首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We aimed to elucidate the effect of hyperhomocysteinemia (HHcy) on the synthesis of prostaglandins in rat skeletal muscle arterioles and platelets. Male Wistar rats were divided into 2 groups: (1) control rats, with plasma Hcy levels of 6.5+/-0.5 micromol/L (n=50) and (2) rats with HHcy, induced by daily intake of 1 g/kg body weight methionine in the drinking water for 4 weeks (plasma Hcy levels were 20.6+/-3.0 micromol/L, P<0.01 versus controls; n=50). Arterioles (diameter approximately 130 micrometer) were isolated from the gracilis muscle, cannulated, and pressurized (at 80 mm Hg), and changes in their diameters were followed by video microscopy. Constrictions to bradykinin (BK; 10(-10) to 10(-7) mol/L) were significantly greater in HHcy than in control rat arterioles (at 10(-9) mol/L BK, changes were 11+/-3% in control and 41+/-9% in HHcy rats). The cyclooxygenase inhibitor indomethacin (10(-5) mol/L), the prostaglandin H(2)/thromboxane A(2) (PGH(2)/TxA(2)) receptor antagonist SQ 29,548 (10(-6) mol/L), or the TxA(2) synthase inhibitor furegrelate (5x10(-6) mol/L) significantly decreased constrictions to BK in both groups but more so in HHcy arterioles, thus eliminating the difference between responses of HHcy and control arterioles. Constrictions to U46619 (a TxA(2) analogue) were significantly greater in HHcy than in control arterioles (at 10(-8) mol/L U46619, values for controls were 33+/-2% and 54+/-3% for HHcy). Endothelium removal or indomethacin treatment attenuated constrictions to U46619 in HHcy arterioles and eliminated the difference in responses. Also, aggregation of platelets from HHcy rats to collagen and ADP was significantly enhanced compared with controls (with 5 microgram/mL collagen: controls, 23+/-5%; HHcy, 49+/-5%; with 10(-7) mol/L ADP: controls, 25+/-3%; HHcy, 35+/-3%). Indomethacin or SQ 29,548 caused greater inhibition of aggregation of HHcy platelets compared with controls, thereby eliminating the differences between the 2 groups. Thus, HHcy enhances TxA(2) synthesis both in the arteriolar endothelium and platelets. By promoting vascular constriction and platelet aggregation simultaneously, these alterations are likely to contribute to the atherothrombotic vascular diseases described in HHcy.  相似文献   

2.
Hyperhomocysteinemia (HHcy) is thought to promote arteriosclerosis and peripheral arterial disease, in part by impairing the function of endothelium. Because flow-induced dilation is mediated by the endothelium, we hypothesized that HHcy alters this response by interfering with the synthesis/action of NO and prostaglandins. Thus, changes in the diameter of isolated, pressurized (at 80 mm Hg) gracilis skeletal muscle arterioles (diameter approximately 170 microm) from control and methionine diet-induced HHcy rats were investigated with videomicroscopy. Increases in intraluminal flow (from 0 to 25 microL/min) resulted in dilations of control arterioles (maximum, 34+/-4 microm). In contrast, increases in flow elicited constrictions of HHcy arterioles (-36+/-3 microm). In control arterioles, the NO synthase inhibitor N:(omega)-nitro-L-arginine-methyl ester significantly attenuated (approximately 50%) dilation, whereas the additional administration of indomethacin, an inhibitor of cyclooxygenase, eliminated flow-induced dilation. In the arterioles of HHcy rats, flow-induced constriction was not affected by N:(omega)-nitro-L-arginine-methyl ester, whereas it was abolished by indomethacin or the prostaglandin H(2)/thromboxane A(2) (TXA(2)) receptor antagonist SQ 29,548 or the TXA(2) synthase inhibitor CGS 13,080. Thus, in HHcy, increases in intraluminal flow elicit constrictions of skeletal muscle arterioles due to the impaired NO and enhanced TXA(2) mediation of the response, alterations that likely contribute to the development of peripheral arterial disease.  相似文献   

