首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The molecular characteristics of midbrain dopamine (DA) neurons have been extensively studied in Parkinson's disease (PD). No such studies of the characteristics of midbrain DA neurons in Alzheimer's disease (AD) or Alzheimer's disease with parkinsonism (AD/Park) have been published. We examined the levels of tyrosine hydroxylase (TH) protein, and the expression of TH and dopamine transporter (DAT) mRNAs, in midbrain neurons of PD, AD, and AD/Park cases. In PD, the loss of TH protein in the ventral tier of the substantia nigra pars compacta (SNpc) of the PD group is accompanied by severe losses in the number of neurons that express TH mRNA and DAT mRNA (74% loss). Remaining neurons show a shift to higher concentrations of TH mRNA but a shift to lower concentrations of DAT mRNA per cell. Hence, there is evidence that compensation in the remaining neurons can elevate concentrations of TH mRNA and lower DAT mRNA. Alternatively, there may be a predilection for a loss of neurons with high levels of DAT mRNA and low TH mRNA levels within the SNpc of PD cases. There was no change in TH protein but an elevation of TH mRNA concentrations per neuron without any change in concentrations of DAT mRNA in the AD group. The AD/Park group did not exhibit changes in the level of TH protein, but showed a small loss (26%) of neurons in the SNpc and a greater loss in other regions of the midbrain (43–53%). Remaining DA neurons showed a marked shift to lower concentrations of DAT mRNA per neuron and a nonsignificant shift in cellular concentration of TH mRNA to higher levels. This is consistent with our previous work showing that with AD/Park there is a significant reduction in the number of DAT sites located on DA terminals in the striatum, but the midbrain neurons have not died. Our results indicate that the differential regulation of mRNAs encoding TH and DAT is similar in the parkinsonian disorders (PD and AD/Park) even though the degree of cell death is very different. This might suggest that compensatory events occur in these DA neurons in AD/Park that are similar to those in PD and that result in differential effects on mRNAs encoding TH and DAT proteins.  相似文献   

2.
3.
Numerous studies suggest that the dopamine transporter (DAT), responsible for dopamine reuptake, may act as a vulnerability factor in the pathogenesis of Parkinson's disease (PD) and the vesicular monoamine transporter (VMAT2), responsible for its vesicular storage, as a neuroprotective factor. However, the relevance of each on the differential vulnerability of midbrain DA cells remains unknown. Here we studied the relationship between the expression pattern (mRNA and protein) of both transporters and the differential vulnerability of midbrain DA cells in a model of PD (intracerebroventricular injection of 6-OHDA in rats) and in monkey and human midbrain. Our results revealed that the expression patterns for VMAT2 mRNA and protein and DAT mRNA are similar, with the highest levels in the rostromedial region of substantia nigra (SNrm), followed by the caudoventral region of SN (SNcv), the ventral tegmental area and pigmented parabrabraquial nucleus (VTA/PBP), and finally the linear and interfascicular nuclei (Li/IF). In contrast, the expression of DAT protein in rats, monkeys, and humans followed a caudoventrolateral-to-rostrodorsomedial decreasing gradient (SNcv > SNrm > VTA/PBP > Li/IF), matching the degeneration profile observed after intracerebroventricular injection of 6-OHDA and in PD. In addition, DAT blockade made all midbrain DA cells equally resistant to 6-OHDA. These data indicate that DAT protein levels, but not DAT mRNA levels, are closely related to the differential vulnerability of midbrain DA cells and that this relationship is unaffected by the relative levels of VMAT2. Furthermore, the difference between DAT mRNA and protein profiles suggests internuclear differences in its posttransductional regulation.  相似文献   

4.
Direct evidence for accumulation of 1,2,3,4-tetrahydroisoquinoline (TIQ), an endo- and exogenous substance suspected of producing Parkinsonism in humans, has not yet been shown. This study aimed to examine TIQ disposition in the whole rat brain and in the striatum and substantia nigra (SN). TIQ was administered to male Wistar and Dark Agouti rats (20, 40 and 100 mg/kg i.p.) alone or jointly with specific CYP2D inhibitor quinine (20, 40, 80 mg/kg i.p.), acutely or chronically. TIQ concentration in brain of both strains was several-fold higher than in plasma. The level of its metabolite, 4-OH-TIQ, was very low in the brain and plasma of TIQ-treated Wistar while in those receiving additionally quinine or in Dark Agouti rats, 4-OH-TIQ was absent or negligible. Inhibition of CYP2D catalyzing TIQ 4-hydroxylation in the liver had no influence on TIQ accumulation in the brain. Exogenous TIQ was actively transported from periphery into the brain by the organic cation transporter system, mainly OCT3, and quickly eliminated from it by P-glycoprotein. TIQ accumulation after chronic injection to Wistar rats was short-lasting and limited to SN. High concentration of TIQ in SN induces while in the liver inhibits the nigral and hepatic activity CYP2D, respectively.  相似文献   

