首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amygdala is an essential neural substrate for Pavlovian fear conditioning. Nevertheless, long-term synaptic plasticity in amygdaloid afferents, such as the auditory thalamus, may contribute to the formation of fear memories. We therefore compared the influence of protein synthesis inhibition in the amygdala and the auditory thalamus on the consolidation of Pavlovian fear conditioning in Long-Evans rats. Rats received three tone-footshock trials in a novel conditioning chamber. Immediately after fear conditioning, rats were infused intra-cranially with the protein synthesis inhibitor, anisomycin. Conditional fear to the tone and conditioning context was assessed by measuring freezing behaviour in separate retention tests conducted at least 24 h following conditioning. Post-training infusion of anisomycin into the amygdala impaired conditional freezing to both the auditory and contextual stimuli associated with footshock. In contrast, intra-thalamic infusions of anisomycin or a broad-spectrum protein kinase inhibitor [1-(5'-isoquinolinesulphonyl)-2-methylpiperazine, H7] did not affect conditional freezing during the retention tests. Pre-training intra-thalamic infusion of the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (APV), which blocks synaptic transmission in the auditory thalamus, produced a selective deficit in the acquisition of auditory fear conditioning. Autoradiographic assays of cerebral [14C]-leucine incorporation revealed similar levels of protein synthesis inhibition in the amygdala and thalamus following intra-cranial anisomycin infusions. These results reveal that the establishment of long-term fear memories requires protein synthesis in the amygdala, but not the thalamus, after auditory fear conditioning. Forms of synaptic plasticity that depend on protein synthesis, such as long-term potentiation, are likely candidates for the encoding and long-term storage of fear memories in the amygdala.  相似文献   

2.
The amygdala is essential for fear learning and memory. Synaptic transmission is enhanced in two pathways in the amygdala in fear conditioning. In this study we examined whether lateral (LA) to basolateral (BLA) amygdala synapses are potentiated and participate in intra-amygdala plasticity during the maintenance of fear memory. Our data showed that synaptic strength from the LA (ventrolateral) to the BLA (parvicellular) pathway was not increased after fear conditioning and suggests that this pathway does not integrate information relevant to the coding of memories in auditory fear learning.  相似文献   

3.
After fear conditioning, plastic changes of excitatory synaptic transmission occur in the amygdala. Fear‐related memory also involves the GABAergic system, although no influence on inhibitory synaptic transmission is known. In the present study we assessed the influence of Pavlovian fear conditioning on the plasticity of GABAergic synaptic interactions in the lateral amygdala (LA) in brain slices prepared from fear‐conditioned, pseudo‐trained and naïve adult mice. Theta‐burst tetanization of thalamic afferent inputs to the LA evoked an input‐specific potentiation of inhibitory postsynaptic responses in projection neurons; the cortical input was unaffected. Philanthotoxin (10 µm ), an antagonist of Ca2+‐permeable AMPA receptors, disabled this plastic phenomenon. Surgical isolation of the LA, extracellular application of a GABAB receptor antagonist (CGP 55845A, 10 µm ) or an NMDA receptor antagonist (APV, 50 µm ), or intracellular application of BAPTA (10 mm ), did not influence the plasticity. The plasticity also showed as a potentiation of monosynaptic excitatory responses in putative GABAergic interneurons. Pavlovian fear conditioning, but not pseudo‐conditioning, resulted in a significant reduction in this potentiation that was evident 24 h after training. Two weeks after training, the potentiation returned to control levels. In conclusion, a reduction in potentiation of inhibitory synaptic interactions occurs in the LA and may contribute to a shift in synaptic balance towards excitatory signal flow during the processes of fear‐memory acquisition or consolidation.  相似文献   

