首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cannabinoid CB1 receptor is a G protein coupled receptor and plays an important role in many biological processes and physiological functions. A variety of CB1 receptor agonists and antagonists, including endocannabinoids, phytocannabinoids, and synthetic cannabinoids, have been discovered or developed over the past 20 years. In 2005, it was discovered that the CB1 receptor contains allosteric site(s) that can be recognized by small molecules or allosteric modulators. A number of CB1 receptor allosteric modulators, both positive and negative, have since been reported and importantly, they display pharmacological characteristics that are distinct from those of orthosteric agonists and antagonists. Given the psychoactive effects commonly associated with CB1 receptor agonists and antagonists/inverse agonists, allosteric modulation may offer an alternate approach to attain potential therapeutic benefits while avoiding inherent side effects of orthosteric ligands. This review details the complex pharmacological profiles of these allosteric modulators, their structure–activity relationships, and efforts in elucidating binding modes and mechanisms of actions of reported CB1 allosteric modulators. The ultimate development of CB1 receptor allosteric ligands could potentially lead to improved therapies for CB1‐mediated neurological disorders.  相似文献   

2.
Group II metabotropic glutamate receptors (mGluRs), mGluR2 and mGluR3, play a number of important roles in mammalian brain and represent exciting new targets for certain central nervous system disorders. We now report synthesis and characterization of a novel family of derivatives of dihydrobenzo[1,4]diazepin-2-one that are selective negative allosteric modulators for group II mGluRs. These compounds inhibit both mGluR2 and mGluR3 but have no activity at group I and III mGluRs. The novel mGluR2/3 antagonists also potently block mGluR2/3-mediated inhibition of the field excitatory postsynaptic potentials at the perforant path synapse in hippocampal slices. These compounds induce a rightward shift and decrease the maximal response in the glutamate concentration-response relationship, consistent with a noncompetitive antagonist mechanism of action. Furthermore, radioligand binding studies revealed no effect on binding of the orthosteric antagonist [(3)H]LY341495 [2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)propionic acid]. Site-directed mutagenesis revealed that a single point mutation in transmembrane V (N735D), previously shown to be an important residue for potentiation activity of the mGluR2 allosteric potentiator LY487379 [N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2-trifluoroethylsulfonyl)pyrid-3-ylmethylamine], is not critical for the inhibitory activity of negative allosteric modulators of group II mGluRs. However, this single mutation in human GluR2 almost completely blocked the enhancing activity of biphenyl-indanone A, a novel allosteric potentiator of mGluR2. Our data suggest that these two positive allosteric modulators of mGluR2 may share a common binding site and that this site may be distinct from the binding site for the new negative allosteric modulators of group II mGluRs.  相似文献   

3.
We found that N-[4-chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl]-2-hydroxybenzamide (CPPHA), is a potent and selective positive allosteric modulator of the metabotropic glutamate receptor subtype 5 (mGluR5). CPPHA alone had no agonist activity and acted as a selective positive allosteric modulator of human and rat mGluR5. CPPHA potentiated threshold responses to glutamate in fluorometric Ca(2+) assays 7- to 8-fold with EC(50) values in the 400 to 800 nM range, and at 10 microM shifted mGluR5 agonist concentration-response curves to glutamate, quisqualate, and (R,S)-3,5-dihydroxyphenylglycine (DHPG) 4- to 7-fold to the left. The only effect of CPPHA on other mGluRs was weak inhibition of mGluR4 and 8. Neither CPPHA nor the previously described 3,3'-difluorobenzaldazine (DFB) affected [(3)H]quisqualate binding to mGluR5, but although DFB partially competed for [(3)H]3-methoxy-5-(2-pyridinylethynyl)pyridine binding, CPPHA had no effect on the binding of this 2-methyl-6-(phenylethynyl)-pyridine analog to mGluR5. Although the binding sites for the two classes of allosteric modulators seem to be different, these different allosteric sites can modulate functionally and mechanistically similar allosteric effects. In electrophysiological studies of brain slice preparations, it had been previously shown that activation of mGluR5 receptors by agonists increased N-methyl-D-aspartate (NMDA) receptor currents in the CA1 region of hippocampal slices. We found that CPPHA (10 microM) potentiated NMDA receptor currents in hippocampal slices induced by threshold levels of DHPG, whereas having no effect on these currents by itself. Similarly, 10 microM CPPHA also potentiated mGluR5-mediated DHPG-induced depolarization of rat subthalamic nucleus neurons. These results demonstrate that allosteric potentiation of mGluR5 increases the effect of threshold agonist concentrations in native systems.  相似文献   

