首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The purpose of this paper is to evaluate the energy dependence of the response of two new high sensitivity models of radiochromic films EBT and XR-QA. We determined the dose response curves of these films for four different radiation sources, namely, 6 MV photon beams (6 MVX), Ir-192, I-125, and Pd-103. The first type (EBT) is designed for intensity modulated radiation therapy (IMRT) dosimetry, and the second type (XR-QA) is designed for kilovoltage dosimetry. All films were scanned using red (665 nm) and green (520 nm) light sources in a charge-coupled device-based densitometer. The dose response curves [net optical density (NOD) versus dose] were plotted and compared for different radiation energies and light sources. Contrary to the early GAFCHROMIC film types (such as models XR, HS, MD55-2, and HD810), the net optical densities of both EBT and XR-QA were higher with a green (520 nm) than those with a red (665 nm) light source due to the different absorption spectrum of the new radiochromic emulsion. Both film types yield measurable optical densities for doses below 2 Gy. EBT film response is nearly independent of radiation energy, within the uncertainty of measurement. The NOD values of EBT film at 1 and 2 Gy are 0.13 and 0.25 for green, and 0.1 and 0.17 for red, respectively. In contrast, the XR-QA film sensitivity varies with radiation energy. The doses required to produce NOD of 0.5 are 6.9, 5.4, 0.7, and 0.9 Gy with green light and 19, 13, 1.7, and 1.5 Gy with red light, for 6 MVX, Ir-192, I -125, and Pd-103, respectively. EBT film was found to have minimal photon energy dependence of response for the energies tested and is suitable for dosimetry of radiation with a wide energy spectrum, including primary and scattered radiation. XR-QA film is promising for kilovoltage sources with a narrow energy spectra. The new high sensitivity radiochromic films are promising tools in radiation dosimetry.  相似文献   

2.
Megavoltage x-ray beams exhibit the well-known phenomena of dose buildup within the first few millimeters of the incident phantom surface, or the skin. Results of the surface dose measurements, however, depend vastly on the measurement technique employed. Our goal in this study was to determine a correction procedure in order to obtain an accurate skin dose estimate at the clinically relevant depth based on radiochromic film measurements. To illustrate this correction, we have used as a reference point a depth of 70 micron. We used the new GAFCHROMIC dosimetry films (HS, XR-T, and EBT) that have effective points of measurement at depths slightly larger than 70 micron. In addition to films, we also used an Attix parallel-plate chamber and a home-built extrapolation chamber to cover tissue-equivalent depths in the range from 4 micron to 1 mm of water-equivalent depth. Our measurements suggest that within the first millimeter of the skin region, the PDD for a 6 MV photon beam and field size of 10 x 10 cm2 increases from 14% to 43%. For the three GAFCHROMIC dosimetry film models, the 6 MV beam entrance skin dose measurement corrections due to their effective point of measurement are as follows: 15% for the EBT, 15% for the HS, and 16% for the XR-T model GAFCHROMIC films. The correction factors for the exit skin dose due to the build-down region are negligible. There is a small field size dependence for the entrance skin dose correction factor when using the EBT GAFCHROMIC film model. Finally, a procedure that uses EBT model GAFCHROMIC film for an accurate measurement of the skin dose in a parallel-opposed pair 6 MV photon beam arrangement is described.  相似文献   

3.
Gafchromic EBT radiochromic film is one of the newest radiation-induced auto-developing x-ray analysis films available for therapeutic radiation dosimetry in radiotherapy applications. The spectral absorption properties in the visible wavelengths have been investigated and results show two main peaks in absorption located at 636 nm and 585 nm. These absorption peaks are different to many other radiochromic film products such as Gafchromic MD-55 and HS film where two peaks were located at 676 nm and 617 nm respectively. The general shape of the absorption spectra is similar to older designs. A much higher sensitivity is found at high-energy x-rays with an average 0.6 OD per Gy variation in OD seen within the first Gy measured at 636 nm using 6 MV x-rays. This is compared to approximately 0.09 OD units for the first Gy at the 676 nm absorption peak for HS film at 6 MV x-ray energy. The film's blue colour is visually different from older varieties of Gafchromic film with a higher intensity of mid-range blue within the film. The film provides adequate relative absorbed dose measurement for clinical radiotherapy x-ray assessment in the 1-2 Gy dose range which with further investigation may be useful for fractionated radiotherapy dose assessment.  相似文献   