4.
Several studies have implicated the Ras/mitogen-activated protein kinase (MAPK) pathway in Pavlovian fear conditioning. RasGRF1 knockout mice show significant deficits in acquisition of long-term fear memories and long-term potentaition (LTP) in the basolateral amygdala (BLA). MAPK kinase inhibition also impairs fear conditioning and amygdaloid LTP. However, there is no direct evidence to date for the involvement of Ras itself in fear conditioning. To address this issue, we examined the effects of intra-amygdala infusions of the selective Ras antagonist farnesylthiosalicylic acid (FTS) on the acquisition and expression of conditional freezing in rats. Micro-infusions of FTS into the BLA prior to contextual fear conditioning significantly impaired acquisition of long-term contextual fear memory in a dose-dependent manner. Post-training FTS infusions had no effect on acquisition of long-term fear memory. The effects of FTS on fear conditioning were specific for the BLA. Finally, intra-amygdala infusions of FTS inhibited MAPK activation in BLA. Collectively, these results provide further evidence for the involvement of amygdaloid Ras in the acquisition of long-term conditional fear memory.  相似文献   

5.
Nitric oxide (NO) has been widely implicated in synaptic plasticity and memory formation. In studies of long-term potentiation (LTP), NO is thought to serve as a 'retrograde messenger' that contributes to presynaptic aspects of LTP expression. In this study, we examined the role of NO signaling in Pavlovian fear conditioning. We first show that neuronal nitric oxide synthase is localized in the lateral nucleus of the amygdala (LA), a critical site of plasticity in fear conditioning. We next show that NO signaling is required for LTP at thalamic inputs to the LA and for the long-term consolidation of auditory fear conditioning. Collectively, the findings suggest that NO signaling is an important component of memory formation of auditory fear conditioning, possibly as a retrograde signal that participates in presynaptic aspects of plasticity in the LA.  相似文献   

6.
We examined the influence of extensive overtraining (75 trials) of auditory fear conditioning on the expression of conditional stimulus (CS)-elicited spike firing in lateral amygdala (LA) neurons. Single units were recorded from chronic multichannel electrodes implanted in the LA of conscious and freely moving rats. In sequential training sessions, the rats received either five or 70 fear conditioning trials, which consisted of a white-noise CS and a coterminating footshock unconditional stimulus (US). Unpaired (sensitization) controls received the same number of trials, but the CS and US were explicitly unpaired. Paired CS-US presentations yielded robust increases in CS-elicited spike firing in LA neurons after both five and 70 conditioning trials, and the magnitude of the spike firing increases was correlated with the expression of conditional freezing to the CS. After 75 training trials, maximal conditioning-related increases in LA firing were exhibited within 20 ms of CS onset, indicating that this increase is mediated by direct thalamo-amygdala projections. There was no significant increase in CS-elicited spike firing or freezing behaviour in the unpaired group. These results complement amygdala lesion studies [e.g. Maren, S. (1999a) J. Neurosci., 19, 8696-8703] and support the view that the basolateral complex of the amygdala is involved in the encoding and storage of fear memories even after extensive overtraining.  相似文献   

7.
The amygdala plays an important role in emotional learning. Synaptic plasticity underlying the acquisition of conditioned fear occurs in the lateral nucleus of the amygdala: long-term potentiation (LTP) of synapses in the pathway of the conditioned stimulus (CS) has shown to be a neural correlate of this kind of emotional learning. The present study is based on previous results of our laboratory showing an important role of the metabotropic glutamate receptor subtype 5 (mGluR5) in fear conditioning. Here, we explored whether mGlu5 receptors within the lateral nucleus of the amygdala are involved in the plasticity underlying fear conditioning. We used an in vivo approach investigating the acquisition, consolidation and expression of conditioned fear by the fear-potentiated startle paradigm and by the inhibition of motor activity during CS presentation. Additionally, we used an in vitro approach inducing LTP in the lateral amygdala by patch-clamp recordings in rat brain slices. Acquisition of conditioned fear, but not consolidation and expression, was blocked by intra-amygdaloid injections of the specific mGluR5 antagonist 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP) in vivo. Furthermore, induction of amygdaloid LTP but not synaptic transmission was disrupted by MPEP application in vitro. These experiments show for the first time in vivo and in vitro that mGluR5 receptors are necessary for plasticity in the amygdala.  相似文献   