4.
Rhodopsin-like (class A) G protein-coupled receptors (GPCRs) are one of the most important classes of drug targets. The discovery that these GPCRs can be allosterically modulated by small drug molecules has opened up new opportunities in drug development. It will allow the drugability of "difficult targets", such as GPCRs activated by large (glyco)proteins, or by very polar or highly lipophilic physiological agonists. Receptor subtype selectivity should be more easily achievable with allosteric than with orthosteric ligands. Allosteric modulation will allow a broad spectrum of pharmacological effects largely expanding that of orthosteric ligands. Furthermore, allosteric modulators may show an improved safety profile as compared to orthosteric ligands. Only recently, the explicit search for allosteric modulators has been started for only a few rhodopsin-like GPCRs. The first negative allosteric modulators (allosteric antagonists) of chemokine receptors, maraviroc (CCR5 receptor), used in HIV therapy, and plerixafor (CXCR4 receptor) for stem cell mobilization, have been approved as drugs. The development of allosteric modulators for rhodopsin-like GPCRs as novel drugs is still at an early stage; it appears highly promising.  相似文献   

5.
Previous studies indicate that agonists of the group II metabotropic glutamate receptors (mGluRs), mGluR2 and mGluR3, may provide a novel approach for the treatment of anxiety disorders and schizophrenia. However, the relative contributions of the mGluR2 and mGluR3 subtypes to the effects of the group II mGluR agonists remain unclear. In the present study, we describe an alternate synthesis and further pharmacological characterization of a recently reported positive allosteric modulator of mGluR2 termed biphenyl-indanone A (BINA). In recombinant systems, BINA produced a robust and selective potentiation of the response of mGluR2 to glutamate with no effect on the glutamate response of other mGluR subtypes. In hippocampal brain slices, BINA (1 microM) significantly potentiated the mGluR2/3 agonist-induced inhibition of excitatory synaptic transmission at the medial perforant path-dentate gyrus synapse. BINA was also efficacious in several models predictive of antipsychotic- and anxiolytic-like activity in mice. The behavioral effects of BINA were blocked by the mGluR2/3 antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495), suggesting that the in vivo effects of BINA are mediated by increased activation of mGluR2. Collectively, these results indicate that BINA is a selective mGluR2 positive allosteric modulator and provide further support for the growing evidence that selective allosteric potentiators of mGluR2 mimic many of the in vivo actions of mGluR2/3 agonists that may predict therapeutic utility of these compounds.  相似文献   

6.
Microdialysis was used to determine the in vivo processes contributing to extracellular glutamate levels in the prefrontal cortex of rats. Reverse dialysis of a variety of compounds proved unable to decrease basal levels of extracellular glutamate, including Na+ and Ca2+ channel blockers, cystine/glutamate exchange (x(c)-) antagonists, and group I (mGluR1/5) and group II (mGluR2/3) metabotropic glutamate receptor (mGluR) agonists or antagonists. In contrast, extracellular glutamate was elevated by blocking Na+-dependent glutamate uptake (X(AG)-) with DL-threo-beta-benzyloxyaspartate (TBOA) and stimulating group I mGluRs with (R,S)-3,5-dihydroxy-phenylglycine (DHPG). The accumulation of extracellular glutamate produced by blocking X(AG)- was completely reversed by inhibiting system x(c)- with 4-carboxyphenylglycine (CPG), but not by Na+ and Ca2+ channel blockers. Because CPG also inhibits group I mGluRs, two additional group I antagonists were examined, LY367385 [(+)-2-methyl-4-carboxyphenylglycine] and (R,S)-1-aminoindan-1,5-dicarboxylic acid (AIDA). Whereas LY367385 also reduced TBOA-induced increases in extracellular glutamate, AIDA did not. In contrast, all three group I antagonists reversed the increase in extracellular glutamate elicited by stimulating mGluR1/5. In vitro evaluation revealed that similar to CPG, LY367385 inhibited x(c)- and that stimulating or inhibiting mGluR1/5 did not directly affect [3H]glutamate uptake via x(c)- or X(AG)-. These experiments reveal that although inhibiting x(c)- cannot reduce basal extracellular glutamate in the prefrontal cortex, the accumulation of extracellular glutamate after blockade of X(AG)- arises predominately from x(c)-. The accumulation of glutamate elicited by mGluR1/5 stimulation does not seem to result from modulating X(AG)-, x(c)-, or synaptic glutamate release.  相似文献   

