-PNs terminate in the outer layers of the basal ring and lip of mushroom body calyces and in the posterior region of the lateral horn, whereas non-T6 uni-PNs terminate in the middle and inner layers of the basal ring and lip and in the anterior region of the lateral horn. These findings suggest that information probably relating to social tasks might be isolated from other olfactory information and processed in a separate subsystem.  相似文献   

7.
The mushroom bodies are high-order sensory integration centers in the insect brain. In the honeybee, their main sensory input regions are large, doubled calyces with modality-specific, distinct sensory neuropil regions. We investigated adult structural plasticity of input synapses in the microglomeruli of the olfactory lip and visual collar. Synapsin-immunolabeled whole-mount brains reveal that during the natural transition from nursing to foraging, a significant volume increase in the calycal subdivisions is accompanied by a decreased packing density of boutons from input projection neurons. To investigate the associated ultrastructural changes at pre- and postsynaptic sites of individual microglomeruli, we employed serial-section electron microscopy. In general, the membrane surface area of olfactory and visual projection neuron boutons increased significantly between 1-day-old bees and foragers. Both types of boutons formed ribbon and non-ribbon synapses. The percentage of ribbon synapses per bouton was significantly increased in the forager. At each presynaptic site the numbers of postsynaptic partners-mostly Kenyon cell dendrites-likewise increased. Ribbon as well as non-ribbon synapses formed mainly dyads in the 1-day-old bee, and triads in the forager. In the visual collar, outgrowing Kenyon cell dendrites form about 140 contacts upon a projection neuron bouton in the forager compared with only about 95 in the 1-day-old bee, resulting in an increased divergence ratio between the two stages. This difference suggests that synaptic changes in calycal microcircuits of the mushroom body during periods of altered sensory activity and experience promote behavioral plasticity underlying polyethism and social organization in honeybee colonies.  相似文献   

8.
Global inhibition is a fundamental physiological mechanism that has been proposed to shape odor representation in higher‐order olfactory centers. A pair of mushroom bodies (MBs) in insect brains, an analog of the mammalian olfactory cortex, are implicated in multisensory integration and associative memory formation. With the use of single/multiple intracellular recording and staining in the cockroach Periplaneta americana, we succeeded in unambiguous identification of four tightly bundled GABA‐immunoreactive giant interneurons that are presumably involved in global inhibitory control of the MB. These neurons, including three spiking neurons and one nonspiking neuron, possess dendrites in termination fields of MB output neurons and send axon terminals back to MB input sites, calyces, suggesting feedback roles onto the MB. The largest spiking neuron innervates almost exclusively the basal region of calyces, while the two smaller spiking neurons and the second‐largest nonspiking neuron innervate more profusely the peripheral (lip) region of the calyces than the basal region. This subdivision corresponds well to the calycal zonation made by axon terminals of two populations of uniglomerular projection neurons with dendrites in distinct glomerular groups in the antennal lobe. The four giant neurons exhibited excitatory responses to every odor tested in a neuron‐specific fashion, and two of the neurons also exhibited inhibitory responses in some recording sessions. Our results suggest that two parallel olfactory inputs to the MB undergo different forms of inhibitory control by the giant neurons, which may, in turn, be involved in different aspects of odor discrimination, plasticity, and state‐dependent gain control. J. Comp. Neurol. 525:204–230, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
Insect mushroom bodies are brain regions that receive multisensory input and are thought to play an important role in learning and memory. In most neopteran insects, the mushroom bodies receive direct olfactory input. In addition, the calyces of Hymenoptera receive substantial direct input from the optic lobes. We describe visual inputs to the calyces of the mushroom bodies of the honeybee Apis mellifera, the neurons' dendritic fields in the optic lobes, the medulla and lobula, and the organization of their terminals in the calyces. Medulla neurons terminate in the collar region of the calyx, where they segregate into five layers that receive alternating input from the dorsal or ventral medulla, respectively. A sixth, innermost layer of the collar receives input from lobula neurons. In the basal ring region of the calyx, medulla neuron terminals are restricted to a small, distal part. Lobula neurons are more prominent in the basal ring, where they terminate in its outer half. Although the collar and basal ring layers generally receive segregated input from both optic neuropils, some overlap occurs at the borders of the layers. At least three different types of mushroom body input neurons originate from the medulla: (a) neurons with narrow dendritic fields mainly restricted to the vicinity of the medulla's serpentine layer and found throughout the medulla; (b) neurons restricted to the ventral half of the medulla and featuring long columnar dendritic branches in the outer medulla; and (c) a group of neurons whose dendrites are restricted to the most ventral part of the medulla and whose axons form the anterior inferior optic tract. Most medulla neurons (groups a and b) send their axons via the anterior superior optic tract to the mushroom bodies. Neurons connecting the lobula with the mushroom bodies have their dendrites in a defined dorsal part of the lobula. Their axons form a third tract to the mushroom bodies, here referred to as the lobula tract. Our findings match the anatomy of intrinsic mushroom body neurons (Strausfeld, 2002) and together indicate that the mushroom bodies may be composed of many more functional subsystems than previously suggested.  相似文献   