8.
In the maintenance phase of fear memory, synaptic transmission is potentiated and the stimulus requirements and signalling mechanisms are altered for long-term potentiation (LTP) in the cortico-lateral amygdala (LA) pathway. These findings link amygdala synaptic plasticity to the coding of fear memories. Behavioural experiments suggest that the amygdala serves to store long-term fear memories. Here we provide electrophysiological evidence showing that synaptic alterations in rats induced by fear conditioning are evident in vitro 10 days after fear conditioning. We show that synaptic transmission was facilitated and that high-frequency stimulation dependent LTP (HFS-LTP) of the cortico-lateral amygdala pathway remained attenuated 10 days following fear conditioning. Additionally, we found that the low-frequency stimulation dependent LTP (LFS-LTP) measured 24 h after fear conditioning was absent 10 days post-training. The persistent facilitation of synaptic transmission and occlusion of HFS-LTP suggests that, unlike hippocampal coding of contextual fear memory, the cortico-lateral amygdala synapse is involved in the storage of long-term fear memories. However, the absence of LFS-LTP 10 days following fear conditioning suggests that amygdala physiology 1 day following fear learning may reflect a dynamic state during memory stabilization that is inactive during the long-term storage of fear memory. Results from these experiments have significant implications regarding the locus of storage for maladaptive fear memories and the synaptic alterations induced by these memories.  相似文献   

9.
Stressful and traumatic events can create aversive memories, which are a predisposing factor for anxiety disorders. The amygdala is critical for transforming such stressful events into anxiety, and the recently discovered neuropeptide S transmitter system represents a promising candidate apt to control these interactions. Here we test the hypothesis that neuropeptide S can regulate stress-induced hyperexcitability in the amygdala, and thereby can interact with stress-induced alterations of fear memory. Mice underwent acute immobilization stress (IS), and neuropeptide S and a receptor antagonist were locally injected into the lateral amygdala (LA) during stress exposure. Ten days later, anxiety-like behavior, fear acquisition, fear memory retrieval, and extinction were tested. Furthermore, patch-clamp recordings were performed in amygdala slices prepared ex vivo to identify synaptic substrates of stress-induced alterations in fear responsiveness. (1) IS increased anxiety-like behavior, and enhanced conditioned fear responses during extinction 10 days after stress, (2) neuropeptide S in the amygdala prevented, while an antagonist aggravated, these stress-induced changes of aversive behaviors, (3) excitatory synaptic activity in LA projection neurons was increased on fear conditioning and returned to pre-conditioning values on fear extinction, and (4) stress resulted in sustained high levels of excitatory synaptic activity during fear extinction, whereas neuropeptide S supported the return of synaptic activity during fear extinction to levels typical of non-stressed animals. Together these results suggest that the neuropeptide S system is capable of interfering with mechanisms in the amygdala that transform stressful events into anxiety and impaired fear extinction.  相似文献   

10.
Pavlovian or classical fear conditioning is recognized as a model system to investigate the neurobiological mechanisms of learning and memory in the mammalian brain and to understand the root of fear-related disorders in humans. In recent decades, important progress has been made in delineating the essential neural circuitry and cellular-molecular mechanisms of fear conditioning. Converging lines of evidence indicate that the amygdala is necessarily involved in the acquisition, storage and expression of conditioned fear memory, and long-term potentiation (LTP) in the lateral nucleus of the amygdala is often proposed as the underlying synaptic mechanism of associative fear memory. Recent studies further implicate the prefrontal cortex-amygdala interaction in the extinction (or inhibition) of conditioned fear. Despite these advances, there are unresolved issues and findings that challenge the validity and sufficiency of the current amygdalar LTP hypothesis of fear conditioning. The purpose of this review is to critically evaluate the strengths and weaknesses of evidence indicating that fear conditioning depend crucially upon the amygdalar circuit and plasticity.  相似文献   

11.
Fear conditioning leads to long-term fear memory formation and is a model for studying fear-related psychopathologies conditions such as phobias and posttraumatic stress disorder. Long-term fear memory formation is believed to involve alterations of synaptic efficacy mediated by changes in synaptic transmission and morphology in lateral amygdala (LA). EphrinA4 and its cognate Eph receptors are intimately involved in regulating neuronal morphogenesis, synaptic transmission and plasticity. To assess possible roles of ephrinA4 in fear memory formation we designed and used a specific inhibitory ephrinA4 mimetic peptide (pep-ephrinA4) targeted to EphA binding site. We show that this peptide, composed of the ephrinA4 binding domain, interacts with EphA4 and inhibits ephrinA4-induced phosphorylation of EphA4. Microinjection of the pep-ephrinA4 into rat LA 30 min before training impaired long- but not short-term fear conditioning memory. Microinjection of a control peptide derived from a nonbinding E helix site of ephrinA4, that does not interact with EphA, had no effect on fear memory formation. Microinjection of pep-ephrinA4 into areas adjacent to the amygdala had no effect on fear memory. Acute systemic administration of pep-ephrinA4 1 h after training also impaired long-term fear conditioning memory formation. These results demonstrate that ephrinA4 binding sites in LA are essential for long-term fear memory formation. Moreover, our research shows that ephrinA4 binding sites may serve as a target for pharmacological treatment of fear and anxiety disorders.  相似文献   