7.
We examined the effects of modulating group II metabotropic glutamate receptors (mGluRs) on traumatic neuronal injury using both in vitro and in vivo models. Treatment with various selective group II mGluR agonists significantly decreased lactate dehydrogenase release, a marker of cell death, after traumatic injury to rat neuronal-glial cultures; injury-induced increases in cyclic AMP and glutamate levels were also significantly reduced by a group II agonist. The neuroprotective effects of group II agonists were markedly attenuated by coadministration of a group II antagonist or a membrane-permeable cyclic AMP analog and were additive to those provided by an N-methyl-D-aspartate receptor antagonist or a selective group I mGluR antagonist. Administration of a group II mGluR agonist 30 min after lateral fluid percussion-induced brain injury in rats significantly improved subsequent behavioral recovery as compared with vehicle-treated controls. Together these studies indicate that group II mGluR agonists protect against traumatic neuronal injury by attenuating glutamate release and cAMP levels and suggest a potential role for these agents in the treatment of clinical neurotrauma.  相似文献   

8.
We found that 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) is a potent and selective positive allosteric modulator of the metabotropic glutamate receptor subtype 5 (mGluR5). In Chinese hamster ovary cells expressing human mGluR5, CDPPB potentiated threshold responses to glutamate in fluorometric Ca2+ assays more than 7-fold with an EC50 value of approximately 27 nM. At 1 microM, CDPPB shifted mGluR5 agonist concentration response curves to glutamate, quisqualate, and (R,S)-3,5-dihydroxyphenylglycine 3- to 9-fold to the left. At higher concentrations, CDPPB exhibited agonist-like activity on cells expressing mGluR5. No other activity was observed on any other mGluR or cell type at concentrations up to 10 microM. CDPPB had no effect on [3H]quisqualate binding to mGluR5 but did compete for binding of [3H]methoxyPEPy, an analog of the selective mGluR5 negative allosteric modulator MPEP. CDPPB was found to be brain penetrant and reversed amphetamine-induced locomotor activity and amphetamine-induced deficits in prepulse inhibition in rats, two models sensitive to antipsychotic drug treatment. These results demonstrate that positive allosteric modulation of mGluR5 produces behavioral effects, suggesting that such modulation serves as a viable approach to increasing mGluR5 activity in vivo. These effects are consistent with the hypothesis that allosteric potentiation of mGluR5 may provide a novel approach for development of antipsychotic agents.  相似文献   

9.
Goudet C  Chapuy E  Alloui A  Acher F  Pin JP  Eschalier A 《Pain》2008,137(1):112-124
Glutamate plays a key role in modulation of nociceptive processing. This excitatory amino acid exerts its action through two distinct types of receptors, ionotropic and metabotropic glutamate receptors (mGluRs). Eight mGluRs have been identified and divided in three groups based on their sequence similarity, pharmacology and G-protein coupling. While the role of group I and II mGluRs is now well established, little is known about the part played by group III mGluRs in pain. In this work, we studied comparatively the involvement of spinal group III mGluR in modulation of acute, inflammatory and neuropathic pain. While intrathecal injection of ACPT-I, a selective group III mGluR agonist, failed to induce any change in vocalization thresholds of healthy animals submitted to mechanical or thermal stimuli, it dose-dependently inhibited the nociceptive behavior of rats submitted to the formalin test and the mechanical hyperalgesia associated with different animal models of inflammatory (carrageenan-treated and monoarthritic rats) or neuropathic pain (mononeuropathic and vincristine-treated rats). Similar effects were also observed following intrathecal injection of PHCCC, a positive allosteric modulator of mGlu4. Antihyperalgesia induced by ACPT-I was blocked either by LY341495, a nonselective antagonist of mGluR, by MAP4, a selective group III antagonist. This study provide new evidences supporting the role of spinal group III mGluRs in the modulation of pain perception in different pathological pain states of various etiologies but not in normal conditions. It more particularly highlights the specific involvement of mGlu4 in this process and may be a useful therapeutic approach to chronic pain treatment.  相似文献   