10.
The mushroom bodies of neopteran insects are considered to be higher olfactory centers because their calyces receive abundant collaterals of projection neurons from the antennal lobes. However, intracellular recordings of mushroom body efferent neurons demonstrate that they respond to multimodal stimuli, implying that the mushroom bodies receive a variety of sensory cues. The present account describes new features of the organization of afferent neurons supplying the calyces of the cockroach Periplaneta americana. Afferent terminals segment the calyces into discrete zones, I, II, III, and IIIA, which receive afferents from 1) two discrete populations of sexually isomorphic olfactory glomeruli, 2) two types of male-specific olfactory glomeruli, 3) the optic lobes, and 4) multimodal interneurons that originate in protocerebral neuropils. In addition, intracellular recordings and dye fills show that at least four morphologically distinct GABAergic elements link many regions of the protocerebrum to the calyces. A new type of touch-sensitive centrifugal neuron has been identified terminating in the pedunculus. The dendrites of this afferent reside in satellite neuropil, beneath the mushroom body's medial lobe, which is supplied by collaterals from medial lobe efferent neurons and by terminals from the central complex. The role of this centrifugal cell in odorant sampling is considered. Golgi impregnation identifies other afferents in proximal regions of the calyx (zone IIIA) that also originate from satellite neuropils, suggesting major reafference from the medial lobes channeled through this region. The relevance of multimodal supply to the calyx in odorant discrimination is discussed as are comparisons between mushroom body organization in this phylogenetically basal neopteran and other taxa.  相似文献   

11.
A role for octopamine in honey bee division of labor   总被引:1,自引:0,他引:1  
Efficient division of labor is one of the main reasons for the success of the social insects. In honey bees the division of labor is principally achieved by workers changing tasks as they age. Typically, young adult bees perform a series of tasks within the colony before ultimately making the transition to foraging outside the hive for resources. This lifelong behavioral development is a well-characterized example of naturally occurring behavioral plasticity, but its neural bases are not well understood. Two techniques were used to assess the role of biogenic amines in the transition from in-hive work to foraging, which is the most dramatic and obvious transition in honey bee behavioral development. First, associations between amines and tasks were determined by measuring the levels of amines in dissected regions of individual bee brains using HPLC analysis. Second, colonies were orally treated with biogenic amines and effects on the onset of foraging were observed. Octopamine concentration in the antennal lobes of the bee brain was most reliably associated with task: high in foragers and low in nurses regardless of age. In contrast, octopamine in the mushroom bodies, a neighboring neuropil, was associated with age and not behavior, indicating independent modulation of octopamine in these two brain regions. Treating colonies with octopamine resulted in an earlier onset of foraging in young bees. In addition, octopamine levels were not elevated by non-foraging flight, but were already high on return from the first successful foraging trip and subsequently remained high, showing no further change with foraging experience. This observation suggests that octopamine becomes elevated in the antennal lobes in anticipation of foraging and is involved in the release and maintenance of the foraging state. Foraging itself, however, does not modulate octopamine levels. Behaviorally related changes in octopamine are modulated by juvenile hormone, which has also been implicated in the control of honey bee division of labor. Treatment with the juvenile hormone analog methoprene elevated octopamine and octopamine treatment 'rescued' the delay in behavioral development caused by experimentally depleting juvenile hormone in bees. Although the pathways linking juvenile hormone and octopamine are presently unknown, it is clear that octopamine acts 'downstream' of juvenile hormone to influence behavior and that juvenile hormone modulates brain octopamine levels. A working hypothesis is that octopamine acts as an activator of foraging by modulating responsiveness to foraging-related stimuli. This is supported by the finding that octopamine treatment increased the response of bees to brood pheromone, a stimulator of foraging activity. Establishing a role for octopamine in honey bee behavioral development is a first step in understanding the neural bases of this example of naturally occurring, socially mediated, behavioral plasticity. The next level of analysis will be to determine precisely where and how octopamine acts in the nervous system to coordinate this complex social behavior.  相似文献   