5.
The effect of denervation with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) of the dopamine (DA) nigrostriatal pathway on neurotensin (NT) receptor and DA transporter (DAT) in basal ganglia of monkeys (Macaca fascicularis) was investigated. The MPTP lesion induced a marked depletion of DA (90% or more vs. control) in the caudate nucleus and putamen. The densities of NT agonist binding sites labeled with [125I]NT and the NT antagonist binding sites labeled with [3H]SR142948A decreased by half in the caudate-putamen of MPTP-monkeys. In addition, the densities of [125I]NT and [3H]SR142948A binding sites markedly decreased (-77 and -63%, respectively) in the substantia nigra of MPTP-monkeys. Levocabastine did not compete with high affinity for [125I]NT binding in the monkey cingulate cortex, suggesting that only one class of NT receptors was labelled in the monkey brain. An extensive decrease of [3H]GBR12935 DAT binding sites (-92% vs. Control) was observed in the striatum of MPTP-monkeys and an important loss of DAT mRNA(-86% vs. Control) was observed in substantia nigra. Treatments for 1 month with either the D1 agonist SKF-82958 (3 mg/kg/day) or the D2 agonist cabergoline (0.25 mg/kg/day) had no effect on the lesion-induced decrease in NT and DAT binding sites or DAT mRNA levels. The decrease of striatal NT binding sites was less than expected from the decrease of DA content in this nucleus, suggesting only partial localization of NT receptors on nigrostriatal DAergic projections. These data also suggest that under severe DA denervation, treatment with D1 or D2 DA agonists does not modulate NT receptors and DAT density.  相似文献   

6.
The hph-1 mice have defective tetrahydrobiopterin biosynthesis and share many neurochemical similarities with l-dopa-responsive dystonia (DRD) in humans. In both, there are deficiencies in GTP cyclohydrolase I and low brain levels of dopamine (DA). Striatal tyrosine hydroxylase (TH) levels are decreased while the number of DA neurones in substantia nigra (SN) appears normal. The hph-1 mouse is therefore a useful model in which to investigate the biochemical mechanisms underlying dystonia in DRD. In the present study, the density of striatal DA terminals and DA receptors and the expression of D-1, D-2, and D-3 receptors, preproenkephalin (PPE-A), preprotachykinin (PPT), and nitric oxide synthase (NOS) mRNAs in the striatum and nucleus accumbens and nigral TH mRNA expression were examined. Striatal DA terminal density as judged by specific [3H]mazindol binding was not altered while the levels of TH mRNA were elevated in the SN of hph-1 mice compared to control (C57BL) mice. Total and subregional analysis of the striatum and nucleus accumbens showed that D-2 receptor ([3H]spiperone) binding density was increased while D-1 receptor ([3H]SCH 23390) and D-3 receptor ([3H]7-OH-DPAT) binding density was not altered. In the striatum and nucleus accumbens, expression of PPT mRNA was elevated but PPE-A mRNA, D-1, D-2 receptor, and nNOS mRNA were not changed in hph-1 mice compared to controls. These findings suggest that an imbalance between the direct strionigral and indirect striopallidal output pathways may be relevant to the genesis of DRD. However, the pattern of changes observed is not that expected as a result of striatal dopamine deficiency and suggests that other effects of GTP cyclohydrolase I deficiency may be involved.  相似文献   

7.
We report the first neuropathological and neurochemical study of a patient with dopa-responsive dystonia. She had onset of foot dystonia at age 5 years and by age 8 years it was generalized with prominent right leg and arm involvement. On levodopa 750 mg daily she had complete symptomatic improvement that was sustained for 11 years until death. Pathological studies revealed normal numbers of hypopigmented substantia nigra neurons, normal tyrosine hydroxylase (TH) immunoreactivity and TH protein in the SN, no inclusion bodies or gliosis, and no evidence of a degenerative process in the striatum. Biochemical studies revealed reduced dopamine in the substantia nigra and striatum (8% in the putamen and 18% of control in the caudate) with a similar but not identical subregional distribution as in idiopathic Parkinson's disease. In the striatum, TH protein and TH activity was reduced, with the loss more pronounced in the putamen than the caudate. The GBR 12935 binding to DA transporter was normal in the caudate and at the lower end of the range of control values in the putamen. We conclude that disturbed dopamine synthetic capacity or a reduced arborization of striatal dopamine terminals may be the major disturbance in dopa-responsive dystonia.  相似文献   