12.
Glutamate receptors in the basolateral complex of the amygdala (BLA) are essential for the acquisition, expression and extinction of Pavlovian fear conditioning in rats. Recent work has revealed that glutamate receptors in the central nucleus of the amygdala (CEA) are also involved in the acquisition of conditional fear, but it is not known whether they play a role in fear extinction. Here we examine this issue by infusing glutamate receptor antagonists into the BLA or CEA prior to the extinction of fear to an auditory conditioned stimulus (CS) in rats. Infusion of the α‐amino‐3‐hydroxyl‐5‐methyl‐4‐isoxazole‐propionate (AMPA) receptor antagonist, 2,3‐dihydroxy‐6‐nitro‐7‐sulfamoyl‐benzo[f]quinoxaline‐2,3‐dione (NBQX), into either the CEA or BLA impaired the expression of conditioned freezing to the auditory CS, but did not impair the formation of a long‐term extinction memory to that CS. In contrast, infusion of the N‐methyl‐d ‐aspartate (NMDA) receptor antagonist, d,l ‐2‐amino‐5‐phosphonopentanoic acid (APV), into the amygdala, spared the expression of fear to the CS during extinction training, but impaired the acquisition of a long‐term extinction memory. Importantly, only APV infusions into the BLA impaired extinction memory. These results reveal that AMPA and NMDA receptors within the amygdala make dissociable contributions to the expression and extinction of conditioned fear, respectively. Moreover, they indicate that NMDA receptor‐dependent processes involved in extinction learning are localized to the BLA. Together with previous work, these results reveal that NMDA receptors in the CEA have a selective role acquisition of fear memory.  相似文献   

13.
The amygdala is known to be a critical storage site of conditioned fear memory. Among the two major pathways to the lateral amygdala (LA), the cortical pathway is known to display a presynaptic long‐term potentiation which is occluded with fear conditioning. Here we show that fear extinction results in a net depression of conditioning‐induced potentiation at cortical input synapses onto the LA (C‐LA synapses). Fear conditioning induced a significant potentiation of excitatory postsynaptic currents at C‐LA synapses compared with naïve and unpaired controls, whereas extinction apparently reversed this potentiation. Paired‐pulse low‐frequency stimulation (pp‐LFS) induced synaptic depression in the C‐LA pathway of fear‐conditioned rats, but not in naïve or unpaired controls, indicating that the pp‐LFS‐induced depression is specific to associative learning‐induced changes (pp‐LFS‐induced depotentiationex vivo). Importantly, extinction occluded pp‐LFS‐induced depotentiationex vivo, suggesting that extinction shares some mechanisms with the depotentiation. pp‐LFS‐induced depotentiationex vivo required NMDA receptor (NMDAR) activity, consistent with a previous finding that blockade of amygdala NMDARs impaired fear extinction. In addition, pp‐LFS‐induced depotentiationex vivo required activity of group II metabotropic glutamate receptors (mGluRs), known to be present at presynaptic terminals, but not AMPAR internalization, consistent with a presynaptic mechanism for pp‐LFS‐induced depotentiationex vivo. This result is in contrast with another form of ex vivo depotentiation in the thalamic pathway that requires both group I mGluR activity and AMPAR internalization. We thus suggest that extinction of conditioned fear involves a distinct form of depotentiation at C‐LA synapses, which depends upon both NMDARs and group II mGluRs.  相似文献   

