首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was aimed at determining the spatiotemporal distribution of event-related desynchronization (ERD) during self-paced voluntary movement in order to establish the interest of this method for the analysis of movement programming in Parkinson's disease. Desynchronization of mu rhythm was recorded 2 s before to 0.5 s after right then left self-paced voluntary wrist flexions from 11 leads covering the primary sensorimotor cortex (central), supplementary motor area (frontocentral) and parietal cortex (parietocentral). Recordings were obtained from ten control subjects, ten patients treated for Parkinson's disease (bilateral symptoms) and 20 patients presenting with right or left hemiparkinsonism before and after chronic administration of L-dopa. In the control group, ERD started over the contralateral primary sensorimotor cortex 1,750 ms before movement and was bilateral just before performance of the movement. In both treated and de novo Parkinson's disease groups, decrease in ERD latency (1,000 to 1,250 ms before movement) was only observed when movements were performed with the akinetic hand and corresponded to a decrease in motor cortical activity. This confirmed that programming of movement is affected in Parkinson's disease. Earlier ERD with central ipsilateral distribution were also observed, suggesting that other cortical areas might be activated to compensate for dysfunction of movement programming and to increase the level of cortical activity required for performance of the movement. The administration of L-dopa to de novo hemiparkinsonians patients resulted in increased ERD latency over contralateral and ipsilateral central areas. As in the treated Parkinson's disease group, frontocentral ERD could also be recorded. L-dopa would thus partially restore the affected motor programmation and modulate cortical activation in both supplementary motor area and primary motor cortex, the later receiving more afferences from basal ganglia.  相似文献   

2.
To determine the benefit of motor programming analysis for distinguishing patients with parkinsonism, we compared the spatiotemporal pattern of event-related desynchronization (ERD) preceding a self-paced voluntary wrist flexion between two groups of 10 patients with progressive supranuclear palsy (PSP) and Parkinson's disease (PD) and 10 control subjects. ERD of the mu rhythm was computed from 11 source derivations covering the medial frontocentral, central, and parietocentral areas during two successive left and right experimental conditions (80 self-paced wrist flexions). ERD began in the control group 1750 ms before movement onset over the contralateral central area and then appeared bilaterally on movement execution. In both patient groups, spatiotemporal distribution differed from that in the control group. In the PSP group, ERD had a shorter latency over the contralateral primary sensorimotor area compared with the PD group (PSP: 375 ms before movement onset for both conditions; PD: right flexion 1125 ms before movement onset, left flexion 1000 ms). ERD was observed over the parietocentral area in both groups but also with a clear reduction of latency before movement onset in the PSP group. In both groups, a bilateral central pattern appeared 250 ms before movement execution. In conclusion, our study indicates that ERD analysis is a useful method for observing the changes in cortical activation and for measuring motor programming impairment in parkinsonism, which was more affected in PSP than in PD.  相似文献   

3.
Objective: This study aimed to investigate changes in spatio-temporal, event-related (de)synchronization (ERD/ERS) patterns recorded with respect to the more akinetic versus the less akinetic side during performance of a visuo-guided targeting movement when compared to an index finger extension.Methods: Twelve de novo parkinsonian patients were recorded. ERD/ERS in mu and beta frequency bands was computed from 21 source derivations.Results: When the index finger extension was performed with the less akinetic limb, mu ERD focused over contralateral central region appeared 2 s before movement. With the targeting movement, additional pre-movement mu ERD was observed over the parietal region, as well as earlier ipsilateral mu ERD. When the same movements were performed with the more akinetic limb, we observed delayed mu ERD over contralateral regions, earlier ipsilateral mu ERD and a lack of contralateral parietal mu ERD before the targeting movement. Following index finger extension for the less akinetic limb, a focused contralateral central beta ERS was recorded, increasing and spreading after the targeting movement. In contrast, for the more akinetic limb, beta ERS was dramatically attenuated and remained unchanged after the targeting movement.Conclusions: These results confirm the fact that motor programming is delayed, and provide some insight into what may well be impaired sensorimotor integration in Parkinson's disease.  相似文献   