10.
Glutamate is a major neurotransmitter in the central nervous system, and abnormal glutamate neurotransmission has been implicated in many neurological disorders, including schizophrenia, Alzheimer's disease, Parkinson's disease, addiction, anxiety, depression, epilepsy, and pain. Metabotropic glutamate receptors (mGluRs) activate intracellular signaling cascades in a G protein-dependent manner, which offer the opportunity for developing drugs that regulate glutamate neurotransmission in a functionally selective manner. In the present study, we further characterize the human mGluR2 (hmGluR2) potentiator binding site by showing that the substitution of the three amino acids found to be required for hmGluR2 potentiation, specifically Ser(688), Gly(689), and Asn(735), with the homologous hmGluR3 amino acids, inactivates the positive allosteric modulator activity of several structurally unique mGluR2 potentiators. Based on the characterization of the hmGluR2 potentiator binding site, we developed a novel scintillation proximity assay that was able to discriminate between compounds that were hmGluR2-specific potentiators, and those that were active on both hmGluR2 and hmGluR3. In addition, we substituted Ser(688), Gly(689), and Asn(735) into hmGluR3 and created an active hmGluR2 allosteric modulation site on the hmGluR3 receptor.  相似文献   

11.
Moderate hyperhomocysteinemia is associated with several diseases, including coronary artery disease, stroke, Alzheimer's disease, schizophrenia, and spina bifida. However, the mechanisms for their pathogenesis are unknown but could involve the interaction of homocysteine or its metabolites with molecular targets such as neurotransmitter receptors, channels, or transporters. We discovered that L-homocysteine sulfinic acid (L-HCSA), L-homocysteic acid, L-cysteine sulfinic acid, and L-cysteic acid are potent and effective agonists at several rat metabotropic glutamate receptors (mGluRs). These acidic homocysteine derivatives 1) stimulated phosphoinositide hydrolysis in the cells stably expressing the mGluR1, mGluR5, or mGluR8 (plus Galpha(qi9)) and 2) inhibited the forskolin-induced cAMP accumulation in the cells stably expressing mGluR2, mGluR4, or mGluR6, with different potencies and efficacies depending on receptor subtypes. Of the four compounds, L-HCSA is the most potent agonist at mGluR1, mGluR2, mGluR4, mGluR5, mGluR6, and mGluR8. The effects of the four agonists were selective for mGluRs because activity was not discovered when L-HCSA and several other homocysteine derivatives were screened against a large panel of cloned neurotransmitter receptors, channels, and transporters. These findings imply that mGluRs are candidate G-protein-coupled receptors for mediating the intracellular signaling events induced by acidic homocysteine derivatives. The relevance of these findings for the role of mGluRs in the pathogenesis of homocysteine-mediated phenomena is discussed.  相似文献   

12.
Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 4 (mGluR4) have been proposed as a novel therapeutic approach for the treatment of Parkinson's disease. However, evaluation of this proposal has been limited by the availability of appropriate pharmacological tools to interrogate the target. In this study, we describe the properties of a novel mGluR4 PAM. 5-Methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine (ADX88178) enhances glutamate-mediated activation of human and rat mGluR4 with EC(50) values of 4 and 9 nM, respectively. The compound is highly selective for mGluR4 with minimal activities at other mGluRs. Oral administration of ADX88178 in rats is associated with high bioavailability and results in cerebrospinal fluid exposure of >50-fold the in vitro EC(50) value. ADX88178 reverses haloperidol-induced catalepsy in rats at 3 and 10 mg/kg. It is noteworthy that this compound alone has no impact on forelimb akinesia resulting from a bilateral 6-hydroxydopamine lesion in rats. However, coadministration of a low dose of l-DOPA (6 mg/kg) enabled a robust, dose-dependent reversal of the forelimb akinesia deficit. ADX88178 also increased the effects of quinpirole in lesioned rats and enhanced the effects of l-DOPA in MitoPark mice. It is noteworthy that the enhancement of the actions of l-DOPA was not associated with an exacerbation of l-DOPA-induced dyskinesias in rats. ADX88178 is a novel, potent, and selective mGluR4 PAM that is a valuable tool for exploring the therapeutic potential of mGluR4 modulation. The use of this novel tool molecule supports the proposal that activation of mGluR4 may be therapeutically useful in Parkinson's disease.  相似文献   