4.
Gafchromic XRCT radiochromic film is a self-developing high sensitivity radiochromic film product which can be used for assessment of delivered radiation doses which could match applications such as computed tomography (CT) dosimetry. The film automatically changes colour upon irradiation changing from a yellow to green/brown colour. The absorption spectra of Gafchromic XRCT radiochromic film as measured with reflectance spectrophotometry have been investigated to analyse the dosimetry characteristics of the film. Results show two main absorption peaks produced from irradiation located at 636 nm and 585 nm. This is similar to EBT Gafchromic film. A high level of sensitivity is found for this film with a 1 cGy applied dose producing an approximate net optical density change of 0.3 at 636 nm. This high sensitivity combined with its relatively energy independent nature around the 100 kVp to 150 kVp x-ray energy range provides a unique enhancement in dosimetric measurement capabilities over currently available dosimetry films for CT applications.  相似文献   

5.
Evaluation of GAFCHROMIC EBT film for Cyberknife dosimetry   总被引:1,自引:0,他引:1  
External beam therapy (EBT) GAFCHROMIC film is evaluated for dosimetry and characterization of the CyberKnife radiation beams. Percentage depth doses, lateral beam profiles, and output factors are measured in solid water using EBT GAFCHROMIC film (International Specialty Products, Wayne, NJ) for the 6 MV radiation beams of diameter 5 to 60 mm produced by the CyberKnife (Accuray, Sunnyvale, CA). The data are compared to those measured with the PTW 60008 diode and the Wellhofer CC01 ion chamber in water. For the small radiation field sizes used in stereotactic radiosurgery, lateral electronic disequilibrium and steep dose gradients exist in a large portion of these fields, requiring the use of high-resolution measurement techniques. For small beams, the detector size approaches the dimensions of the beam and adversely affects measurement accuracy in regions where the gradient varies across the detector. When film is the detector, the scanning system is usually the resolution-limiting component. Radiographic films based upon silver halide (AgH) emulsions are widely used for relative dosimetry of external radiation treatment beams in the megavoltage energy range, because of their good spatial resolution and capability to provide integrated dosimetry over two dimensions. Film dosimetry, however, has drawbacks due to its steep energy dependence at low photon energies as well as film processor and densitometer artifacts. EBT radiochromic film, introduced in 2004 specifically for IMRT dosimetry, may be a detector of choice for the characterization of small radiosurgical beams, because of its near-tissue equivalence, radiation beam energy independence, high spatial resolution, and self developing properties. For radiation beam sizes greater than 10 mm, the film measurements were identical to those of the diode and ion chamber. For the smaller beam diameters of 7.5 and 5 mm, however, there were differences in the data measured with the different detectors, which are attributed to their different spatial resolution and non-water-equivalence.  相似文献   

6.
Rink A  Vitkin IA  Jaffray DA 《Medical physics》2005,32(8):2510-2516
A new radiochromic film, GafChromic EBT, was investigated for use in a real-time radiation dosimetry system. It was found to be approximately eight times more sensitive to ionizing radiation dose, exhibited less postexposure development and achieved stable readout faster than one of its predecessors, GafChromic MD-55. A clear distinction in change in optical density between exposure and postexposure was observed, but the measurements obtained during exposure were not linear with time or dose. This could not be explained by a shift in wavelength of maximum change in absorbance, as it was stable at approximately 636 nm during the entire exposure range (up to 9.52 Gy). Increasing the spectral window of interest over which calculations were performed did little to correct the nonlinearity. The radiochromic film exhibited small dose rate dependence in real-time measurements, with an increase in standard deviation of change in optical density measurements from 0.9% to 1.8% over a sixfold variation in dose rate. Overall, GafChromic EBT has increased sensitivity and decreased postexposure darkening, and this bodes well for its potential role as a radiation dosimeter, including real-time applications.  相似文献   