4.
OBJECTIVE: To localize the sources of mu, beta and gamma rhythms and to explore the functional significance of their reactivity. METHODS: We used the method of quantification of event-related desynchronization (ERD) and synchronization (ERS) to analyze the reactivity of intracerebral rhythms recorded in stereoelectroencephalography within the sensorimotor areas during the preparation and the execution of a simple self-paced hand movement. We recorded 3 epileptic subjects who were explored before a surgical treatment. RESULTS: An ERD of mu and beta rhythms has been recorded before the movement onset in the precentral gyrus, spreading then to the postcentral gyrus and to the frontal medial cortex. The frontal lateral cortex was inconstantly involved during the movement. The movement offset was followed by an important and focused beta ERS which was found within the pre- and post-central gyrus and the frontal medial cortex. Within the beta band, we observed several narrower bands with different reactivities and locations. Focused gamma reactivity was also found in the precentral and postcentral gyri. CONCLUSIONS: The reactivities of mu and beta rhythms are different but their locations overlap. Mu ERD is a diffuse phenomenon that reflects the activation of all the sensorimotor areas during a simple movement. Beta band is likely to be composed of different rhythms with different functional significance. The primary motor area seems to contain two distinct areas with different reactivity to the movement preparation and execution.  相似文献   

5.
OBJECTIVE: Abnormal low- and high-frequency oscillatory activities have been linked to abnormal movement control in Parkinson's disease. We aimed to study how low- and high-frequency oscillatory activities are modulated by movement in the contralateral and ipsilateral subcorticocortical loops. METHODS: We studied mu, beta and gamma rhythm event-related desynchronisation (ERD) and synchronisation (ERS) recorded from electrode contacts in the subthalamic nucleus (STN) areas and over the primary sensorimotor (PSM) cortex. RESULTS: Mu and beta ERD/ERS patterns were very similar when comparing PSM cortex and STN areas and very different when comparing contralateral and ipsilateral structures. Beta rhythm ERS was more predominant over contralateral structures than over ipsilateral ones. Gamma rhythm ERS was only recorded from the contralateral STN area (particularly following administration of L-Dopa). For all patients, the best bipolar derivations - as defined by the earliest mu and beta ERD and the strongest beta and gamma ERS - always included the STN electrode contacts that produced the best clinical results. CONCLUSIONS: Movement-related activity is involved in the movement preparation in the contralateral subthalamo-cortical loop and in the movement execution in the bilateral subthalamo-cortical loops. SIGNIFICANCE: Contralateral beta rhythm ERD seemed to be related to bradykinesia of the limb performing the movement.  相似文献   

6.
OBJECTIVE: The goal of this study is to investigate the reactivity of central rhythms in the alpha band during self-paced voluntary finger and foot movement and to give an answer to the question, whether different types of mu rhythms exist. METHODS: The effect of self-paced, voluntary finger and foot movement was studied in a group of 12 right-handed healthy volunteers. The EEG was recorded from a grid of 34 electrodes placed over sensorimotor areas with inter-electrode distances of approximately 2.5 cm. The event-related desynchronization (ERD) was quantified in the 8-10 and 10-12 Hz bands. RESULTS: Both frequency components are blocked prior to and during movement and therefore, they have to be considered as mu rhythms. The lower frequency component results in a widespread movement-type non-specific ERD pattern, whereas the upper frequency component shows a more focused and movement-type specific pattern, clearly different with finger and foot movement. CONCLUSIONS: The distinct reactivity patterns provide evidence for the existence of two types of mu rhythms, a somatotopically non-specific lower frequency mu rhythm and a somatotopically specific mu rhythm characteristically found in the upper alpha frequency band.  相似文献   