8.
PD模型中GDNF与星形胶质细胞对黑质DA能神经元的影响   总被引:2,自引:0,他引:2  
目的探讨星形胶质细胞和胶质细胞源性神经营养因子(glial cell line-derived neurotrophic factor,GDNF)在帕金森病(Parkinson's disease,PD)中对多巴胺(dopamine neurons,DA)能神经元损伤的影响。方法成年大鼠右侧前脑侧束注射6羟多巴胺(6-OHDA)制备PD模型。PD模型右侧黑质内注射GDNF,于注射后第6周采用免疫组织化学方法观察星形胶质细胞神经纤维酸性蛋白(glial fibrillary acidic protein,GFAP)以及多巴胺能神经元酪氨酸羟化酶(tyrosine hydroxylasa,TH)的变化。结果模型组、PBS和GDNF组注射侧与非注射侧星形胶质细胞相比,均发现GFAP阳性细胞明显增多,DA能神经元数量明显减少(P<0.05)。GDNF组与模型组相比,发现GFAP阳性细胞明显增多,同时残存的DA能神经元数量有所增加(P<0.05)。结论黑质内注射GDNF可能通过激活的星形胶质细胞保护PD大鼠模型黑质DA能神经元。  相似文献   

9.
Summary A chronic treatment (10 mg/kg, twice daily during 9 days) with the dopamine uptake inhibitor GBR 12783 was performed in rats at a dose increasing their locomotor activity.Forty-eight hours after the last administration, animals were sacrificed and3H mazindol binding was performed on brain slices. Autoradiographic analysis revealed no change in this binding relatively to control animals in regions with high dopamine contents: striatum, nucleus accumbens, olfactory tubercle, substantia nigra and ventral tegmentum area. The treatment did not either modify the levels of dopamine (DA) and metabolites (HVA, DOPAC) both in the striatum and the nucleus accumbens. Thus, early after the end of the treatment, the chronic blockade of the dopamine uptake complex regulates neither the dopamine uptake complex nor the dopamine metabolism.  相似文献   

10.
The direct modulation of subthalamic nucleus (STN) neurons by dopamine (DA) neurons of the substantia nigra (SN) is controversial owing to the thick caliber and low density of DA axons in the STN. The abnormal activity of the STN in Parkinson's disease (PD), which is central to the appearance of symptoms, is therefore thought to result from the loss of DA in the striatum. We carried out three experiments in rats to explore the function of DA in the STN: (i) light and electron microscopic analysis of tyrosine hydroxylase (TH)-, dopamine beta-hydroxylase (DbetaH)- and DA-immunoreactive structures to determine whether DA axons form synapses; (ii) fast-scan cyclic voltammetry (FCV) to determine whether DA axons release DA; and (iii) patch clamp recording to determine whether DA, at a concentration similar to that detected by FCV, can modulate activity and synaptic transmission/integration. TH- and DA-immunoreactive axons mostly formed symmetric synapses. Because DbetaH-immunoreactive axons were rare and formed asymmetric synapses, they comprised the minority of TH-immunoreactive synapses. Voltammetry demonstrated that DA release was sufficient for the activation of receptors and abolished by blockade of voltage-dependent Na+ channels or removal of extracellular Ca2+. The lifetime and concentration of extracellular DA was increased by blockade of the DA transporter. Dopamine application depolarized STN neurons, increased their frequency of activity and reduced the impact of gamma-aminobutyric acid (GABA)-ergic inputs. These findings suggest that SN DA neurons directly modulate the activity of STN neurons and their loss may contribute to the abnormal activity of STN neurons in PD.  相似文献   