7.
The visible absorption spectra of Radiachromic FWT-60 radiochromic film have been investigated to analyse the dosimetry characteristics of the film. The film is radiation sensitive to high absorbed doses. The visible absorption spectra of this film when exposed to photon radiation show a peak at 605 nm which is stable over the dose range of 0 Gy to 20 kGy. The radiation sensitive absorption spectra are present over the wavelength range of approximately 500 nm to 660 nm. Negligible dose response is seen in the infrared region or the UV region of wavelength readout. Variation of sensitivity of response can be achieved by varying the wavelength of readout with the maximum measured response of 0.077 OD units per kGy. The film can be an ideal dosimeter for areas where high dose levels need to be measured.  相似文献   

8.
Radiochromic film dosimetry has been extensively used for intravascular brachytherapy applications for near field within 1 cm from the sources. With the recent introduction of new model of radiochromic films, GAFCHROMIC EBT, with higher sensitivity than earlier models, it is promising to extend the distances out to 5 cm for low dose rate (LDR) source dosimetry. In this study, the use of new model GAFCHROMIC EBT film for 125I seed dosimetry in Solid Water was evaluated for radial distances from 0.06 cm out to 5 cm. A multiple film technique was employed for four 125I seeds (Implant Sciences model 3500) with NIST traceable air kerma strengths. Each experimental film was positioned in contact with a 125I seed in a Solid Water phantom. The products of the air kerma strength and exposure time ranged from 8 to 3158 U-h, with the initial air kerma strength of 6 U in a series of 25 experiments. A set of 25 calibration films each was sequentially exposed to one 125I seed at about 0.58 cm distance for doses from 0.1 to 33 Gy. A CCD camera based microdensitometer, with interchangeable green (520 nm) and red (665 nm) light boxes, was used to scan all the films with 0.2 mm pixel resolution. The dose to each 125I calibration film center was calculated using the air kerma strength of the seed (incorporating decay), exposure time, distance from seed center to film center, and TG43U1S1 recommended dosimetric parameters. Based on the established calibration curve, dose conversion from net optical density was achieved for each light source. The dose rate constant was determined as 0.991 cGy U(-1)h(-1) (+/-6.9%) and 1.014 cGy U(-1)h(-1) (+/-6.8%) from films scanned using green and red light sources, respectively. The difference between these two values was within the uncertainty of the measurement. Radial dose function and 2D anisotropy function were also determined. The results obtained using the two light sources corroborated each other. We found good agreement with the TG43U1S1 recommended values of radial dose function and 2D anisotropy function, to within the uncertainty of the measurement. We also verified the dosimetric parameters in the near field calculated by Rivard using Monte Carlo method. The radial dose function values in Solid Water were lower than those in water recommended by TG43U1S1, by about 2%, 3%, 7%, and 14% at 2, 3, 4, and 5 cm, respectively, partially due to the difference in the phantom material composition. Radiochromic film dosimetry using GAFCHROMIC EBT model is feasible in determining 2D dose distributions around low dose rate 125I seed. It is a viable alternative to TLD dosimetry for 125I seed dose characterization.  相似文献   

9.
The response of radiochromic film, GafChromic EBT, was investigated for dependence on x-ray beam energy using a previously reported real-time optical readout approach. X-ray beams of energy from 75 kVp to 18 MV were employed. The dose-induced change in optical density for the EBT film was compared to values obtained for GafChromic HS and MD-55 films, exposed under the same conditions. All responses were normalized to that obtained for 60Co irradiation. While change in optical density for 1 Gy of applied dose as measured with HS and MD-55 films decreased by approximately 40% at low energies, the mean change in optical density of EBT film remained within 3% of that in the 60Co beam over the entire energy range.  相似文献   