3.
l-arginine is the substrate used by NO synthase to produce the vasodilator NO. However, in several human diseases, such as hyperhomocysteinemia, diabetes mellitus, and hypertension, there is an increase in serum levels of methylated l-arginines, such as asymmetrical dimethylarginine (ADMA), which cannot be used by NO synthase to produce NO. Yet, the functional consequence of increased levels of ADMA on the vasomotor function of resistance vessels has not been delineated. We hypothesized that elevated levels of exogenous ADMA inhibit NO mediation of flow/shear stress-dependent dilation of isolated arterioles. In the presence of indomethacin, isolated arterioles from rat gracilis muscle (approximately 165 microm at 80 mm Hg) were incubated with ADMA (10(-4) mol/L), which eliminated the dilations to increases in intraluminal flow (control: from 164+/-5.4 to 188+/-3.8 microm versus ADMA: from 171+/-6.1 to 173+/-6.3 microm at 20 microL/min). ADMA did not affect dilations to nifedipine (10(-6) mol/L; control: 63.4+/-2%, ADMA: 65.8+/-3%) or 8-bromo cGMP (10(-4) mol/L; control: 51.2+/-2.1%, ADMA: 49.3+/-3.4%). In addition, ADMA elicited significant constriction of arterioles (from 173+/-17 microm to 138+/-16 microm at 80 mm Hg), which was prevented by previous incubation of arterioles with polyethylene-glycol (PEG) superoxide dismutase (SOD; 120 U/mL, control: 155+/-11 microm versus ADMA: 150+/-14 microm). Correspondingly, ADMA increased PEG-SOD reversible manner the production of vascular superoxide assessed by lucigenin-enhanced chemiluminescence and ethidium bromide fluorescence. Thus, increased levels of ADMA in various diseases could inhibit the regulation of arteriolar resistance by shear stress-induced release of NO and elicit superoxide-mediated increase in basal tone, both of which favor the development of hypertension.  相似文献   

4.
OBJECTIVE: The diabetes mellitus-induced microangiopathy is still not clearly characterized. In this study we aimed to elucidate the effect of streptozotocin (STZ)-induced diabetes on myogenic response of isolated rat skeletal muscle arterioles and the mechanisms responsible for its alterations. METHODS: Male rats were divided into two groups: (1) control rats (C, plasma glucose: 6.4 +/- 0.5 mmol/l, n = 40) (2) diabetic rats (DM, 65 mg/kg STZ i.v., plasma glucose: 25.7 +/- 0.7 mmol/l, n = 40). Changes in diameter of isolated, cannulated gracilis skeletal muscle arterioles (approximately 130 microns in diameter) were measured by video-microscopy. RESULTS: Step increases in perfusion pressure (PP; from 10 to 140 mmHg) elicited significantly greater constrictions in DM than in C gracilis arterioles, in the presence of the endothelium (E). Also, a step increase in PP (from 40 to 100 mmHg) elicited greater and faster constrictions in DM vs. C arterioles. There were no significant differences in the pressure-passive diameter (in Ca2+ free solution) curves of arterioles. Dilations to acetylcholine were impaired in arterioles of DM as compared to those of C rats (EC50, C: 4.0 +/- 0.9 x 10(-9) mol/l, DM: 4.8 +/- 2.0 x 10(-8) mol/l (p < 0.01), and unaffected by inhibition of nitric oxide synthesis with L-NNA (10(-4) mol/l). Arteriolar constrictions to norepinephrine (NE) were significantly greater in DM compared to those of C rats (EC50, C: 6.2 +/- 0.6 x 10(-7) mol/l, DM: 8.0 +/- 2.0 x 10(-8) mol/l, p < 0.01) both in the presence and absence of E. In the absence of the E, constrictions to increases in pressure, or Ca2+ (0.25-7.5 mmol/l), or the voltage-dependent Ca(2+)-channel agonist Bay K 8644 (EC50; DM: 4.2 +/- 1.5 x 10(-10) mol/l, C: 1.7 +/- 0.8 x 10(-9) mol/l, p < 0.05) or the protein kinase C activator phorbol 12-myristate 13-acetate (PMA, EC50; DM: 6 +/- 2 x 10(-9) mol/l, C: 2 +/- 1 x 10(-8) mol/l, p < 0.05) were significantly greater in arterioles of DM compared to those of C rats. CONCLUSION: The novel findings of our study are that in diabetes mellitus the myogenic response of rat skeletal muscle arterioles is enhanced, which seems to be independent from the impaired endothelial function present simultaneously, and likely due to the increased activity of voltage-dependent Ca2+ channels and/or upregulation of protein kinase C in arteriolar smooth muscle.  相似文献   

