共查询到20条相似文献,搜索用时 15 毫秒
1.
E. J. Mylecharane 《Journal of neurology》1991,238(Z1):S45-S52
5-Hydroxytryptamine (5-HT; serotonin) has been implicated in the pathophysiology of migraine, and several drugs with potent 5-HT2 receptor blocking activity (methysergide, pizotifen, cyproheptadine and mianserin) have been recognized as being clinically effective in migraine prophylaxis, although the selective 5-HT2 receptor antagonist ketanserin (the principal agent used to identify 5-HT2 receptor-mediated actions) seems to be ineffective in migraine. Pizotifen is the most widely used 5-HT2 receptor antagonist in migraine prophylaxis, because of its superior efficacy compared with cyproheptadine, and because the incidence and severity of adverse effects with pizotifen is lower compared with methysergide and mianserin. These agents have additional antagonistic effects at histamine H1, muscarinic cholinergic, 1-adrenergic, 2-adrenergic and dopamine receptors, but drugs which are selective for these non-5-HT receptors appear to be of no benefit in migraine. Actions mediated by 5-HT2 receptors which could be of relevance to migraine comprise cranial vasoconstriction, increased cranial capillary permeability and platelet aggregation, and some central nervous system effects and neuroendocrine functions. Although pizotifen, cyproheptadine and mianserin are considered to be relatively specific for 5-HT2 receptors, these agents and methysergide all share a high affinity for 5-HT1C binding sites; ketanserin, however, has little affinity for these sites, thus activation of 5-HT1C receptors may be an important step in the pathogenesis of migraine. It is not yet known which 5-HT1C receptor-mediated actions of 5-HT are relevant to migraine, but some behavioural actions and cranial vasodilatation via release of endothelium-derived relaxing factor may be involved. If 5-HT1C rather than 5-HT2 receptor-mediated actions are important, then other 5-HT2 receptor antagonists with a high affinity at 5-HT1C binding sites, such as LY 53857, metergoline, mesulergine, ritanserin and SCH 23390, may also prove to be effective in migraine. The efficacy of methysergide may also depend on other 5-HT1-like receptor-mediated actions such as cranial vasoconstriction, and inhibition of cranial vascular neurogenic inflammation. The efficacy of these agents implies that 5-HT is causally involved in at least some of the underlying pathophysiology of migraine. 相似文献
2.
Laurent Bardin Didier Jourdan Abdelkrim Alloui Jeannine Lavarenne Alain Eschalier 《Brain research》1997,765(2):390
We tested the antinociceptive effect of intrathecal (i.t.) administration of 5-HT and the 5-HT3 receptor agonist, 1-(m-chlorophenyl)-biguanide (mCPBG), in rats submitted to a mechanical noxious stimulus and the influence of the 5-HT3 receptor selective antagonists, tropisetron and granisetron. Both 5-HT and mCPBG (0.01, 0.1, 1, 10, 20 μg/rat) produced a significant dose-dependent antinociception. The lowest active doses were 0.1 and 1 μg for 5-HT and mCPBG, respectively. The effect, observed with 20 μg, was significantly lower with mCPBG (+33±6%) than with 5-HT (+63±7%). For 5-HT-induced antinociception, the minimal inhibitory doses were 0.001 μg/rat for tropisetron and 10 μg/rat for granisetron. In contrast, the same doses of the two antagonists (from 0.1 μg/rat) similarly inhibited the effect of mCPBG. This study provides evidence that contrary to tropisetron, doses of granisetron able to inhibit the effect of a 5-HT3 receptor agonist failed to reduce that of 5-HT. This demonstrates a heterogeneity between 5-HT3 receptor antagonists and questions the true involvement of these receptors in spinal 5-HT-induced antinociception. 相似文献
3.
4.
5.