13.
Lee MK  Choi BY  Yang GY  Jeon HJ  Kyung HM  Kwon OW  Park HS  Bae YC  Mokha SS  Ahn DK 《Pain》2008,139(2):367-375
This study provides the first demonstration that central cannabinoids modulate the antinociceptive actions of metabotropic glutamate receptors (mGluRs) on formalin-induced temporomandibular joint (TMJ) nociception. Noxious scratching behavior induced by formalin injection in the TMJ was used as a model of pain. Intracisternal injection of 30mug of WIN 55,212-2, a non-subtype selective cannabinoid receptor agonist, attenuated the number of scratches by 75% as compared with the vehicle-treated group, whereas vehicle alone or 3 or 10 microg of WIN 55,212-2 had no effect. To explore the postulated interaction between central cannabinoid receptors and mGluRs, effects of combined administration of sub-analgesic doses of WIN 55,212-2 and group II or III mGluR agonists were tested. Group II or III mGluRs agonists were administered intracisternally 10 min after intracisternal administration of WIN 55,212-2. Neither 100 nmol APDC, a group II mGluRs agonist, nor L-AP4, a group III mGluR agonist, altered nociceptive behavior when given alone but significantly inhibited the formalin-induced nociceptive behavior in the presence of a sub-threshold dose ( 3microg) of WIN 55,212-2. The ED50 value of APDC or L-AP4 was significantly reduced upon co-treatment with WIN 55,212-2 than in the vehicle-treated group, highlighting the important therapeutic potential of the combined administration of group II or III mGluR agonists with cannabinoids to effectively treat inflammatory pain associated with the TMJ. Potentiating effects of group II or III mGluRs agonists will likely permit the administration of cannabinoids at doses that do not achieve significant accumulation to produce undesirable motor dysfunction.  相似文献   

14.
The present study investigated the role of central metabotropic glutamate receptors (mGluRs) in interleukin-1beta (IL-1beta)-induced mechanical allodynia and mirror-image mechanical allodynia in the orofacial area. Experiments were carried out on male Sprague-Dawley rats weighing 230 to 280 g. After administration of 0.01, 0.1, 1, or 10 pg of IL-1beta into a subcutaneous area of the vibrissa pad, we examined the withdrawal behavioral responses produced by 10 successive trials of an air-puff ramp pressure applied ipsilaterally or contralaterally to the IL-1beta injection site. Subcutaneous injection of IL-1beta produced mechanical allodynia and mirror-image mechanical allodynia in the orofacial area. Intracisternal administration of CPCCOEt, a mGluR1 antagonist, or MPEP, a mGluR5 antagonist, reduced IL-1beta-induced mechanical allodynia and mirror-image mechanical allodynia. Intracisternal administration of APDC, a group II mGluR agonist, or L-AP4, a group III mGluR agonist, reduced both IL-1beta-induced mechanical allodynia and mirror-image mechanical allodynia. The antiallodynic effect, induced by APDC or L-AP4, was blocked by intracisternal pretreatment with LY341495, a group II mGluR antagonist, or CPPG, a group III mGluR antagonist. These results suggest that groups I, II, and III mGluRs differentially modulated IL-1beta-induced mechanical allodynia, as well as mirror-image mechanical allodynia, in the orofacial area. PERSPECTIVE: Central group I mGluR antagonists and groups II and III mGluR agonists modulate IL-1beta-induced mechanical allodynia and mirror-image mechanical allodynia in the orofacial area. Therefore, the central application of group I mGluR antagonists or groups II and III mGluR agonists might be of therapeutic value in treating pain disorder.  相似文献   