12.
Behavioral development in the worker caste of many adult ants follows a pattern of task transitions that contribute to the division of labor within colonies. In the ant Pheidole dentata, the number of tasks that minor workers attend to increases as they progress from brood-care activities within the nest to acts outside the nest such as foraging and defense. In this study we investigated synapse maturation in the lip region of mushroom bodies in young and old minor workers because of its potentially crucial role in behavioral development, task performance, and repertoire expansion. As minor workers aged, individual presynaptic boutons enlarged and acquired more synapses and vesicles, but the total number of synapses in the lip region did not change significantly. Glial cell processes occupied less of the synaptic neuropil as ants matured. These findings indicate an expansion and enhancement of efficacy at specific sets of synaptic connections between the projection interneurons and Kenyon cell dendrites and a commensurate loss of other connections as minor workers age and expand their behavioral repertoire.  相似文献   

13.
The mushroom bodies of the honeybee are important neuropils for learning and memory. Therefore, knowledge about their input and output connections is essential to understanding how these neuropils function. A newly described input tract to the mushroom body is presented here, which is called the subesophageal-calycal tract (SCT) and connects the subesophageal ganglion with the calyces of the mushroom bodies. The neuronal somata of the SCT neurons lie in one cluster between the lobula of the optic lobe and a neuropil area that is formed from the fusion of the tritocerebrum and the subesophageal ganglion. Within the subesophageal ganglion, the dendritic fibers of SCT neurons overlap with terminals of sensory neurons from the proboscis. Therefore, we conclude that the SCT neurons might process gustatory and mechanosensory information from the proboscis. Individual SCT neurons receive unilateral input within the subesophageal ganglion and may connect to either the ipsilateral or the contralateral mushroom body. On their way to the mushroom bodies, the SCT neuron axons meet the roots of the antennocerebralis tracts (ACTs) and from this point follow the same path as the median ACT neurons for a short distance. Within the calyces, the SCT neurons innervate two separate areas, a small area within the dorsal collar just below the lip and a part of the basal ring. Double-labeling experiments show that the projections of the SCT neurons do not overlap with the projections of the olfactory projection neurons and visual projection neurons from the dorsal medulla. The possible function of the SCT neurons and the relation of the SCT to known input tracts of the mushroom bodies in other insects are discussed.  相似文献   