《Brain research》1997,757(1):205
The role of 5-hydroxytryptamine (5-HT) receptor subtypes in acetylcholine (ACh) release induced by dopamine or neurokinin receptor stimulation was studied in rat striatal slices. The dopamine D1 receptor agonist SKF 38393 potentiated in a tetrodotoxin-sensitive manner the K+-evoked [3H]ACh release while SCH 23390, a dopamine D1 receptor antagonist, had no effect. [3H]ACh release was decreased by the dopamine D2 receptor agonist LY 171555 (quinpirole) and slightly potentiated by the dopamine D2 receptor antagonist haloperidol. The selective neurokinin NK1 receptor agonist [Sar9, met(O2)11]SP also potentiated K+-evoked release of [3H]ACh. GR 82334, a NK1 receptor antagonist, blocked not only the effect of [Sar9, met(O2)11]SP but also the release of ACh induced by the D1 receptor agonist SKF 38393. Among the 5-HT agents studied, only the 5-HT2A receptor antagonists ketanserin and ritanserin were able to reduce the ACh release induced by dopamine D1 receptor stimulation. Mesulergine, a more selective 5-HT2C antagonist, showed an intrinsic releasing effect but did not affect K+-evoked ACh release induced by SKF 38393. Methysergide and methiothepin, mixed 5-HT1/2 antagonists, as well as ondansetron, a 5-HT3 receptor antagonist, showed an intrinsic effect on ACh release, their effects being additive to that of SKF 38393. 5-HT2 receptor agonists were ineffective. However, the 5-HT2 agonist DOI was able to prevent the antagonism by ketanserin of the increased [3H]ACh efflux elicited by SKF 38393, suggesting a permissive role of 5-HT2A receptors. None of the above indicated 5-HT agents was able to reduce the ACh release induced by the selective NK1 agonist. The results suggest that 5-HT2 receptors, probably of the 5-HT2A subtype, modulate the release of ACh observed in slices from the rat striatum after stimulation of dopamine D1 receptors. It seems that this serotonergic control is exerted on the interposed collaterals of substance P-containing neurons which promote ACh efflux through activation of NK1 receptors located on cholinergic interneurons. 相似文献
6.
Renato Leonardo Freitas Célio Marcos dos Reis Ferreira Maria Angélica Castiblanco Urbina Andressa Daiane Carvalho Giuseppe Butera Ana Maria de Oliveira 《Experimental neurology》2009,217(1):16-24
Pharmacological studies have been focused on the involvement of different neural pathways in the organization of antinociception that follows tonic-clonic seizures, including 5-hydroxytryptamine (5-HT)-, norepinephrine-, acetylcholine- and endogenous opioid peptide-mediated mechanisms, giving rise to more in-depth comprehension of this interesting post-ictal antinociceptive phenomenon. The present work investigated the involvement of 5-HT1A/1B, 5-HT6, and 5-HT7 serotonergic receptors through peripheral pretreatment with methiothepin at doses of 0.5, 1.0, 2.0 and 3.0 mg/kg in the organization of the post-ictal antinociception elicited by pharmacologically (with pentylenetetrazole at 64 mg/kg)-induced tonic-clonic seizures. Methiothepin at 1.0 mg/kg blocked the post-ictal antinociception recorded after the end of seizures, whereas doses of 2.0 and 3.0 mg/kg potentiated the post-ictal antinociception. The nociceptive thresholds were kept higher than those of the control group. However, when the same 5-hydroxytryptamine receptors antagonist was microinjected (at 1.0, 3.0 and 5.0 μg/0.2 μL) in the dorsal raphe nucleus, a mesencephalic structure rich in serotonergic neurons and 5-HT receptors, the post-ictal hypo-analgesia was consistently antagonized. The present findings suggest a dual effect of methiothepin, characterized by a disinhibitory effect on the post-ictal antinociception when peripherally administered (possibly due to an antagonism of pre-synaptic 5-HT1A serotonergic autoreceptors in the pain endogenous inhibitory system) and an inhibitory effect (possibly due to a DRN post-synaptic 5-HT1B, 5-HT6, and 5-HT7 serotonergic receptors blockade) when centrally administered. The present data also suggest that serotonin-mediated mechanisms of the dorsal raphe nucleus exert a key-role in the modulation of the post-ictal antinociception. 相似文献
7.