5.
Veresh Z  Racz A  Lotz G  Koller A 《Hypertension》2008,52(5):960-966
Asymmetrical dimethylarginine (ADMA) is thought to be an endogenous regulator of arteriolar tone by inhibiting NO synthase. However, our previous studies showed that, in isolated arterioles, ADMA induced superoxide production as well. Thus, the mechanisms by which ADMA affects arteriolar tone remain obscure. We hypothesized that ADMA, by activating NAD(P)H oxidase, increases superoxide production, interfering with NO mediation of flow-induced dilation. In the presence of indomethacin, isolated arterioles from rat gracilis muscle ( approximately 160 microm at 80 mm Hg) were incubated with ADMA (10(-4) mol/L), which elicited significant constriction (from 162+/-4 to 143+/-4 microm) and eliminated the dilations to increases in intraluminal flow (from a maximum 31+/-2% to 3+/-1%; P<0.05). In the presence of ADMA, superoxide dismutase plus catalase restored dilations to flow (from a maximum 3+/-1% to 28+/-2%). Endothelial denudation or incubation of arterioles with the NAD(P)H oxidase inhibitor apocynin or the angiotensin-converting enzyme inhibitor quinapril inhibited ADMA-induced constriction. In addition, apocynin, quinapril, or the angiotensin type 1 receptor blocker losartan restored flow-induced dilations reduced by ADMA. Furthermore, inhibition of NO synthase abolished the "superoxide dismutase/catalase-restored" flow-induced dilation in the presence of ADMA. ADMA-induced increased production of superoxide, assessed by dihydroethidium fluorescence, was inhibited by apocynin, quinapril, or losartan. We suggest that ADMA activates the local renin-angiotensin system, and the angiotensin II released activates NAD(P)H oxidase; superoxide produced interferes with the bioavailability of NO, resulting in diminished flow-induced dilation, a mechanism that may contribute to the development of arteriolar dysfunction and increased tone associated with elevated ADMA levels.  相似文献   

6.
ObjectiveHyperhomocysteinemia (HHcy) has been shown to impair the endothelial function of arterial vessels and promote thrombosis. There are no studies, however, assessing the effects of HHcy on the vasomotor function of venules. We hypothesized that HHcy activates pathophysiological mechanisms impairing flow/shear stress-dependent responses of venules.Methods and resultsChanges in diameter of isolated gracilis muscle venules (diameter: ~250 μm at 10 mmHg) of control and HHcy rats (induced by methionine diet for 5 weeks) to increases in intraluminal flow were measured. Increases in flow elicited dilations in control (at max.: 14 ± 1%), but induced constrictions in HHcy venules (at max.: ?24 ± 4%). Flow-induced constrictions in HHcy venules were converted to dilations in the presence of the thromboxane A2 (TxA2) receptor (TP) antagonist SQ 29,548, which were then abolished by the simultaneous administration of nitric oxide (NO) synthase inhibitor, L-NAME and non-selective cyclooxygenase (COX) blocker, indomethacin. In addition, the selective COX-2 inhibitor NS 398 reversed flow-induced constrictions to dilations, which were significantly decreased by additional COX-1 inhibitor, SC 560. Also, as compared to controls, a SOD/CAT sensitive increased ethidium bromide fluorescence was detected in HHcy small veins, indicating substantial production of reactive oxygen species (ROS) in HHcy. Correspondingly, SOD/CAT diminished flow-induced constrictions in venules of HHcy rats.ConclusionsIn hyperhomocysteinemia increases in flow/shear stress increases the production of COX-2-derived TxA2, and reactive oxygen species – that overcome the dilator effects of NO and prostaglandins – eliciting constrictions in skeletal muscle venules; changes which can increase vascular resistance and favor thrombus formation in the venular circulation.  相似文献   

7.
Huang A  Sun D  Koller A 《Hypertension》2000,35(4):925-930
The nitric oxide-mediated portion of shear stress-induced dilation of rat gracilis muscle arterioles was shown to be impaired in spontaneously hypertensive rats (SHR). Because shear stress-induced dilation is primarily mediated by endothelium-derived prostaglandins in rat cremasteric arterioles, we hypothesized that in the cremasteric vascular bed the mediation of shear stress-induced dilation by prostaglandins is altered in hypertension. At a constant intraluminal pressure of 80 mm Hg, the active diameters of isolated rat cremasteric arterioles of normotensive 30-week-old Wistar-Kyoto rats (WKY) and SHR were 58.0+/-3.1 and 51.7+/-3.6 microm, respectively, whereas their passive diameters were 109.4+/-4.4 and 101.9+/-6.7 microm, respectively. Dilations to increases in shear stress elicited by increases in intraluminal flow (from 0 to 25 microL/min) were significantly less (P<0.05) in cremasteric arterioles isolated from SHR than from WKY. Arachidonic acid (10(-5) mol/L) elicited constrictions in SHR arterioles but dilations in WKY arterioles. The prostaglandin H(2)/thromboxane A(2) (PGH(2)/TxA(2)) receptor antagonist SQ 29,548 (10(-6) mol/L) significantly increased basal diameter by 11% and normalized the attenuated shear stress-induced dilation in SHR, whereas it did not affect basal diameter and arteriolar responses of WKY. Furegrelate, a specific inhibitor of TxA(2) synthase, did not affect the response in SHR. Also, SQ 29,548 reversed the arachidonic acid-induced constriction to dilation in SHR arterioles, whereas it did not affect the dilator response in WKY arterioles. Constrictions of arterioles of WKY and SHR to U46,619 (a PGH(2)/TxA(2) receptor agonist) were not different. These results demonstrate that in cremasteric arterioles of hypertensive rats, shear stress elicits an enhanced release of PGH(2), resulting in a reduced shear stress-dependent dilation. Thus, augmented hemodynamic forces can alter the shear stress-induced synthesis of prostaglandins, which may contribute to the elevated vascular resistance in hypertension.  相似文献   