15.
Millan MJ 《Thérapie》2005,60(5):441-460
Serotonin (5-HT)2C receptors play an important role in the modulation of monoaminergic transmission, mood, motor behaviour, appetite and endocrine secretion, and alterations in their functional status have been detected in anxiodepressive states. Further, 5-HT2C sites are involved in the actions of several classes of antidepressant. At the onset of treatment, indirect activation of 5-HT2C receptors participates in the anxiogenic effects of selective 5-HT reuptake inhibitors (SSRIs) as well as their inhibition of sleep, sexual behaviour and appetite. Conversely, progressive down-regulation of 5-HT2C receptors parallels the gradual onset of clinical efficacy of SSRIs. Other antidepressants, such as nefazodone or mirtazapine, act as direct antagonists of 5-HT2C receptors. These observations underpin interest in 5-HT2C receptor blockade as a strategy for treating depressive and anxious states. This notion is supported by findings that 5-HT2C receptor antagonists stimulate dopaminergic and adrenergic pathways, exert antidepressant and anxiolytic actions in behavioural paradigms, and favour sleep and sexual function. In addition to selective antagonists, novel strategies for exploitation of 5-HT2C receptors embrace inverse agonists, allosteric modulators, ligands of homo/heterodimers, modulators of interactions with 'postsynaptic proteins', dual melatonin agonists/5-HT2C receptor antagonists and mixed 5-HT2C/alpha2-adrenergic antagonists. Intriguingly, there is evidence that stimulation of regionally discrete populations of 5-HT2C receptors is effective in certain behavioural models of antidepressant activity, and promotes neurogenesis in the hippocampus. This article explains how these ostensibly paradoxical actions of 5-HT2C antagonists and agonists can be reconciled and discusses both established and innovative strategies for the exploitation of 5-HT2C receptors in the improved management of depressed and anxious states.  相似文献   

16.
Discovery of the important role played by nicotinic acetylcholine receptors (nAChRs) in several CNS disorders has called attention to these membrane proteins and to ligands able to modulate their functions. The existence of different subtypes at multiple levels has complicated the understanding of this receptor's physiological role, but at the same time has increased the efforts to discover selective compounds in order to improve the pharmacological characterization of this kind of receptor and to make the possible therapeutical use of its modulators safer. This review focuses on the structure of new ligands for nAChRs, agonists, antagonists and allosteric modulators, and on their possible applications.  相似文献   

17.
Novel isoxazolopyridone derivatives that are metabotropic glutamate receptor (mGluR) 7 antagonists were discovered and pharmacologically characterized. 5-Methyl-3,6-diphenylisoxazolo[4,5-c]pyridin-4(5H)-one (MDIP) was identified by random screening, and 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP) was produced by chemical modification of MDIP. MDIP and MMPIP inhibited L-(+)-2-amino-4-phosphonobutyric acid (L-AP4)-induced intracellular Ca2+ mobilization in Chinese hamster ovary (CHO) cells coexpressing rat mGluR7 with Galpha(15) (IC50 = 20 and 26 nM). The maximal response in agonist concentration-response curves was reduced in the presence of MMPIP, and its antagonism is reversible. MMPIP did not displace [3H](2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495) bound to mGluR7. These results suggested that these isoxazolopyridone derivatives are allosteric antagonists. In CHO cells expressing rat mGluR7, MDIP and MMPIP inhibited l-AP4-induced inhibition of forskolin-stimulated cAMP accumulation (IC50 = 99 and 220 nM). In CHO cells coexpressing human mGluR7 with Galpha(15), MDIP and MMPIP also inhibited the l-AP4-induced cAMP response. The maximal degree of inhibition by MMPIP was higher than that by MDIP in a cAMP assay. MMPIP was able to antagonize an allosteric agonist, the N,N'-dibenzhydryl-ethane-1,2-diamine dihydrochloride (AMN082)-induced inhibition of cAMP accumulation. In the absence of these agonists, MMPIP caused a further increase in forskolin-stimulated cAMP levels in CHO cells expressing mGluR7, whereas a competitive antagonist, LY341495, did not. This result indicates that MMPIP has an inverse agonistic activity. The intrinsic activity of MMPIP was pertussis toxin-sensitive and mGluR7-dependent. MMPIP at concentrations of at least 1 microM had no significant effect on mGluR1, mGluR2, mGluR3, mGluR4, mGluR5, and mGluR8. MMPIP is the first allosteric mGluR7-selective antagonist that could potentially be useful as a pharmacological tool for elucidating the roles of mGluR7 on central nervous system functions.  相似文献   