Ibogaine is an kndole alkaloid that has bean suggested to have potential efficacy for internrpdng dependermy on stimulant drugs. The κ-opiold and serotonkr 5-HT3 systems may be involved in the action of Ibogaine, related to their modulation of dopaminergic transmission. The κ-opioid agonist U 62066 attenuated the in vitrostimulation-evoked efflux of tritium label from striatal tissue prelabeled with (3H)dopamine. In mice protreated with Ibogaine·HCl (40 mg/kg IP given 2 h prior or 2 × 40 mg/kg and animals killed 18 h later), the Inhibitory effect of U 62066 on stimulation-evoked release of tritium was eliminated. The 5-HT3 agonist phernylbiguanide had a biphasic effect on stimulation-evoked release of tritium; at 10−6 M phenylbiguanide, stimulation-evoked release was attenuated. At 10−5 M the basal outflow of tritium was increased. Ibogaine pretreatment had no effect on basal or stimulation-evokedrelease in the presence of 10−6 M phenylbiguanide, but increased the stimulation-evoked outflow of bftkan in the presence of 10−5 M phenylbiguanide. Cocaine (10−6 M), a dopanlne uptake blocker, increased the electrically-evoked release of dopamine; ibogaine pretreatment did not affect the enhanced electrically-induced release of (3H]dopamine by in vitro cocalne. The effects of ibogaine on the κ-opioid and 5-HT3 receptors, located presynaptically on stristal dopamine terminals, modulating dopamine release may partly underlie its putative antiaddictive properties. 相似文献
8.
Helium pressure of more than 2 MPa is a well known factor underlying pressure-dependent central neuroexcitatory disorders, referred to as the high-pressure neurological syndrome. This includes an increase in both serotonin (5-HT) and dopamine (DA) release. The relationship between the increase in 5-HT transmission produced by helium pressure and its effect on DA release has been clarified in a recent study, which have first demonstrated that the helium pressure-induced increase in DA release was dependent on some 5-HT receptor activation. In the present study, we examined in freely moving rats the role of 5-HT2A and 5-HT2C receptors in the increase in DA release induced by 8 MPa helium pressure. We used the 5-HT2A receptor antagonist ketanserin and the 5-HT2C receptor agonist m-CPP which have been demonstrated to reduce DA function. Because neither ketanserin is an ideal 5-HT2A receptor antagonist nor m-CPP an ideal 5-HT2C receptor agonist, additional experiments were made at normal pressure to check up on the selectivity of ketanserin and m-CPP for 5-HT2A and 5-HT2C receptors, respectively. Administration of m-CPP reduced both DA basal level and the helium pressure-induced increase in DA release, whereas administration of ketanserin only showed a little effect on the increase in DA release produced by high helium pressure. These results suggest that the 5-HT2C receptor, but not the 5-HT2A receptor, would play a crucial role in the helium pressure-induced increase in DA release. This further suggests that helium pressure may simultaneously induce an increase in 5-HT transmission at the level of 5-HT2A receptors and a decrease in 5-HT transmission at the level of 5-HT2C receptors. 相似文献
9.