8.
OBJECTIVE: To characterize the role of K(+) channels, the cytochrome P-450 (CYP) metabolite 5,6-EET, and gap junctions in modulation of arteriolar myogenic tone by a non-nitric oxide nonprostaglandin mediator, termed "endothelium-dependent hyperpolarizing factor" (EDHF), released to acetylcholine (ACh) in skeletal muscle arterioles. METHODS: In isolated rat gracilis arterioles, simultaneous changes in smooth muscle (aSM) [Ca(2+)](i) (assessed by changes in fura-2 ratiometric signal, R(Ca)) and diameter were measured in response to ACh in the presence of indomethacin and L-NAME. RESULTS: ACh, the K(ATP) channel opener pinacidil, and the Ca(2+) channel inhibitor verapamil elicited comparable decreases in aSM [Ca(2+)](i) (max.: -32 +/- 3%, 29 +/- 3%, and -30 +/- 3%, respectively) and arteriolar dilations (max.: 90 +/- 4%, 96 +/- 2%, and 95 +/- 2%, respectively). ACh-induced responses were inhibited by KCl-depolarization, K(Ca) channel blockers (TEA, charybdotoxin), or gap junction inhibitors (18alpha-glycyrrhetinic acid, hyperosmolar sucrose). The K(ATP) channel inhibitor glibenclamide, the K(IR) channel inhibitor barium chloride, or the CYP inhibitor 17-octadecynoic acid (ODYA) were without effect. The putative EDHF analogue 5,6-EET elicited constrictions in the presence of the endothelium that could be prevented by indomethacin or a TxA(2) receptor antagonist, whereas in the absence of the endothelium, EDHF elicited only small, charybdotoxin-insensitive decreases in aSM R(Ca) and dilations (max.: -8 +/- 2% and 27 +/- 4%, respectively). CONCLUSIONS: In skeletal muscle arterioles, EDHF 1) substantially and rapidly reduces myogenic tone by decreasing aSM [Ca(2+)](i) via opening K(Ca) channels, 2) it is unlikely to be 5,6-EET or other CYP metabolites, but 3) requires functional gap junctions.  相似文献   

9.
Nitric oxide and prostaglandins were shown to contribute to the endothelial mediation of flow-induced dilation of skeletal muscle arterioles of rats. Thus, we hypothesized that flow-induced dilation and its mediation are altered in gracilis muscle arterioles of mice deficient in the gene for endothelial nitric oxide synthase (eNOS-KO) compared with control wild-type (WT) mice. Gracilis muscle arterioles ( approximately 80 micrometer) of male mice were isolated, then cannulated and pressurized in a vessel chamber. The increases in diameter elicited by increases in perfusate flow from 0 to 10 microq/min were similar in arterioles from eNOS-KO (n=28) and WT (n=22) mice ( approximately 20 micrometer at 10 microL/min flow). Removal of the endothelium eliminated flow-induced dilations in vessels of both strains of mice. N(omega)-nitro-L-arginine (L-NNA, 10(-4) mol/L) significantly inhibited flow-induced dilation in arterioles of WT mice by approximately 51% but had no effect on responses of arterioles from eNOS-KO mice. Indomethacin (INDO, 10(-5) mol/L) inhibited flow-induced dilation of WT mice by approximately 49%, whereas it completely abolished this response in arterioles of eNOS-KO mice. Simultaneous administration of INDO and L-NNA eliminated flow-induced responses in arterioles of WT mice. Dilations to carbaprostacyclin were similar at concentrations of 10(-8) and 3x10(-8) mol/L but decreased significantly at 10(-7) mol/L in arterioles of eNOS-KO compared with those of WT mice. These findings demonstrate that, despite the lack of nitric oxide mediation, flow-induced dilation is close to normal in arterioles of eNOS-KO mice because of an enhanced release of endothelial dilator prostaglandins and suggest that this vascular adaptation may contribute to the regulation of peripheral resistance in eNOS-KO mice.  相似文献   