11.
The histologic hallmark of Parkinson disease (PD) is loss of pigmented neurons in the substantia nigra (SN) and locus ceruleus (LC) with accumulation of alpha-synuclein (alphaS). It has been reported that tyrosine hydroxylase (TH)-negative pigmented neurons are present in these nuclei of patients with PD. However, the relationship between TH immunoreactivity and alphaS accumulation remains uncertain. We immunohistochemically examined the SN and LC from patients with PD (n = 10) and control subjects (n = 7). A correlation study indicated a close relationship among decreased TH immunoreactivity, alphaS accumulation, and neuronal loss. In addition, 10% of pigmented neurons in the SN and 54.9% of those in the LC contained abnormal alphaS aggregates. Moreover, 82.3% of pigmented neurons bearing alphaS aggregates in the SN and 39.2% of those in the LC lacked TH immunoreactivity, suggesting that pigmented neurons in the SN have a greater tendency to lack TH activity than those in the LC. Recent studies have shown that this decrease of TH activity leads to a decrease of cytotoxic substances and that decreased dopamine synthesis leads to a reduction of cytotoxic alphaS oligomers. Therefore, the decrease of TH immunoreactivity in pigmented neurons demonstrated here can be considered to represent a cytoprotective mechanism in PD.  相似文献   

12.
In the present study the effect of inhibition of the re-uptake of dopamine (DA) was analysed with respect to DA release and to the firing pattern of DA neurons in the substantia nigra (SN). Intravenous administration of GBR 12909 (0.5–8 mg/kg), a specific and potent inhibitor of DA re-uptake, was found to dose-dependently increase the DA concentration both in the SN and in the striatum, as measured by microdialysis. However, the drug failed to significantly affect the firing rate of the nigral DA neurons. In contrast, GBR 12909 dose-dependently induced a regularisation of the firing pattern, concomitant with a reduction in burst activity. An acute hemisection of the brain, which by itself produced a slight regularisation of the firing pattern of the nigral DA neurons without changing the firing rate or the ability of the DA neurons to fire in bursts, was found to prevent the regulatory action of GBR 12909. Pretreatment with the selective GABAB-receptor antagonist CGP 35348 (200 mg/kg, i.v., 5 min) did not significantly affect the firing rate, the regularity of the DA neurons, or their ability to fire in bursts. However, CGP 35348 markedly antagonised the ability of GBR 12909 to induce pacemaker-like firing or a decrease in burst activity of the nigral DA neurons. The results of the present study suggest that a striatonigral feedback projection may serve to control the activity of nigral DA neurons not primarily by regulating the firing rate, but, preferably, by modulating the firing pattern of the neurons. In this regard, activation of somatodendritic GABAB-receptors may form the final link in this feedback inhibitory control system. Synapse 25:215–226, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
While rotational asymmetry is used as a characteristic behavioural sign of striatal dopamine (DA) loss in unilateral animal models of Parkinson's disease (PD), there is relatively little analysis of how other common behavioural deficits relate to nigrostriatal DA depletion. We analysed the relationships between several deficits induced by unilateral 6-OHDA lesions and striatal neurochemistry, as well as neuronal loss in the dopaminergic substantia nigra (SN). Behaviour was evaluated from before until 6 weeks after surgery and abnormalities appeared in body axis, head position and sensorimotor performance as well as apomorphine-induced rotation. As expected, rotational behaviour correlated with striatal DA loss and not with other striatal neurotransmitters measured. Similar observations were found for sensorimotor deficits ('disengage task'). Both deficits were observed in rats with >70% loss of TH+ nigral neurons and >80% loss of striatal DA. Additional postural abnormalities appeared with mean losses of 87% of nigral DA neurons and 97% striatal DA, consistent with observations in patients with advanced PD. The data show that the repertoire of behavioural abnormalities manifested by hemiparkinsonian rats relate directly to the degree of nigrostriatal DA loss and, therefore, mimic features of PD. Analysis of such behaviours are relevant for chronic therapeutic studies targeting PD.  相似文献   

14.
The diuretic amiloride has recently proven neuroprotective in models of cerebral ischemia, a property attributable to the drug's inhibition of central acid-sensing ion channels (ASICs). Given that Parkinson's disease (PD), like ischemia, is associated with cerebral lactic acidosis, we tested amiloride in the MPTP-treated mouse, a model of PD also manifesting lactic acidosis. Amiloride was found to protect substantia nigra (SNc) neurons from MPTP-induced degeneration, as determined by attenuated reductions in striatal tyrosine hydroxylase (TH) and dopamine transporter (DAT) immunohistochemistry, as well as smaller declines in striatal DAT radioligand binding and dopamine levels. More significantly, amiloride also preserved dopaminergic cell bodies in the SNc. Administration of psalmotoxin venom (PcTX), an ASIC1a blocker, resulted in a much more modest effect, attenuating only the deficits in striatal DAT binding and dopamine. These findings represent the first experimental evidence of a potential role for ASICs in the pathogenesis of Parkinson's disease.  相似文献   