The role of 5-HT4 receptors on cutaneous and visceral pain remains largely unexplored. The objective of this study was to establish the activity profile of SDZ 205-557, a 5-HT4 antagonist, on cutaneous (hotplate) and visceral (writhing) models of pain, after peripheral administration. Since SDZ 205-557 possesses some affinity for 5-HT3 receptors at high doses, nociceptive effects of a 1:1 combination of SDZ 205-557 and MDL 72222, a 5-HT3 antagonist, were also evaluated. Drugs were injected 30 min before tests (0, 0.001, 0.01, 0.1 or 1 mg/kg IP). A hypoalgesic effect of SDZ 205-557 on cutaneous pain was found at 0.1 and 1 mg/kg doses, as revealed through an enhanced nociceptive threshold in rats placed on the hotplate. This effect was likely mediated through inactivation of peripheral 5-HT4 receptors. After the 1:1 combination, the hypoalgesic effect disappeared, which indicates that simultaneous inactivation of 5-HT3 and 5-HT4 receptors antagonized peripherally 5-HT4-mediated hypoalgesia by an unknown mechanism. SDZ 205-557 also induced hypoalgesia in the writhing test over the entire dose range tested, and visceral hypoalgesia turned out to be analgesia after 1:1 combination. In summary, findings of the present study imply that: i) antagonism of 5-HT4 receptors mediates antinociception in enteric viscera and, to a lesser extent, in cutaneous terminals, and ii) dual inactivation of both 5-HT4 and 5-HT3 receptors induces visceral analgesia, a fact which might have clinical importance. 相似文献
10.
(±)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI, 1.25, 2.5 and 5 mg/kg), a serotonin (5-HT)2A/2C agonist, produced an inverted U-shaped increase in DA release in rat medial prefrontal cortex (mPFC) with a significant effect only at 2.5 mg/kg. This effect was completely abolished by M100907 (0.1 mg/kg), a 5-HT2A antagonist, and WAY100635 (0.2 mg/kg), a 5-HT1A antagonist, neither of which when given alone affected dopamine release. DOI (2.5 mg/kg), but not the 5-HT2C agonist Ro 60-0175 (3 mg/kg), attenuated clozapine (20 mg/kg)-induced mPFC dopamine release. These results suggest that 5-HT2A receptor stimulation increases basal cortical dopamine release via 5-HT1A receptor stimulation, and inhibits clozapine-induced cortical dopamine release by diminishing 5-HT2A receptor blockade. 相似文献
11.
Yasukazu Kuroda Yoshifumi Watanabe David S. Albeck Nicholas B. Hastings Bruce S. McEwen 《Brain research》1994,648(1)
We evaluated the effects of adrenalectomy (ADX) and replacement with glucocorticoid receptor agonists on serotonin (5-HT) 5-HT1A and 5-HT2 receptor binding in rat brain. 5-HT1A receptor binding was increased in the CA2–CA4 and the dentate gyrus of the hippocampus 1 week after ADX. This effect was prevented by the systemic administration of aldosterone (10 μg/μl/h) but not by RU28362 (10 μg/μl/h). No significant effect was observed on 5-HT2 receptor binding in rat cortex. The expression of 5-HT transporter mRNA was unchanged in the raphe nucleus as measured by in situ hybridization. 相似文献
12.
We have used intracellular recording techniques to examine the effects of 5-hydroxytryptamine (5-HT, serotonin) on 5-HT-containing neurones of the guinea pig dorsal raphe nucleus in vitro. Bath-applied 5-HT (30–300 μM) had two opposing effects on the membrane excitability of these cells, reflecting the activation of distinct 5-HT receptor subtypes. As demonstrated previously in the rat, 5-HT evoked a hyperpolarization and inhibition of 5-HT neurones, which appeared to involve the activation of an inwardly rectifying K+ conductance. This hyperpolarizing response was blocked by the 5-HT1A receptor-selective antagonist WAY-100635 (30–100 nM). In the presence of WAY-100635, 5-HT induced a previously unreported depolarizing, excitatory response of these cells, which was often associated with an increase in the apparent input resistance of the neurone, likely due to the suppression of a K+ conductance. Like the hyperpolarizing response to 5-HT, this depolarization could be recorded in the presence of the Na+ channel blocker tetrodotoxin. In addition, the response was not significantly attenuated by the α1-adrenoceptor antagonist prazosin (500 nM), indicating that it is not due to the release of noradrenaline, or to the direct activation of α1-adrenoceptors by 5-HT. The 5-HT3 receptor antagonist granisetron (1 μM) and the 5-HT4 receptor antagonist SB 204070 (100 nM) failed to reduce the depolarizing response to 5-HT; however, ketanserin (100 nM), mesulergine (100 nM) and lysergic acid diethylamide (1 μM) significantly reduced or abolished the depolarization, indicating that this effect of 5-HT is mediated by 5-HT2 receptors. 相似文献
13.