10.
Ungvari Z  Koller A 《Hypertension》2000,36(5):856-861
The myogenic response of skeletal muscle arterioles is enhanced in hypertension because of the release of endothelin (ET) and prostaglandin H(2) (PGH(2))/thromboxane A(2) (TxA(2)) from the endothelium. We hypothesized that ET and PGH(2)/TxA(2) modulate Ca(2+) signaling in arteriolar smooth muscle and thereby enhance myogenic constriction. Thus, simultaneous changes in intracellular Ca(2+) concentration in smooth muscle ([Ca(2+)](i)), measured by fura 2 microfluorometry (expressed as Ca(2+) fluorescence ratio [R(Ca)]), and diameter were obtained as a function of intraluminal pressure (P(i)) in isolated cannulated gracilis muscle arterioles (diameter approximately 120 micrometer) of normotensive Wistar rats (WR) and spontaneously hypertensive rats (SHR). In the absence of extracellular Ca(2+), increases in P(i) from 20 to 160 mm Hg increased the passive diameter of arterioles without changes in R(Ca). In the presence of extracellular Ca(2+) and endothelium, increases in P(i) elicited similar increases in R(Ca) (30+/-7% for control and 33+/-8% for SHR at 160 mm Hg) but a significantly (P<0.05) greater constriction of SHR arterioles compared with WR arterioles (at 160 mm Hg, 55+/-4% versus 38+/-2%, respectively, of passive diameter). In the absence of the endothelium, P(i)-induced changes in the R(Ca) and diameter of SHR and WR arterioles did not differ significantly. Also, a step increase in P(i) (from 80 to 140 mm Hg) elicited a similar increase in R(Ca) but greater constrictions in SHR versus WR arterioles. In the presence of the TxA(2) receptor inhibitor SQ29,548 and the ET(A) receptor inhibitor BQ123, there was no difference between responses of SHR and WR arterioles. In WR arterioles, increasing concentrations of KCl elicited a significant increase in R(Ca) (38+/-7% at 80 mmol/L) and completely constricted the arterioles. In contrast, constrictions to ET (52+/-7% at 3x10(-12) mol/L) and the TxA(2) agonist U46619 (40+/-8% at 3x10(-9) mol/L) were not accompanied by increases in R(Ca) at submaximal concentrations. Collectively, these findings suggest that in hypertension, endothelium-derived ET and PGH(2)/TxA(2) increase the Ca(2+) sensitivity of the contractile apparatus of arteriolar smooth muscle; thus, the similar increases in [Ca(2+)](i) in response to the elevation of intraluminal pressure elicit greater myogenic constriction.  相似文献   

11.
The role of Ca(2+)-activated potassium channels (K(Ca)) in flow-initiated intracellular events in microvessels is not known. We hypothesized that K(Ca) channels in the arteriolar endothelium are responsible for the mechanotransduction of flow/shear stress-induced arteriolar dilation in skeletal muscle and mesentery of rats. The active diameter of arterioles isolated from gracilis (80 mm Hg) and cremaster (60 mm Hg) muscles and mesentery (80 mm Hg) at a constant intraluminal pressure was 53 +/- 3, 77 +/- 5, and 72 +/- 6 microm, respectively. Their passive diameter (in Ca(2+)-free solution) was 113 +/- 3, 152 +/- 12, and 121 +/- 7 microm, respectively. At a constant intraluminal pressure stepwise increases in perfusate flow (25, 40, and 14 microL/min in 5, 10, and 2 microL/min steps) elicited a gradual increase in diameter of all three groups of arterioles up to 93 +/- 5, 137 +/- 11, and 102 +/- 7 microm, respectively. Flow-induced dilations of arterioles were eliminated by intraluminal administration of iberiotoxin (ibTX 10(-9) M), an inhibitor of high conductance K(Ca) channels (BK(Ca)). In contrast, arteriolar dilations to acetylcholine and sodium nitroprusside were not altered by this agent, indicating that BK(Ca) channels are not involved in the receptor-mediated endothelial synthesis of nitric oxide (NO) and that the inhibitor did not affect the action of NO on smooth muscle. Abluminal application of ibTX (10(-8) M) did not affect flow-dependent dilation. We conclude that in arterioles of several tissues activation of endothelial BK(Ca) channels is an obligatory step in the transduction of the signal initiated by changes in intraluminal flow/shear stress, leading to the release of endothelial factors evoking dilation.  相似文献   

12.
This study addresses the role of venule-derived mediators in the arteriolar constriction that accompanies hypercholesterolemia. Constriction was assessed by measuring the tone of small arterioles closely paired with venules in the mesentery of normal cholesterol rats (NC), high cholesterol rats (HC), HC rats injected with antibodies against CD18 and P-selectin (HC/mAbs), HC rats treated with the thromboxane synthase inhibitor, ozagrel (HC/ozagrel), and HC rats pretreated with anti-platelet serum (HC/APS). Venule-paired arterioles in the untreated HC group demonstrated enhanced tone compared with arterioles in the NC group, while no difference was found between unpaired arterioles of the two groups. Perivascular nitric oxide (NO) concentrations were found to be significantly decreased in venule-paired arterioles of HC rats (238+/-14 nM) compared with those of NC rats (426+/-42 nM). The injection of anti-adhesion antibodies successfully attenuated the enhanced arteriolar tone and venular leukocyte adherence in the HC group, and tended to increase levels of NO in venule-paired arterioles by 33% (to 326+/-19 nM; still lower than that of the NC group). Ozagrel and platelet depletion attenuated the enhanced arteriolar tone by 53% and 33%, respectively, without affecting NO concentrations. These findings indicate that the mechanism of blood cell-dependent arteriolar constriction during hypercholesterolemia may be dependent on thromboxane, a decrease in NO, and the proximity of the arterioles to postcapillary venules.  相似文献   