7.
Summary: Purpose: The spatiotemporal distribution of EEG mu rhythm desynchronization was analyzed in patients with partial epilepsy to determine whether frequent focal motor seizures could induce a change of cortical activation during the planning of a voluntary movement.
Methods: The event-related desynchronization (ERD) of the mu rhythm was quantified during a self-paced voluntary movement of the thumb. The results were compared betyeen two groups of patients with epilepsy: in one group (n = 12), the patients had frontal lobe epilepsy with frequent focal motor seizures (FMS); in the second group (n = 12), they had temporal lobe epilepsy (TLE) with complex partial seizures but no ictal movement disorder. The results were also compared with those of control subjects of same age (n = 10).
Results: In the control group, desynchronization of murhythm began over the contralateral central region 2,000 ms before the movement onset. In the FMS group, the desynchronization of mu rhythm was delayed, appearing only 500 ms before the movement onset, and the amplitude of ERD was increased over the frontocentral region. In the TLE group, the spatiotemporal pattern of ERD was the same as in normal subjects, but the amplitude of ERD was increased.
Conclusions: These results indicate that there is a change of reactivity of mu rhythm in patients with partial epilepsy. The change in spatiotemporal pattern of ERD in patients with frequent focal motor seizures suggests that there is an abnormal cortical activation during the planning of a voluntary movement.  相似文献   

8.
Fifty subjects with cerebrovascular disorders and motor deficits, all able to perform a voluntary hand movement and aged between 33 and 78 years, were involved in this study. CT scan and computerized analysis of sensorimotor rhythms (mu rhythm and central beta rhythm) were performed for all patients. From the mu rhythm, the hemispheric asymmetry in amplitude and ERD during movement (ERD = event-related desynchronization) was measured and referred to a group of 38 neurologically normal subjects. Comparisons of CT scan data and EEG findings indicate a high correlation between morphological and functional findings. This correlation can be used to predict the localization of a lesion in the territory of the middle cerebral artery (MCA) based only on the amplitude and reactivity pattern of the mu rhythm. Thus, for example, an ipsilaterally enhanced mu rhythm in connection with a symmetric ERD indicates with a probability of 95% a deep, and with only 5%, a superficial lesion. Hemispheric mu amplitude symmetry and asymmetric ERD indicate a superficial cortical ischemia with a probability of 81%. An ipsilaterally attenuated mu rhythm accompanied by an asymmetric or abolished ERD indicates with 62% and 55%, respectively, a large extension of the infarct over the whole territory of the MCA.  相似文献   

9.
A number of electroencephalographic (EEG) studies report on motor event-related desynchronization and synchronization (ERD/ERS) in the beta band, i.e. a decrease and increase of spectral amplitudes of central beta rhythms in the range from 13 to 35 Hz. Following an ERD that occurs shortly before and during the movement, bursts of beta oscillations (beta ERS) appear within a 1-s interval after movement offset. Such a post-movement beta ERS has been reported after voluntary hand movements, passive movements, movement imagination, and also after movements induced by functional electrical stimulation. The present study compares ERD/ERS patterns in paraplegic patients (suffering from a complete spinal cord injury) and healthy subjects during attempted (active) and passive foot movements. The aim of this work is to address the question, whether patients do have the same focal beta ERD/ERS pattern during attempted foot movement as healthy subjects do. The results showed midcentral-focused beta ERD/ERS patterns during passive, active, and imagined foot movements in healthy subjects. This is in contrast to a diffuse and broad distributed ERD/ERS pattern during attempted foot movements in patients. Only one patient showed a similar ERD/ERS pattern. Furthermore, no significant ERD/ERS patterns during passive foot movement in the group of the paraplegics could be found.  相似文献   

10.
BackgroundRestless legs syndrome (RLS) is characterized by closely interrelated motor and sensory disorders. Two types of involuntary movement can be observed: periodic leg movements during wakefulness (PLMW) and periodic leg movements during sleep (PLMS). Basal ganglia dysfunction in primary RLS has often been suggested. However, clinical observations raise the hypothesis of sensorimotor cortical involvement in RLS symptoms. Here, we explored cortical function via movement-related beta and mu rhythm reactivity.MethodsTwelve patients with idiopathic, primary RLS were investigated and compared with 10 healthy subjects. In the patient group, we analyzed event-related beta and mu (de)synchronization (ERD/S) for PLMS and PLMW during a suggested immobilization test (SIT). An ERD/S analysis was also performed in patients and controls during self-paced right ankle dorsal flexion at 8:30 PM (i.e., the symptomatic period for patients) and 8:30 AM (the asymptomatic period).ResultsBefore PLMS, there was no ERD. Intense ERS was recorded after PLMS. As with voluntary movement, cortical ERD was always observed before PLMW. After PLMW, ERS had a diffuse scalp distribution. Furthermore, the ERS and ERD amplitudes and durations for voluntary movement were greater during the symptomatic period than during the asymptomatic period and in comparison with healthy controls, who presented an evening decrease in these parameters. Patients and controls had similar ERD and ERS patterns in the morning.ConclusionOn the basis of a rhythm reactivity study, we conclude that the symptoms of RLS are related to cortical sensorimotor dysfunction.  相似文献   