18.
Depression and anxiety represent a major problem. However, the current treatment of both groups of diseases is not satisfactory. As the glutamatergic system may play an important role in pathophysiology of both depression and anxiety, we decided to discuss the recent data on possible anxiolytic and/or antidepressant effects of metabotropic glutamate (mGlu) receptor ligands. Preclinical data indicated that antagonists of group I mGlu receptors, particularly antagonists of mGlu5 receptors, produced both anxiolytic-like and antidepressant-like effects. Clinical data also demonstrated that mGlu5 receptor antagonist, fenobam, was an active anxiolytic drug. The anxiolytic effects exerted by mGlu5 receptor antagonists are profound, comparable with or stronger than those of benzodiazepines. However, the problem with the psychotomimetic activity of mGlu5 receptor antagonists and their possible influence on memory has to be further investigated. Among all mGlu receptor ligands, group II mGlu receptor agonists seem to be the drugs with the most promising therapeutic potential and a good safety profile. Animal studies showed anxiolytic-like effects of group II mGlu receptor agonists. Currently, group II mGlu receptor agonists are in phase III clinical trials for potential treatment of anxiety disorders. On the other hand, data has been accumulated, indicating that antagonists of group II mGlu receptors have an antidepressant potential. Group III mGlu receptor ligands represent the least investigated group of mGlu receptors. However, preclinical data also indicates that ligands of these receptors, both agonists and antagonists, may have an anxiolytic-like and antidepressant-like potential.  相似文献   

19.
Drugs that interact with group II metabotropic glutamate receptors (mGluRs) are presently being evaluated for a role in the treatment of anxiety disorders and symptoms of schizophrenia. Their mechanism of action is believed to involve a reduction in excitatory neurotransmission in limbic and forebrain regions commonly associated with these mental disorders. In rodents, the glutamatergic neurons in the midline paraventricular thalamic nucleus (PVT) provide excitatory inputs to the limbic system and forebrain. PVT also displays a high density of group II mGluRs, predominantly the metabotropic glutamate 2 receptor (mGluR2). Because the role of group II mGluRs in regulating cellular and synaptic excitability in this location has yet to be determined, we used whole-cell patch-clamp recording and acute rat brain slice preparations to evaluate PVT neuron responses to a selective group II mGluR agonist, (1R,4R,5S,6R)-4-amino-2-oxabicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY 379268). LY 379268 consistently induced membrane hyperpolarization and suppressed firing by postsynaptic receptor-mediated activation of a barium-sensitive background K(+) conductance. This effect could be blocked by (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl)propanoic acid (LY 341495), a selective group II mGluR antagonist. In addition, LY 379268 acted at presynaptic receptors to reduce ionotropic glutamate receptor-mediated excitatory synaptic transmission. An mGluR2-positive allosteric modulator, 2,2,2-trifluoro-N-[4-(2-methoxyphenoxy)phenyl]-N-(3-pyridinylmethyl)ethanesulfonamide hydrochloride (LY 487379), resulted in leftward shifts of the LY 379268 dose-response curve for both postsynaptic and presynaptic actions. The data demonstrate that activation of postsynaptic and presynaptic group II (presumably mGluR2) mGluRs reduces neuronal excitability in midline thalamus, an action that may contribute to the effectiveness of mGluR2-activating drugs in rodent models of anxiety and psychosis.  相似文献   

20.
Metabotropic glutamate receptors (mGluRs) comprise a unique family of G protein-coupled receptors (GPCR) that can be classified into 3 groups based on G protein coupling specificity and sequence similarity. Group I mGluRs (mGluR1 and mGluR5) are coupled to the heterotrimeric G protein Galpha(q/11) and trigger the release of calcium from intracellular stores. In the present review, we discuss the molecular mechanisms involved in the desensitization and endocytosis of group I mGluRs. Group I mGluRs desensitize in response to both second-messenger-dependent protein kinases and G protein-coupled receptor kinases (GRK). However, GRK2-mediated mGluR1 desensitization appears to be both phosphorylation- and beta-arrestin-independent. In addition to GRK-mediated uncoupling of mGluRs from heterotrimeric G proteins, the huntingtin-interacting protein, optineurin, also contributes to mGluR1 and mGluR5 desensitization. The G protein-uncoupling activity of optineurin appears to be facilitated by the presence of polyglutamine-expanded mutant huntingtin but not wild-type huntingtin. Group I mGluRs also undergo both agonist-dependent and -independent endocytosis in both heterologous cell expression systems and primary neuronal cultures. The present review overviews the current understanding of the contribution of second messenger-dependent protein kinases, beta-arrestins and a novel Ral/phospholipase D2 (PLD2)-mediated endocytic pathway to the regulation of Group I mGluR endocytosis. Overall, the regulation of Group I mGluR desensitization and endocytosis appears to be mediated by the same molecular intermediates as have been described for more typical GPCR such as the beta(2)-adrenergic receptor. However, there appears to be subtle, but important, differences in the mechanisms by which these intermediates are employed to regulate Group I mGluR desensitization and endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号