13.
High dietary salt intake decreases the endothelium-dependent dilation of skeletal muscle arterioles by inhibiting local nitric oxide (NO) activity without changing vascular smooth muscle responsiveness to NO. Under these conditions, microvascular walls show evidence of oxidative stress, and scavengers of reactive oxygen species (ROS) abolish this oxidative stress and restore normal arteriolar responses to acetylcholine (ACh). We tested the hypothesis that the salt-dependent appearance of microvascular ROS, and accompanying reduction in endothelium-dependent dilation, is due to a decrease in antioxidant enzyme expression or activity. We studied spinotrapezius muscle microvessels in rats fed normal (NS) (0.45%) or high (HS) (7%) salt diets for 4-5 weeks. Western analysis of arteriolar and venular protein showed no difference between groups in the content of superoxide dismutase (Cu/Zn SOD), catalase, or glutathione peroxidase. The catalase inhibitor 3-amino-1,2,4-triazole (3AT) increased arteriolar and venular oxidant activity (assessed by tetranitroblue tetrazolium reduction) by the same amount in both groups, suggesting similar levels of catalase activity. 3AT did not affect arteriolar responses to ACh in either group. The Cu/Zn SOD inhibitor diethyldithiocarbamate increased arteriolar and venular oxidant activity to a lesser extent in HS rats, suggesting reduced Cu/Zn SOD activity in this group. Cu/Zn SOD inhibition decreased arteriolar responses to ACh only in NS rats. These findings suggest that endogenous Cu/Zn SOD preserves the endothelium-dependent control of arteriolar tone in NS rats, and that a reduction in Cu/Zn SOD activity contributes to the loss of arteriolar NO activity in HS rats.  相似文献   

14.
Atherosclerosis and hyperlipidemia impair endothelium-dependent nitric oxide (NO)-mediated dilations in conducting arteries. In addition to NO, the endothelium releases an endothelium-derived hyperpolarizing factor (EDHF) in response to acetylcholine (ACh), which is particularly important in microvessels and initiates a dilation that conducts along the vessel through gap junctional communication. The expression of connexins is, however, altered by hypercholesterolemia. Therefore, we studied endothelium-dependent dilations and their conduction in murine hypercholesterolemic models. Dilations were assessed by intravital microscopy in arterioles with a diameter of approximately 35 microm in ApoE and LDL receptor (LDLR(-/-))-deficient mice after superfusion or locally confined application of ACh. ACh induced comparable concentration-dependent dilations in wild-type, LDLR(-/-), and ApoE(-/-) mice fed a normal or high-cholesterol diet, however EC(50) was slightly higher in ApoE(-/-) mice. Furthermore, the NO donor sodium-nitroprusside dilated arterioles to a similar extent (approximately 60%). Locally initiated ACh dilations (approximately 68%) conducted up to a distance of 1,100 microm without significant attenuation even under severe hypercholesterolemic conditions. Since ACh dilation in the arterioles of mice is mainly mediated via EDHF, we conclude that hypercholesterolemia does not alter EDHF release and efficacy. This conclusion is confirmed by an intact conducted response since EDHF is a prerequisite for this response. The intact conduction also suggests that gap-junctional communication is functionally preserved in these models.  相似文献   