11.
We tested whether dispersible L-dopa has acute effects on event-related desynchronization (ERD) of the mu rhythm in patients with idiopathic Parkinson's disease (IPD). ERD to voluntary movement is delayed in akinetic IPD patients and improves after chronic L-dopa treatment. We evaluated ERD to self-paced finger movement in 14 IPD patients (before and 30–40 min after oral administration of dispersible L-dopa) and in 10 normal subjects. Sensorimotor ERD onset contralateral to movement was significantly delayed in IPD patients compared to normal subjects. This abnormality was no longer significant after L-dopa treatment. We conclude that a single dose of dispersible L-dopa can improve not only motor performance in IPD patients but also the timing of cortical activation of sensorimotor areas during motor programming. Received: 22 November 2001 / Accepted in revised form: 11 June 2002 Correspondence to G. Magnani  相似文献   

12.
In the present high-resolution electroencephalographic (EEG) study, event-related desynchronization/synchronization (ERD/ERS) of alpha rhythms was computed during an S1-S2 paradigm, in which a visual cue (S1) predicted a SHORT (600 ms) or LONG (1400 ms) foreperiod, preceding a visual go stimulus (S2) triggering right or left finger movement. Could orienting attention to a selective point in time influence the alpha rhythms as a function of the SHORT vs. LONG foreperiod? Stronger selective attentional modulations were predicted for the SHORT than LONG condition. EEG data from 54 channels were "depurated" from phase-locked visual evoked potentials and spatially enhanced by surface Laplacian estimation (i.e., final data analysis was conducted on 16 subjects having a sufficient number of artifact-free EEG single trials). Low-band alpha rhythms (about 6-10 Hz) were supposed to be related to anticipatory attentional processes, whereas high-band alpha rhythms (10-12 Hz) would indicate task-specific visuo-motor processes. Compared to the LONG condition (foreperiod), the SHORT condition induced a quicker and stronger ERS at low-band alpha rhythm (about 6-8 Hz) over midline and bilateral prefrontal, sensorimotor, and posterior parietal areas. In contrast, the concomitant high-band alpha (about 10-12 Hz) ERD/ERS showed no significant difference between the two conditions. In conclusion, temporal attention for a sub-second delay (800 ms) did modulate low-band alpha rhythm over large regions of both cortical hemispheres.  相似文献   

13.
G Pfurtscheller  C Neuper 《Neuroreport》1992,3(12):1057-1060
Nineteen-channel EEG was recorded with closely spaced electrodes overlaying the left sensorimotor cortex during self-paced, voluntary right finger movements. Three right-handed people served as subjects. The EEG was analysed in the 10 Hz band (10-12 Hz) and in four 40 Hz bands (34-36, 36-38, 38-40, 40-42) by calculation of ERD time courses and ERD maps, whereby a ERD is characterized by a movement-related band power decrease. In all three subjects a close to C3 localized 10 Hz ERD was found, starting about 2 s prior to movement onset and continuing during movement. Along with this 10 Hz ERD a localized and short-lasting (about 0.5 s) burst of 40 Hz oscillations was embedded around movement onset. This can be interpreted as indicating that planning of movement is accompanied by a desynchronization of central mu rhythm and a generation of 40 Hz oscillations.  相似文献   