GR-113808, a potent and selective 5-HT4 receptor antagonist, was infused through a microdialysis probe into the striatum and nucleus accumbens of awake rats, and basal and morphine-stimulated extracellular concentrations of dopamine (DA) were measured in these regions. At 1 and 10 μM GR-113808 did not effect the extracellular concentrations of DA in either region and 100 μM significantly reduced dialysate DA only in the striatum. A subcutaneous dose of 5 mg/kg morphine significantly raised extracellular concentrations of DA in the striatum and nucleus accumbens from 60 to 120 min after injection and the effect was not modified by 10 μM GR-113808 infused through the probe 20 min before and for 60 min after morphine. Bilateral injections of GR-113808 (1, 2.5 and 10 μg/0.5 μl) in the substantia nigra pars compacta did not affect dialysate DA in the striatum, except for a significant increase 120 min after the injection of 10 μg but the highest dose of GR-113808 prevented the increase of striatal DA caused by 5 mg/kg morphine s.c. The results suggest that 5-HT4 receptors in the substantia nigra modulate the activity of the dopaminergic nigrostriatal system only when the neurons are activated. 相似文献
14.
Ibogaine is an kndole alkaloid that has bean suggested to have potential efficacy for internrpdng dependermy on stimulant drugs. The κ-opiold and serotonkr 5-HT3 systems may be involved in the action of Ibogaine, related to their modulation of dopaminergic transmission. The κ-opioid agonist U 62066 attenuated the in vitrostimulation-evoked efflux of tritium label from striatal tissue prelabeled with (3H)dopamine. In mice protreated with Ibogaine·HCl (40 mg/kg IP given 2 h prior or 2 × 40 mg/kg and animals killed 18 h later), the Inhibitory effect of U 62066 on stimulation-evoked release of tritium was eliminated. The 5-HT3 agonist phernylbiguanide had a biphasic effect on stimulation-evoked release of tritium; at 10−6 M phenylbiguanide, stimulation-evoked release was attenuated. At 10−5 M the basal outflow of tritium was increased. Ibogaine pretreatment had no effect on basal or stimulation-evokedrelease in the presence of 10−6 M phenylbiguanide, but increased the stimulation-evoked outflow of bftkan in the presence of 10−5 M phenylbiguanide. Cocaine (10−6 M), a dopanlne uptake blocker, increased the electrically-evoked release of dopamine; ibogaine pretreatment did not affect the enhanced electrically-induced release of (3H]dopamine by in vitro cocalne. The effects of ibogaine on the κ-opioid and 5-HT3 receptors, located presynaptically on stristal dopamine terminals, modulating dopamine release may partly underlie its putative antiaddictive properties. 相似文献
15.
The present study demonstrates the presence and distribution of [3H](S)-zacopride labelled 5-HT3 (5-hydroxytryptamine3) receptors in pig forebrain, The pharmacological characterisation of 5-HT3 receptor recognition sites in homogenates of pig cerebral cortex provides further evidence for inter-species variation in the pharmacology of the 5-HT3 receptor. 相似文献
16.