14.
Li YK  Wang F  Wang W  Luo Y  Wu PF  Xiao JL  Hu ZL  Jin Y  Hu G  Chen JG 《Neuropsychopharmacology》2012,37(8):1867-1878
Astrocytes are implicated in information processing, signal transmission, and regulation of synaptic plasticity. Aquaporin-4 (AQP4) is the major water channel in adult brain and is primarily expressed in astrocytes. A growing body of evidence indicates that AQP4 is a potential molecular target for the regulation of astrocytic function. However, little is known about the role of AQP4 in synaptic plasticity in the amygdala. Therefore, we evaluated long-term potentiation (LTP) in the lateral amygdala (LA) and associative fear memory of AQP4 knockout (KO) and wild-type mice. We found that AQP4 deficiency impaired LTP in the thalamo-LA pathway and associative fear memory. Furthermore, AQP4 deficiency significantly downregulated glutamate transporter-1 (GLT-1) expression and selectively increased NMDA receptor (NMDAR)-mediated EPSCs in the LA. However, low concentration of NMDAR antagonist reversed the impairment of LTP in KO mice. Upregulating GLT-1 expression by chronic treatment with ceftriaxone also reversed the impairment of LTP and fear memory in KO mice. These findings imply a role for AQP4 in synaptic plasticity and associative fear memory in the amygdala by regulating GLT-1 expression.  相似文献   

15.
Fear conditioning in the rat typically involves pairing a conditioned stimulus (tone) with an aversive unconditioned stimulus (foot shock) which elicits a freeze response. Although the circuitry that underlies this form of learning is well defined, potential synaptic changes associated with this form of learning have not been fully investigated. This experiment examined synaptic structural plasticity in the lateral amygdala which is critical for the acquisition of the conditioned fear response. Adult male rats were randomly allocated to either a paired, unpaired or tone only condition. One day after the initial fear conditioning session and 1 h after a probe trial confirmation of a conditioned fear response, the rats were perfused and the relevant tissue was embedded for electron microscopic analysis. Synaptic changes were quantified in the lateral amygdala using a stereological approach. The results showed a significant increase in the number of synapses in the conditioned animals compared to controls. This finding suggests that an increase in synaptic compliment in the amygdala may underlie the acquisition of the conditioned fear response.  相似文献   

16.
Whereas the neuronal substrates underlying the acquisition of auditory fear conditioning have been widely studied, the substrates and mechanisms mediating the acquisition of fear extinction remain largely elusive. Previous reports indicate that consolidation of fear extinction depends on the mitogen-activated protein kinase/extracellular-signal regulated kinase (MAPK/ERK) signalling pathway and on protein synthesis in the medial prefrontal cortex (mPFC). Based on experiments using the fear-potentiated startle paradigm suggesting a role for neuronal plasticity in the basolateral amygdala (BLA) during fear extinction, we directly addressed whether MAPK/ERK signalling in the basolateral amygdala is necessary for the acquisition of fear extinction using conditioned freezing as a read-out. First, we investigated the regional and temporal pattern of MAPK/ERK activation in the BLA following extinction learning in C57Bl/6J mice. Our results indicate that acquisition of extinction is associated with an increase of phosphorylated MAPK/ERK in the BLA. Moreover, we found that inhibition of the MAPK/ERK signalling pathway by intrabasolateral amygdala infusion of the MEK inhibitor, U0126, completely blocks acquisition of extinction. Thus, our results indicate that the MAPK/ERK signalling pathway is required for extinction of auditory fear conditioning in the BLA, and support a role for neuronal plasticity in the BLA during the acquisition of fear extinction.  相似文献   

17.
Long-term depression (LTD) is an enduring decrease in synaptic efficacy and is thought to underlie memory. In contrast to investigations of plasticity mechanisms in the amygdala in rat coronal slices, this study was done in horizontal slices. Field excitatory postsynaptic potentials (fEPSPs) and EPSPs, respectively, were recorded extracellularly and intracellularly from the lateral nucleus of the amygdala (LA). We show that low-frequency stimulation (LFS) induces LTD in the LA, when stimulation electrodes were located in the LA. No significant differences were found between females and males. In dependence of strain variations, a reduction of GABAergic inhibition either reduced the magnitude of LTD or was a prerequisite for the induction of extracellularly recorded LA-LTD. Theta pulse stimulation (TPS) of afferents within the LA caused a weaker LTD than LFS. Theta burst stimulation (TBS) given 20 min after the end of LFS reversed LTD, whereas high-frequency stimulation (HFS) resulted in long-term potentiation (LTP) that was significantly stronger than that obtained in naive slices. Therefore, primed induction of LTD facilitates high-frequency-induced LTP in the rat lateral amygdala. NMDARs as well as group II mGluRs were involved in the mediation of LA-LTD. In contrast to data obtained by stimulation of afferents running within the LA, LFS of the external capsule fibers induced a weak LA-LTD, and TPS was not able to induce LTD. This study showed for the first time that LTD can be induced in the LA by standard LFS (900 pulses at 1 Hz) and that LTP stimuli reversed LTD. The results also provide further evidence for the broad sensitivity of synaptic plasticity mechanisms to the history of prior activity.  相似文献   