14.
ObjectivesThe time course of mu and beta sensorimotor rhythms, with event-related desynchronisation (ERD) to preparation and execution of voluntary movement followed by synchronisation (ERS) after movement, is considered to indicate cortical activation and idling, respectively. We investigated ERD and ERS in amyotrophic lateral sclerosis (ALS) patients and the relationship with anatomical and neurophysiological measures of corticospinal tract damage.MethodsPre-movement mu and beta ERD, and post-movement beta ERS were analysed in 16 ALS patients and 15 healthy controls performing self-paced brisk right thumb extensions. Apparent diffusion coefficient (ADC) of corticospinal tract was measured with magnetic resonance imaging (MRI). Motor-evoked potentials (MEPs) to the right abductor pollicis brevis were obtained using transcranial magnetic stimulation (TMS).ResultsMovement-related electromyographic activity was similar in the two groups. Post-movement ERS was significantly reduced in ALS group and negatively correlated with the amount of corticospinal damage as from MRI and TMS measures. ERD did not significantly differ between groups.ConclusionsAlterations of cortical activity in ALS patients were limited to the post-movement phase, as indicated by reduced ERS, and could be linked to reduced cortical inhibition rather than to generalised hyperexcitability.SignificanceThe correlation between ERS and corticospinal damage severity might be interpreted as a functional compensation or dysfunction of inhibitory systems paralleling corticospinal damage.  相似文献   

15.
People evaluate members of their own social group more favorably and empathize more strongly with their ingroup members. Using electroencephalography (EEG), we explored whether resonant responses of sensorimotor cortex to the pain of others are modulated by the ethnicity of these others. White participants watched video clips of ethnic ingroup and outgroup hands, being either penetrated by a needle syringe or touched by a cotton swab, while EEG was recorded. Time-frequency analysis was applied to Laplacian-transformed signals from the sensors overlying sensorimotor cortex in order to assess event-related desynchronization and synchronization (ERD/ERS) of sensorimotor mu (7–12 Hz) and beta (13–30 Hz) rhythms. When watching needle injections, beta ERD was significantly stronger for ingroup compared with outgroup hands. This ethnicity bias was restricted to painful actions, as beta ERD for ingroup and outgroup hands neither differed when observing no-pain videos, nor during presentation of the hands without any treatment. Such vicarious sensorimotor activation could play a role in social interaction by enhancing the understanding of the feelings and reactions of others and hence facilitating behavioral coordination among group members.  相似文献   

16.
OBJECTIVE: In order to better understand the spatio-temporal interaction of the activated cortical areas when the movement is visuo-guided and to assess the age effect on the spatio-temporal pattern of cortical activity, we have compared a proximo-distal movement with visual-motor control and hand-eye coordination (targeting movement) with a distal and a proximal movement. METHODS: Brain's electrical activity was studied using the analysis of event-related (de)synchronizations (ERD/S) of cortical mu and beta rhythms in 17 subjects, 8 young and 9 elderly subjects. RESULTS: In both populations, we found an earlier and broader mu and beta ERD during the preparation of the targeting movement compared to distal and proximal movements, principally involving the contralateral parietal region. During the execution, a spreading over the parietocentral region during proximal movement and over the parietal region during targeting movement was observed. After the execution of proximal and targeting movements, a wider and higher beta ERS was observed only in the young subjects. In the elderly subjects, our results showed a significant decrease of beta ERS during the targeting task. CONCLUSIONS: These results suggest there was a larger recruitment of cortical areas, involving notably the parietal cortex when the movement is visuo-guided. Moreover, cerebral aging-related changes in the spatio-temporal beta ERS pattern suggests an impaired sensory integration.  相似文献   