15.
After injection of 6-hydroxydopamine into the lateral part of the rat substantia nigra, tissue dopamine (DA), dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were reduced in the corresponding lateral part of the ipsilateral caudate/putamen (CP) complex (13, 40 and 56% of controls, respectively). In this region, tyrosine hydroxylase (TH, the rate limiting enzyme of the DA synthesis) immunoautoradiography decreased by more than 80% as was the case for the binding of tritiated GBR12935 (a specific marker of the DA-carrier protein). In the medial region of the CP, only very moderate reductions of DA, DOPAC and HVA (77, 76 and 84% of controls, respectively) were observed. In this region, TH immunoautoradiography and GBR12935 binding were only reduced by about 20% reflecting weak DA denervation. However, using in vivo voltammetry, extracellular basal DA levels were found to be particularly high in the medial region of CP complex when compared to unoperated animals (up to 235%). In the medial region, TH activity was also significantly increased (161%) but the electrical stimulation of DA fibers produced the same DA overflow in control and lesioned animals. From these results, it may be concluded that elevated basal DA levels in this region cannot be attributed to the reduced DA uptake and/or to an increased ability of DA neurons to release DA in response to impulse flow.  相似文献   

16.
In this study, we determined the ontogenetic profile (at postnatal days 7, 14, 35, and 90) of tyrodine hydroxylase (TH) mRNA in the ventral mesencephalon, and the levels of TH immunoreactivity (TH-IR) and dopamine (DA) transporter (DAT) sites in the striatum of rats that had received intrastriatal 6-hydroxy dopamine (6-OHDA) or vehicle lesions on day of birth (DO) or postnatal day 1 (P1). TH-IR was significantly decreased in all quadrants of the caudate-putamen at all time points, while TH-IR in the nucleus accumbens was unchanged, as compared to controls. Relative to the earliest time point (P7 lesion group), TH-IR recovered significantly in the medial caudate-putamen (CPu) of the P14, P35 and P90 6-OHDA-lesioned groups. Quantitative autoradiography of [3H]-mazindol binding to DAT sites showed significant, lesion-induced losses throughout the caudate-putamen of the 6-OHDA-lesioned groups at all time points and did not show appreciable recovery. Using in situ hybridization, significant (P < .05) decreases in TH mRNA levels were found at all time points in the lateral and medial substantia nigra pars compacta of 6-OHDA-lesioned animals. TH mRNA levels in the rostral ventral tegmental area (VTA), which were significantly decreased at P7, P14 and P35, returned to control levels at P90. TH mRNA levels in the caudal VTA were unchanged through P35 and became significantly elevated as compared to controls (+22%, P < .05) by P90. Thus, recovery of TH-IR in the medial caudate-putamen occurred prior to the elevation in levels of TH mRNA of the VTA. Our findings suggest that compensation exists in early development in certain subpopulations of mesostriatal DA neurons that differs from that in the adult. Synapse 25:293–305, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Previous work from our laboratory showed prevention of 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) induced dopamine depletion in striatum of C57Bl/6 mice by 17beta-estradiol, progesterone, and raloxifene, whereas 17alpha-estradiol had no effect. The present study investigated the mechanism by which these compounds exert their neuroprotective activity. The hormonal effect on the dopamine transporter (DAT) was examined to probe the integrity of dopamine neurons and glutamate receptors in order to find a possible excitotoxic mechanism. Drugs were injected daily for 5 days before MPTP (four injections, 15 mg/kg ip at 2-h intervals) and drug treatment continued for 5 more days. MPTP induced a decrease of striatal DAT-specific binding (50% of control) and DAT mRNA in the substantia nigra (20% of control), suggesting that loss of neuronal nerve terminals was more extensive than cell bodies. This MPTP-induced decrease of striatal [(125)I]RTI-121 specific binding was prevented by 17beta-estradiol (2 microg/day), progesterone (2 microg/day), or raloxifene (5 mg/kg/day) but not by 17alpha-estradiol (2 microg/day) or raloxifene (1 mg/kg/day). No treatment completely reversed the decreased levels of DAT mRNA in the substantia nigra. Striatal [(125)I]RTI-121 specific binding was positively correlated with dopamine concentrations in intact, saline, or hormone-treated MPTP mice. Striatal NMDA-sensitive [(3)H]glutamate or [(3)H]AMPA specific binding remained unchanged in intact, saline, or hormone-treated MPTP mice, suggesting the unlikely implication of changes of glutamate receptors in an excitotoxic mechanism. These results show a stereospecific neuroprotection by 17beta-estradiol of MPTP neurotoxicity, which is also observed with progesterone or raloxifene treatment. The present paradigm modeled early DA nerve cell damage and was responsive to hormones.  相似文献   