Katsumasa T. Muneoka Morikuni Takigawa 《International journal of developmental neuroscience》2003,21(3):133-143
We examined the expression of 5-hydroxytryptamine(7) (5-HT(7)) receptor protein in developing and adult rats with immunohistochemical technique. In adult male rats, 5-HT(7) receptor immunoreactivity was detected in the septum, striatum, indusium griseum, tenia tecta, thalamus, hippocampus and hypothalamus in the forebrain as well as the pons and cerebellum. In brains of 1, 7, 15 and 21 days old male rats but not of adult ones, 5-HT(7) receptor immunoreactivity-positive dot-like structures were detected. The dot-like structures were visualized in hypothalamus, hippocampus, frontal cortex, brainstem and cerebellum at 1 day old male rats. In 7 days old male rats, the dot-like structures were found in the hypothalamus, medial preoptic area (MPA), bed nucleus of the stria terminalis (BST), amygdaloid nucleus and brainstem reticular formation. In 15 and 21 days old male and female rats, 5-HT(7) receptor immunoreactive dots were most clearly detected in MPA, hypothalamus, raphe pallidus, raphe magnus and brainstem reticular formation. The 5-HT(7) receptor immunoreactivity-positive dot-like structures were shown in the cytoplasm and they were less than 1 microm in diameter in 1 and 7 days old rats and became larger to 1-3 microm in 15 and 21 days old rats. From the distribution and morphologic features, the 5-HT(7) receptor immunoreactivity-positive dot-like structure found in developing rat brains is considered to be identical to a cytoplasmic inclusion named 'stigmoid body'. 相似文献
17.
Motoneuron membrane potentials were recorded from the ventral roots of isolated, hemisected frog spinal cords using sucrose gap techniques. The effects of the selective 5-HT3 agonist 2-methyl-serotonin (2-Me-5HT) on the changes in motoneuron membrane potential produced by dorsal root stimulation and by superfusion of excitatory amino acid agonists were evaluated. Application of 2-Me-5HT (100 μM) did not alter motoneuron membrane potential, but did substantially reduce ( ∼ 20%) the polysynaptic ventral root potentials evoked by dorsal root stimulation. 2-Me-5HT did not change motoneuron depolarizations generated by addition to the Ringer's solution of the excitatory amino acid agonists AMPA (10–30 μM), kainate (30 μM), ort-ACPD (100 μM), but NMDA-induced motoneuron depolarizations (100 μM) were significantly and reversibly reduced ( ≈ 20%) by exposure to 2-Me-5HT (100 μM). 2-Me-5HT-evoked decreases of NMDA depolarizations were blocked by the 5-HT3 antagonists ICS 205 930 (50–100 μM) andd-tubocurarine (3–10 μM), but not by MDL 72222 (20–100 μM), the 5-HT2 receptor antagonist ketanserin (10 μM), or the 5-HT1A/5-HT2A antagonist spiperone (10 μM). Two lines of evidence support the hypothesis that the effects of 2-Me-5HT are generated by an indirect mechanism involving interneurons: (1) TTX (0.781 μM) eliminated the effect of 2-Me-5HT on NMDA-induced motoneuron depolarizations, and (2) 2-Me-5HT reduced spontaneous ventral root potentials that result from interneuronal discharges. We attempted to establish the identity of a putative transmitter released by interneurons responsible for the effects on NMDA-depolarizations produced by 2-Me-5HT, but the AMPA receptor antagonist, CNQX (10 μM), the GABAA receptor antagonist, bicuculline (50 μM), the GABAB receptor antagonist, saclofen (100 μM), the opioid antagonist, naloxone (100 μM), and the adenosine antagonists, CPT (20–100 μM) and CSC (10–100 μM) did not alter 2-Me-5HT-induced reductions of NMDA-depolarizations. In sum, the site of interaction between 2-Me-5HT and NMDA appears to be at interneuronal locus, but the mechanism remains unclear. 相似文献
18.