18.
Anxiety disorders, such as phobias and posttraumatic stress disorder, are among the most common mental disorders. Cognitive therapy helps in treating these disorders; however, many cases relapse or resist the therapy, which justifies the search for cognitive enhancers that might augment the efficacy of cognitive therapy. Studies suggest that enhancement of plasticity in certain brain regions such as the prefrontal cortex (PFC) and/or hippocampus might enhance the efficacy of cognitive therapy. We found that elevation of brain magnesium, by a novel magnesium compound [magnesium-l-threonate (MgT)], enhances synaptic plasticity in the hippocampus and learning and memory in rats. Here, we show that MgT treatment enhances retention of the extinction of fear memory, without enhancing, impairing, or erasing the original fear memory. We then explored the molecular basis of the effects of MgT treatment on fear memory and extinction. In intact animals, elevation of brain magnesium increased NMDA receptors (NMDARs) signaling, BDNF expression, density of presynaptic puncta, and synaptic plasticity in the PFC but, interestingly, not in the basolateral amygdala. In vitro, elevation of extracellular magnesium concentration increased synaptic NMDAR current and plasticity in the infralimbic PFC, but not in the lateral amygdala, suggesting a difference in their sensitivity to elevation of brain magnesium. The current study suggests that elevation of brain magnesium might be a novel approach for enhancing synaptic plasticity in a regional-specific manner leading to enhancing the efficacy of extinction without enhancing or impairing fear memory formation.  相似文献   

19.
Pavlovian fear conditioning has emerged as a leading behavioral paradigm for studying the neurobiological basis of learning and memory. Although considerable progress has been made in understanding the neural substrates of fear conditioning at the systems level, until recently little has been learned about the underlying cellular and molecular mechanisms. The success of systems-level work aimed at defining the neuroanatomical pathways underlying fear conditioning, combined with the knowledge accumulated by studies of long-term potentiation (LTP), has recently given way to new insights into the cellular and molecular mechanisms that underlie acquisition and consolidation of fear memories. Collectively, these findings suggest that fear memory consolidation in the amygdala shares essential biochemical features with LTP, and hold promise for understanding the relationship between memory consolidation and synaptic plasticity in the mammalian brain.  相似文献   

20.
Activity-dependent modification of synapses is fundamental for information storage in the brain and underlies behavioral learning. Fear conditioning is a model of emotional memory and anxiety that is expressed as an enduring increase in synaptic strength in the lateral amygdala (LA). Here we analysed synaptic plasticity in the rat cortico-LA pathway during maintenance of fear memory. We show for the first time that the stimulus frequency for synaptic potentiation is switched during maintenance of fear memory, and the underlying signaling mechanisms are altered in the cortico-LA pathway. In slices from fear-conditioned animals, high-frequency stimulation-induced (HFS) long-term potentiation (LTP) was attenuated, whereas low-frequency stimulation (LFS) elicited a long-lasting potentiation. HFS generates robust LTP that is dependent on N-methyl-d-aspartate receptor (NMDAR) and L-type voltage-gated calcium channel (VGCC) activation in control animals, whereas in fear-conditioned animals HFS LTP is NMDAR- and VGCC-independent. LFS-LTP is partially NMDAR-dependent, but VGCCs are necessary for potentiation in fear memory. Collectively, these results show that during maintenance of fear memory the stimulus requirements for amygdala afferents and critical signaling mechanisms for amygdala synaptic potentiation are altered, suggesting that cue-engaged synaptic mechanisms in the amygdala are dramatically affected as a result of emotional learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号