18.
Glucose-regulated dopamine release from substantia nigra neurons   总被引:2,自引:0,他引:2  
Levin BE 《Brain research》2000,874(2):158-164
Glucose modulates substantia nigra (SN) dopamine (DA) neuronal activity and GABA axon terminal transmitter release by actions on an ATP-sensitive potassium channel (K(ATP)). Here, the effect of altering SN glucose levels on striatal DA release was assessed by placing microdialysis probes into both the SN and striatum of male Sprague-Dawley rats. Reverse dialysis of 20 mM glucose through the SN probes transiently decreased striatal DA efflux by 32% with a return to baseline after 45 min despite constant glucose levels. During 50 mM glucose infusion, striatal DA efflux increased transiently by 50% and returned to baseline after 60 min. Infusion of 100 mM glucose produced a transient 25% decrease in striatal DA efflux followed by a sustained 50% increase above baseline. Efflux increased by a further 30% when the GABA(A) antagonist bicuculline (50 microM) was added to the 100 mM glucose infusate. At basal glucose levels, nigral bicuculline alone raised striatal DA efflux by 31% suggesting a tonic GABA inhibitory input to the DA neurons. The sulfonylurea glipizide (50 microM) produced a transient 25% increase in striatal DA release that became sustained when bicuculline was added. Thus, striatal DA release is affected by changing SN glucose levels. This response may well reflect the known effect of glucose on K(ATP) channel activity on both SN DA neurons and GABA axon terminals in the substantia nigra. These interactions could provide a mechanism whereby glucose modulates motor activity involved in food intake.  相似文献   

19.
Sleep complaints are an early clinical symptom of neurodegenerative disorders. Patients with Parkinson's disease (PD) experience sleep disruption (SD). The objective of this study was to determine if preexisting, chronic SD leads to a greater loss of tyrosine hydroxylase (TH) within the striatum and the substantia nigra following chronic/progressive exposure with the neurotoxin, 1-methyl-2-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Male mice underwent chronic SD for 4 weeks, then injected with vehicle (VEH) or increasing doses of MPTP for 4 weeks. There was a significant decrease in the plasma corticosterone levels in the MPTP group, an increase in the SD group, and a return to the VEH levels in the SD+MPTP group. Protein expression levels for TH in the striatum (terminals) and substantia nigra pars compacta (dopamine [DA] cell counts) revealed up to a 78% and 38% decrease, respectively, in the MPTP and SD+MPTP groups compared to their relevant VEH and SD groups. DA transporter protein expression increased in the striatum in the MPTP versus VEH group and in the SN/midbrain between the SD+MPTP and the VEH group. There was a main effect of MPTP on various gait measures (e.g., braking) relative to the SD or VEH groups. In the SD+MPTP group, there were no differences compared to the VEH group. Thus, SD, prior to administration of MPTP, has effects on serum corticosterone and gait but more importantly does not potentiate greater loss of TH within the nigrostriatal pathway compared to the MPTP group, suggesting that in PD patients with SD, there is no exacerbation of the DA cell loss.  相似文献   

20.
Uncoupling protein 2 (UCP2) is known to promote neuroprotection in many forms of neurological pathologies including Parkinson's disease. Here, we examined the hypothesis that UCP2 also mediates aspects of normal nigrostriatal dopamine (DA) function. Mice lacking UCP2 exhibited reduced dopamine turnover in the striatum as measured by the 3,4-dihydoxyphenylacetic acid/dopamine (DOPAC/DA) ratio, reduced tyrosine hydroxylase immunoreactivity (TH IR) in the substantia nigra pars compacta (SNc) and reticulata, striatum and nucleus accumbens. UCP2-knockout (KO) mice also had reduced dopamine transporter immunoreactivity (DAT IR) in the SNc but not other brain regions examined. In order to determine if these biochemical deficits are transcribed into behavioural deficits, we examined locomotor function in UCP2-KO mice compared to wild-type (WT) controls. UCP2-KO mice exhibited significantly reduced total movement distance, movement velocity and increased rest time compared to wild-type controls. These results suggest that UCP2 is an important mitochondrial protein that helps to maintain normal nigrostriatal dopamine neuronal function and a reduction in UCP2 levels may predispose individuals to environmental causes of Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号