14.
Malacostracan crustaceans and dicondylic insects possess large second-order olfactory neuropils called, respectively, hemiellipsoid bodies and mushroom bodies. Because these centers look very different in the two groups of arthropods, it has been debated whether these second-order sensory neuropils are homologous or whether they have evolved independently. Here we describe the results of neuroanatomical observations and experiments that resolve the neuronal organization of the hemiellipsoid body in the terrestrial Caribbean hermit crab, Coenobita clypeatus, and compare this organization with the mushroom body of an insect, the cockroach Periplaneta americana. Comparisons of the morphology, ultrastructure, and immunoreactivity of the hemiellipsoid body of C. clypeatus and the mushroom body of the cockroach P. americana reveal in both a layered motif provided by rectilinear arrangements of extrinsic and intrinsic neurons as well as a microglomerular organization. Furthermore, antibodies raised against DC0, the major catalytic subunit of protein kinase A, specifically label both the crustacean hemiellipsoid bodies and insect mushroom bodies. In crustaceans lacking eyestalks, where the entire brain is contained within the head, this antibody selectively labels hemiellipsoid bodies, the superior part of which approximates a mushroom body's calyx in having large numbers of microglomeruli. We propose that these multiple correspondences indicate homology of the crustacean hemiellipsoid body and insect mushroom body and discuss the implications of this with respect to the phylogenetic history of arthropods. We conclude that crustaceans, insects, and other groups of arthropods share an ancestral neuronal ground pattern that is specific to their second-order olfactory centers.  相似文献   

15.
Papilio butterflies depend highly on visual information in their flower‐foraging behavior. The retina of Papilio xuthus has been studied well, whereas the visual system in the brain is poorly understood. By investigating outputs from the optic lobe to the central brain, we found that the mushroom body of P. xuthus receives prominent direct inputs from the optic lobe in addition to olfactory inputs. The mushroom body consists of three components: the calyx, the pedunculus, and the lobes. The calyx is further subdivided into two cup‐shaped primary calyces and an accessory calyx. Each primary calyx consists of three concentric subareas, the inner zone, the outer zone, and the rim of the outer zone. Dextran injections into the optic lobe, the calyx, or the antennal lobe revealed three visual inputs and one olfactory input into the calyx. The visual inputs originate from the medulla, the lobula, and a newly identified neuropil, the ventral lobe of the lobula. All visual inputs first innervate the accessory calyx, and the two lobula inputs further spread their processes through the inner zone and the rim of the outer zone of the primary calyces. Visual inputs from the medulla and the ventral lobe of the lobula collect light information from ventral eye regions, suggesting a role in visual target detection rather than sky compass orientation. In contrast to visual inputs, olfactory inputs innervate only the calycal outer zone. The multisensory inputs to the mushroom bodies in P. xuthus are probably related to their flower‐foraging behavior. J. Comp. Neurol. 523:162–182, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
This account describes novel mushroom body organization in a coleopteran insect, the African fruit chafer Pachnoda marginata. Each of its prominent mushroom bodies possesses a pair of simple calyces comprising two populations of Kenyon cells, the dendrites of which are organized into a central and an annular zone. Kenyon cells of the central zone extend their dendrites downward and toward the perimeter of the calyx. Their axon-like processes in the pedunculus are densely packed to make up a distinctive shaft of neuropil. Toward the front of the brain, the shafts, one from each calyx, bifurcate to provide a pair of subdivisions in the medial and vertical lobes. Dendrites of Kenyon cells supplying the annular zone extend from the calyx perimeter toward its center. Axons from the annular zones of both calyces together provide a sleeve of axons that ensheaths the two shafts. Sleeve axons bifurcate to provide a second pair of divisions in each of the lobes. These arrangements provide each lobe with a discrete representation of the two Kenyon cell populations of the two calyces. Kenyon cells supplying the central zone have dendritic morphologies reminiscent of class II clawed Kenyon cells that supply the gamma lobes in other taxa. Kenyon cells supplying axons to the sleeve are suggestive of class III Kenyon cell morphologies described from cockroaches and termites. Elaborate intrinsic neurons, comparable to exotic intrinsic neurons in the honey bee gamma lobes, have processes that interact with shaft axons. The present observations suggest that mushroom bodies of Pachnoda represent either a basal organization entirely lacking class I Kenyon cells or an evolutionary modification in which there is no clear morphological distinction of class I and II Kenyon cells. In either case, cellular organization in Pachnoda's mushroom body is simple compared with that of other taxa.  相似文献   