17.
Changes in sensorimotor rhythms (mu, beta and gamma) and movement-related cortical potentials (MRCPs) are both generated principally by the contralateral sensorimotor areas during the execution of self-paced movement. They appear to reflect movement control mechanisms, which remain partially unclear. With the aim of better understanding their sources and significance, we recorded MRCPs and sensorimotor rhythms during and after self-paced movement using intracerebral electrodes in eight epileptic subjects investigated by stereoelectroencephalography. The results showed that: (i) there is a strong spatial relationship between the late components of movement--the so-called motor potential (MP) and post-movement complex (PMc)--and gamma event-related synchronization (ERS) within the 40-60 Hz band, as the MP/PMc always occurred in contacts displaying gamma ERS (the primary sensorimotor areas), whereas mu and beta reactivities were more diffuse; and (ii) MPs and PMc are both generated by the primary motor and somatosensory areas, but with distinct sources. Hence, this could mean that kinesthesic sensory afferences project to neurons other than those firing during the pyramidal tract volley. The PMc and low gamma ERS represent two electrophysiological facets of kinesthesic feedback from the joints and muscles involved in the movement to the sensorimotor cortex. It could be suggested that gamma oscillations within the 40-60 Hz band could serve to synchronize the activities of the various neuronal populations involved in control of the ongoing movement.  相似文献   

18.
OBJECTIVE: We studied event-related synchronization (ERS) of beta rhythms related to voluntary movement vs. stimulation of upper and lower limbs. The aim of this study was to investigate whether the frequency of the beta response is related to specific regions within the sensorimotor strip. METHODS: Self-paced movement and electrical stimulation of the dominant hand and foot/leg was investigated in 10 right-handed volunteers. The electroencephalogram was recorded from closely spaced electrodes over central areas and processed time-locked to movement-offset or stimulation. In order to identify the dominant frequency of the induced beta oscillations, time-frequency maps were calculated using the continuous wavelet transformation. For the specific beta frequency bands, the band power time courses were analyzed by quantifying the event-related (de-)synchronization (ERD/ERS). RESULTS: Both limb movement and somatosensory stimulation induced bursts of beta oscillations appearing within 1 s after movement/stimulation with a clear focus close to the corresponding sensorimotor representation area. The peak frequency was significantly lower over the hand area (below approximately 20 Hz) than at mid-central sites overlying the foot representation area (above approximately 20 Hz). But no difference was found between movement and stimulation of the respective limb. CONCLUSIONS: Analyzing the frequency of induced beta activity revealed concomitant oscillations at slightly different frequencies over neighboring cortical areas. These oscillations might be indicative for a resonance-like behavior of connected sub-networks in sensorimotor areas.  相似文献   

19.
A method of accurate storage and on-line preprocessing of an EEG signal, preceding and following a trigger signal, elicited by button pressing, is described. The method was used to study the changes occurring in the power of the rhythmic activity within the alpha band in central areas, during voluntary, self-paced movement in 10 normal humans. A short-lasting decrease or phasic event-related desynchronization (ERD) of alpha power, representing mu activity, was observed in all 10 subjects. During the 2 sec period preceding movement the phasic ERD was mostly bilateral, but larger prior to right than to left thumb movement. At onset and during the first second of execution of movement, the phasic ERD was mostly bilateral but predominant in ipsilateral areas. Preceding or during movement, maximum ERD was observed in most cases in central-vertex regions.  相似文献   

20.
In patients with Gilles de la Tourette syndrome (GTS) alterations of motor cortex (M1) excitability at rest have been evidenced. In contrast, there has so far been little research into changes of motor cortical reactivity during the time course of voluntary movements in GTS patients. The present study investigates neuromagnetic event‐related desynchronization (ERD) and event‐related synchronization (ERS) of bilateral M1 in 11 GTS patients and 11 healthy control subjects. ERD represents motor cortical activation, whereas ERS most likely indicates its inhibition. Subjects performed a self‐paced finger movement task while magnetoencephalography was used to record neuromagnetic activity. In GTS patients, ERD at beta frequency was significantly increased in the contralateral hemisphere before and during movements, whereas ERS following movement termination was increased in M1 ipsilateral. Ipsilateral ERS was inversely correlated with tic severity as determined by the Yale Global Tic Severity Rating Scale. The data of the present study support the hypothesis that during voluntary movements, motor cortical reactivity is pathologically altered in GTS patients. The observed pattern of increased activation (ERD) prior to and during movement execution followed by increased inhibition (ERS) after movement termination at beta frequency suggests abnormally increased motor cortical activation, possibly driving stronger inhibition. The stronger this inhibition is, the better symptoms appear to be controlled. © 2010 Movement Disorder Society  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号