15.
We previously reported that adrenomedullin (AM), a potent vasodilator peptide discovered in pheochromocytoma cells, stimulates nitric oxide (NO) release in the rat kidney. To further investigate whether the NO-cGMP pathway is involved in the mechanisms of AM-induced vasodilation, we examined the effects of E-4021, a cGMP-specific phosphodiesterase inhibitor, on AM-induced vasorelaxation in aortic rings and perfused kidneys isolated from Wistar rats. We also measured NO release from the kidneys using a chemiluminescence assay. AM (10(-10) to 10(-7) mol/L) relaxed the aorta precontracted with phenylephrine in a dose-dependent manner. Denudation of endothelium (E) attenuated the vasodilatory action of AM (10(-7) mol/L AM: intact (E+) -25.7+/-5.2% versus denuded (E-) -7. 8+/-0.6%, P<0.05). On the other hand, pretreatment with 10(-8) mol/L E-4021 augmented AM-induced vasorelaxation in the intact aorta (-49. 0+/-7.9%, P<0.05) but not in the denuded one. E-4021 also enhanced acetylcholine (ACh)-induced vasorelaxation in the rat intact aorta (10(-7) mol/L ACh -36.6+/-8.4% versus 10(-8) mol/L E-4021+10(-7) mol/L ACh -62.7+/-3.1%, P<0.05). In perfused kidneys, AM-induced vasorelaxation was also augmented by preincubation with E-4021 (10(-9) mol/L AM -15.4+/-0.6% versus 10(-8) mol/L E-4021+10(-9) mol/L AM -23.6+/-1.2%, P<0.01). AM significantly increased NO release from rat kidneys (DeltaNO: +11.3+/-0.8 fmol. min-1. g-1 kidney at 10(-9) mol/L AM), which was not affected by E-4021. E-4021 enhanced ACh-induced vasorelaxation (10(-9) mol/L ACh -9.7+/-1.7% versus 10(-8) mol/L E-4021+10(-9) mol/L ACh -18.8+/-2.9%, P<0.01) but did not affect ACh-induced NO release from the kidneys. In the aorta and the kidney, 10(-4) mol/L of NG-nitro-L-arginine methyl ester, an NO synthase inhibitor, and 10(-5) mol/L of methylene blue, a guanylate cyclase inhibitor, reduced the vasodilatory effect of AM. These results suggest that the NO-cGMP pathway is involved in the mechanism of AM-induced vasorelaxation, at least in the rat aorta and kidney.  相似文献   

16.
We examined effects of hyperhomocysteinemia on structure and mechanics of cerebral arterioles. We measured plasma total homocysteine (tHcy) and pressure, diameter, and cross-sectional area of the vessel wall in maximally dilated cerebral arterioles in heterozygous cystathionine beta-synthase-deficient (CBS(+/-)) mice and wild-type (CBS(+/+)) littermates that were provided with drinking water that was unsupplemented (control diet) or supplemented with 0.5% L-methionine (high-methionine diet). Plasma tHcy was 5.0+/-1.1 micro mol/L in CBS(+/+) mice and 8.3+/-0.9 micro mol/L in CBS(+/-) mice (P<0.05 versus CBS(+/+) mice) fed the control diet. Plasma tHcy was 17.2+/-4.6 micro mol/L in CBS(+/+) mice and 21.2+/-3.9 micro mol/L in CBS(+/-) mice (P<0.05) fed the high-methionine diet. Cross-sectional area of the vessel wall was significantly increased in CBS(+/-) (437+/-22 micro m(2)) mice fed control diet and CBS(+/+) (442+/-36 micro m(2)) and CBS(+/-) (471+/-46 micro m(2)) mice fed high-methionine diet relative to CBS(+/+) (324+/-18 micro m(2)) mice fed control diet (P<0.05). During maximal dilatation, the stress-strain curves in cerebral arterioles of CBS(+/-) mice on control diet and CBS(+/+) and CBS(+/-) mice on high-methionine diet were shifted to the right of the curve in cerebral arterioles of CBS(+/+) mice on control diet, an indication that distensibility of cerebral arterioles was increased in mice with elevated levels of plasma tHcy. Thus, hyperhomocysteinemia in mice was associated with hypertrophy and an increase in distensibility of cerebral arterioles. These findings suggest that hyperhomocysteinemia promotes cerebral vascular hypertrophy and altered cerebral vascular mechanics, both of which may contribute to the increased incidence of stroke associated with hyperhomocysteinemia.  相似文献   

17.
目的探讨血清同型半胱氨酸(Hcy)与老年脑出血并发抑郁患者认知功能的相关性。方法选取老年高血压性基底节区脑出血患者336例,根据入院后21d是否合并抑郁分为观察组和对照组,每组168例。比较2组简易智能状态检查量表(MMSE)评分、事件相关电位检测指标、Hcy水平和高Hcy血症发生率,采用Pearson相关分析Hcy水平与MMSE评分的相关性。结果观察组记忆力、注意计算力、定向力、语言能力、MMSE评分及P3波幅明显低于对照组,N2潜伏期和P3潜伏期明显高于对照组,差异有统计学意义(P<0.05,P<0.01)。观察组Hcy水平和高Hcy血症发生率明显高于对照组,差异有统计学意义[(23.90±4.60)μmol/L vs (16.70±3.16)μmol/L,P=0.030;42.26%vs 20.24%,P=0.037]。脑出血并发抑郁患者Hcy水平与MMSE评分呈负相关(r=-0.675,P<0.05)。结论老年高血压性基底节区脑出血并发抑郁患者存在不同程度的认知障碍,且Hcy水平升高,高Hcy血症发生率较高,Hcy水平升高与其认知功能障碍相关。  相似文献   