The muscarinic acetylcholine receptor antagonist scopolamine significantly increased the number of errors (attempts to pass through two incorrect panels of the three panel-gates at four choice points) in the working memory task with a three-panel runway setup, when injected bilaterally at 3.2 μg/side into the dorsal hippocampus. Concurrent infusion of the selective and potent 5-hydroxytryptamine3 (5-HT3) receptor antagonist Y-25130 (0.32 and 1.0 μg/side) significantly attenuated the increase in working memory errors induced by intrahippocampal 3.2 μg/side scopolamine. Intrahippocampal Y-25130 (1.0 μg/side) by itself did not affect working memory errors. On the other hand, intrahippocampal administration of the competitive NMDA receptor antagonist (±)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) at 32 ng/side caused a significant increase in the number of working memory errors. However, Y-25130 at 1.0 μg/side did not affect the increase in working memory errors when infused intrahippocampally together with 32 ng/side CPP. These results suggest that antagonism of hippocampal 5-HT3 receptors is ineffective against working memory failure resulting from blockade of NMDA receptor-mediated neurotransmission, but that it can compensate deficiency of septohippocampal cholinergic activity involved in working memory function of rats. 相似文献
19.
The effect of dopamine receptor blockade on the development of sensitization to the locomotor activating effects of amphetamine and morphine 总被引:5,自引:0,他引:5
The effect of dopamine (DA) receptor blockade on the development of sensitization to the locomotor activating effects of systemic amphetamine and intra-ventral tegmental area (intra-VTA) morphine was investigated. Rats were pretreated with the D-1 DA receptor antagonist, SCH-23390 (0.04 or 0.2 mg/kg, i.p.) or one of two D-2 DA receptor antagonists, pimozide (0.5 mg/kg, i.p.) and Ro 22-2586 (0.2 mg/kg, i.p.), prior to each of 5 exposures to the sensitizing drug. SCH-23390 blocked the development of sensitization to amphetamine but not to intra-VTA morphine. Pimozide had the opposite effect and Ro 22-2586 had no effect on the development of sensitization to either amphetamine or intra-VTA morphine. All 3 antagonists, at the doses tested, completely blocked the acute locomotor activating effects of these two drugs. Pretreatment in separate animals with low autoreceptor doses of sulpiride (25 mg/kg, i.p. with amphetamine and 10 mg/kg, i.p. with intra-VTA morphine) slightly potentiated the acute locomotor effect and produced a slight enhancement of the sensitized response to amphetamine and intra-VTA morphine. Pretreatment with a higher dose of sulpiride (50 mg/kg, i.p.) blocked the acute locomotor effect of intra-VTA morphine but had no effect on the development of sensitization to this drug. These results suggest that the mechanisms underlying the development of sensitization to the locomotor activating effects of amphetamine and intra-VTA morphine are different even though these may ultimately result in similar changes in the activity of mesencephalic DA neurons. Implications of these findings for the differential involvement of D-1 and D-2 DA receptors and for neural hypotheses of behavioral sensitization are discussed. 相似文献
20.
The aim of the present study was to examine the role of 5-HT3 receptors in spontaneous and K+-evoked acetylcholine (ACh) release from rat entorhinal cortex and striatal slices. The 5-HT3 receptor antagonists ondansetron and granisetron (0.01–10 μM) produced a concentration-dependent increase in both spontaneous and K+-evoked [3H]ACh release in the two brain regions studied. The release of ACh was Ca2+-dependent and tetrodotoxin-sensitive. 5-HT3 receptor agonists, such as 2-methyl-5-HT and 1-phenylbiguanide, at concentrations up to 1 μM, did not show any intrinsic effect on [3H]ACh release in both rat brain regions. However, 2-methyl-5-HT, 1 μM, fully blocked the ondansetron-induced enhancement in both basal and K+-evoked ACh release, suggesting that 5-HT3 through 5-HT3 receptor activation, tonically inhibits ACh release. The possible implication of interposed inhibitory systems in ACh release after 5-HT3 receptor blockade was subsequently analyzed. While the effect of ondansetron was not modified by haloperidol or naloxone, the GABAA receptor antagonist bicuculline produced a marked potentiation of ACh release in the entorhinal cortex but not in the striatum. The results suggest that in this cortical area 5-HT activates 5-HT3 receptors located on GABAergic neurons which in turn inhibit cholinergic function. 相似文献