17.
Unique among insects, some paper wasp species recognize conspecific facial patterns during social communication. To evaluate whether specialized brain structures are involved in this task, we measured brain and brain component size in four different paper wasp species, two of which show facial pattern recognition. These behavioral abilities were not reflected by an increase in brain size or an increase in the size of the primary visual centers (medulla, lobula). Instead, wasps showing face recognition abilities had smaller olfactory centers (antennal lobes). Although no single brain compartment explains the wasps' specialized visual abilities, multi-factorial analysis of the different brain components, particularly the antennal lobe and the mushroom body sub-compartments, clearly separates those species that show facial pattern recognition from those that do not. Thus, there appears to be some neural specialization for visual communication in Polistes. However, the apparent lack of optic lobe specialization suggests that the visual processing capabilities of paper wasps might be preadapted for pattern discrimination and the ability to discriminate facial markings could require relatively small changes in their neuronal substrate.  相似文献   

18.
The mushroom bodies (MBs) are central structures in the insect brain that have been associated with olfactory learning and memory. Here we used hydroxyurea (HU) to treat honeybee larvae and induce partial MB ablations at the adult stage. We studied olfactory learning in honeybees with unilateral loss of the median calyces of their MBs and compared their ability to solve different forms of olfactory discrimination. When odorants were delivered in a side-specific manner, ablated bees could not solve either discrimination of the unambiguous problem (Paradigm 1: A+, B- on one antenna, C+, D- on the other; A+B-/C+D-) whereas they could solve at least one of both discriminations of the ambiguous problem (Paradigm 2: A+B-/A-B+), namely that proposed to their intact brain side. Non-ablated bees could learn side-specific discriminations on both brain sides. When odorants were delivered simultaneously to both antennae (Paradigm 3: A+B-C+D-), HU-ablated bees learned slower than HU-normal bees. Thus, in all three paradigms, the unilateral loss of a median calyx affected olfactory learning. We propose that the MBs are required for solving elemental olfactory tasks whose complexity is increased by the number of stimuli involved and that MB ablations could have an effect on the inhibition of information exchange between brain hemispheres.  相似文献   

19.
In 1882, the Italian embryologist Giuseppe Bellonci introduced a nomenclature for structures in the stomatopod crustacean Squilla mantis that he claimed correspond to insect mushroom bodies, today recognized as cardinal centers that in insects mediate associative memory. The use of Bellonci's terminology has, through a series of misunderstandings and entrenched opinions, led to contesting views regarding whether centers in crustacean and insect brains that occupy corresponding locations and receive comparable multisensory inputs are homologous or homoplasic. The following describes the fate of terms used to denote sensory association neuropils in crustacean species and relates how those terms were deployed in the 1920s and 1930s by the Swedish neuroanatomist Bertil Hanström to claim homology in insects and crustaceans. Yet the same terminology has been repurposed by subsequent researchers to promote the very opposite view: that mushroom bodies are a derived trait of hexapods and that equivalent centers in crustaceans evolved independently.  相似文献   

20.
The mushroom bodies are regions in the insect brain involved in processing complex multimodal information. They are composed of many parallel sets of intrinsic neurons that receive input from and transfer output to extrinsic neurons that connect the mushroom bodies with the surrounding neuropils. Mushroom bodies are particularly large in social Hymenoptera and are thought to be involved in the control of conspicuous orientation, learning, and memory capabilities of these insects. The present account compares the organization of sensory input to the mushroom body's calyx in different Hymenoptera. Tracer and conventional neuronal staining procedures reveal the following anatomic characteristics: The calyx comprises three subdivisions, the lip, collar, and basal ring. The lip receives antennal lobe afferents, and these olfactory input neurons can terminate in two or more segregated zones within the lip. The collar receives visual afferents that are bilateral with equal representation of both eyes in each calyx. Visual inputs provide two to three layers of processes in the collar subdivision. The basal ring is subdivided into two modality-specific zones, one receiving visual, the other antennal lobe input. Some overlap of modality exists between calycal subdivisions and within the basal ring, and the degree of segregation of sensory input within the calyx is species-specific. The data suggest that the many parallel channels of intrinsic neurons may each process different aspects of sensory input information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号