18.
Bagi Z  Hamar P  Kardos M  Koller A 《Lupus》2006,15(6):326-334
Systemic lupus erythematosus (SLE) is associated with disturbances in the microcirculation of various tissues, yet the nature of arteriolar dysfunction has not been characterized. Thus, changes in diameter of isolated, pressurized skeletal muscle arterioles of mice with systemic autoimmune disease (lupus prone, MRL/lpr four-month old female) and control (MRL) mice were investigated by video-microscopy. Arteriolar responses to changes in intraluminal pressure, flow, and to vasoactive agents with known mechanisms of action were compared. The active and passive (in Ca2+ free solution) diameter of MRL/lpr arterioles were not significantly different compared to MRL and morphometric changes were not apparent. Compared to MRL mice the endothelium-dependent dilations to increase in flow, acetylcholine and bradykinin were markedly reduced in arterioles of MRL/lpr mice. Endothelium-independent dilations to sodium-nitroprusside and adenosine were similar in MRL and MRL/lpr arterioles. Furthermore, angiotensin II elicited greater constrictions in MRL/lpr arterioles, whereas serotonin-induced constrictions were similar in both groups. Thus, in arterioles of MRL/lpr mice endothelium-dependent dilator mechanisms are impaired and constriction to angiotensin II is enhanced, suggesting specific alterations in the vasomotor function of microvessels that are likely contribute to the disturbance of skeletal muscle blood flow observed in systemic lupus erythematosus.  相似文献   

19.
cGMP and cGMP-dependent protein kinase type I (cGKI) mediate the dilation of large vessels in response to NO and acetylcholine (ACh). However, the physiological significance of the NO/cGMP/cGKI pathway in resistance vessels is controversial. Here, we analyzed NO- and ACh-induced dilations of arterioles in cGKI-deficient (cGKI-/-) or endothelial NO synthase-deficient (eNOS-/-) mice. Mean arterial pressure was similar in cGKI-/- and wild-type mice (105 mm Hg). Pressure drops in response to intracarotid bolus application of the NO donor sodium nitroprusside (SNP) were almost abolished in cGKI-/- mice, whereas ACh-induced pressure decreases remained intact in cGKI-/- and eNOS-/- mice. The direct observation of arterioles in the cremaster muscle by intravital microscopy showed impaired SNP-induced dilations in cGKI-/- mice (by 80%) and normal ACh-induced dilations in cGKI-/- and eNOS-/- mice. ACh-induced dilations in eNOS-/- mice were attenuated by iberiotoxin (by 50%), indicating that they were mediated in part by Ca2+-activated K+ channels, but not by inhibitors of cyclooxygenase or p450-monooxygenases. We conclude that cGMP and cGKI are the major effectors of NO to induce acute dilations of murine resistance vessels. However, the NO/cGMP/cGKI pathway is not essential for ACh-induced dilation of arterioles and for basal blood pressure regulation in mice.  相似文献   

20.
High circulating concentrations of homocysteine (ie, hyperhomocysteinemia [Hhcy]) impair the vascular function of peripheral conduit arteries and arterioles perfusing splanchnic and skeletal muscle regions. The effects of HHcy on coronary resistance vessel function and other indexes of vascular function, ie, arterial permeability and stiffening, are unclear. We tested the hypotheses that HHcy impairs coronary resistance vessel reactivity; increases carotid arterial permeability; and initiates arterial stiffening. Male rats that consumed folate-replete (CON, n=44) or folate-deplete (HHcy, n=48) chow for 4 to 5 weeks had total plasma homocysteine concentrations of 7+/-2 or 58+/-4 micromol/L, respectively. Maximal acetylcholine-evoked relaxation (approximately 40% vs approximately 60%) and tension development from baseline in response to nitric oxide synthase inhibition (approximately 20% vs approximately 40%) were lower (both P<0.05) in coronary resistance vessels (approximately 120 microm, internal diameter) isolated from HHcy versus CON animals, respectively, whereas sodium nitroprusside-evoked relaxation and contractile responses to serotonin and potassium chloride were similar between groups. Permeability to 4400 MW and 65 000 MW fluorescently labeled (TRITC) dextran reference macromolecules (quantitative fluorescence microscopy) was approximately 44% and approximately 24% greater (P<0.05), respectively, in carotid arteries from HHcy versus CON rats. Maximal strain, evaluated by using a vessel elastigraph, was less ( approximately 32% vs 42%, P<0.05) in carotid arterial segments from HHcy versus CON animals, respectively. Finally, estimates of oxidative (copper-zinc+manganese superoxide dismutase activity) and glycoxidative (pentosidine) stress were elevated (P<0.05) in arterial tissue from HHcy versus CON rats. These findings suggest that moderately severe HHcy evoked by folate-depletion impairs endothelium-dependent relaxation of coronary resistance vessels, increases carotid arterial permeability, and initiates arterial stiffening. HHcy may produce these effects by a mechanism associated with increased oxidative and glycoxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号