10.
The effects of temperature on real time changes in optical density (DeltaOD) of GAFCHROMIC EBT film were investigated. The spectral peak of maximum change in absorbance (lambdamax) was shown to downshift linearly when the temperature of the film was increased from 22 to 38 degrees C. The DeltaOD values were also shown to decrease linearly with temperature, and this decrease could not be attributed to the shift in lambdamax. A compensation scheme using lambdamax and a temperature-dependent correction factor was investigated, but provided limited improvement. Part of the reason may be the fluctuations in hydration of the active component, which were found to affect both position of absorbance peaks and the sensitivity of the film. To test the effect of hydration, laminated and unlaminated films were desiccated. This shifted both the major and minor absorbance peaks in the opposite direction to the change observed with temperature. The desiccated film also exhibited reduced sensitivity to ionizing radiation. Rehydration of the desiccated films did not reverse the effects, but rather gave rise to another form of the polymer with absorbance maxima upshifted further 20 nm. Hence, the spectral characteristics and sensitivity of the film can be dependent on its history, potentially complicating both real-time and conventional radiation dosimetry.  相似文献   

11.
Radiation dose deposited on a radiochromic film is considered as a dose image. A precise image extraction system with commensurate capabilities is required to measure the transmittance of the image and translate it to radiation dose. This paper describes the development of a spectral microdensitometer which has been designed to achieve this goal under the conditions of (a) the linearity and sensitivity of the dose response curve of the radiochromic film being highly dependent on the wavelength of the analysing light, and (b) the inherent high spatial resolution of the film. The microdensitometer consists of a monochromator which provides an analysing light of variable wavelength, a film tray on a high-precision scanning stage, a transmission microscope coupled to a thermoelectrically cooled CCD camera, a microcomputer and corresponding interfaces. The measurement of the transmittance of the radiochromic film is made at the two absorption peaks with maximum sensitivities. The high spatial resolution of the instrument, of the order of micrometres, is achieved through the use of the microscope combined with a measure-and-step technique to cover the whole film. The performance of the instrument in regard to the positional accuracy, system reproducibility and dual-peak film calibration was evaluated. The results show that the instrument fulfils the design objective of providing a precise image extraction system for radiochromic films with micrometre spatial resolution and sensitive dose response.  相似文献   

12.
Post-irradiation colouration of Gafchromic EBT radiochromic film   总被引:1,自引:0,他引:1  
Gafchromic EBT (International Specialty Products, NJ, USA), radiochromic film is one of the newest radiation-induced auto-developing x-ray analysis films available for therapeutic radiation dosimetry in radiotherapy applications. Part of any radiochromic film product which undergoes a polymerization reaction for automatic darkening is an associated post-irradiation colouration whereby the film continues to darken after irradiation has ceased. The Gafchromic EBT film has been shown to produce an approximate 6% to 9% increase in post-irradiation optical density within the first 12 h of irradiation within the 1 Gy to 5 Gy dose range. This is compared to approximately 13%, 15% and 19% for MD-55-2, XR type T and HS radiochromic film, respectively. It is also shown that the EBT film's post-irradiation growth stabilizes to within 1% within the first 6 h. Thus EBT provides a reduced post-irradiation growth effect. However, to increase the accuracy of the film analysis, it is recommended that films be left for a significant period (at least 6 h) before the analysis is performed to provide a high level of accuracy. Also, calibration films must be read out with the same post-irradiation time to further enhance the accuracy of dosimetry.  相似文献   

13.
Characterization of narrow beams used in proton stereotactic radiosurgery (PSRS) requires special efforts, since the use of finite size detectors can lead to distortion of the measured dose distributions. Central axis depth doses, lateral profiles and field size dependence factors are the most important beam characteristics to be determined prior to dosimetry calculations and beam modelling for PSRS. In this paper we report recommendations for practical dosimetry techniques which were developed from a comparison of beam characteristics determined with a variety of radiation detectors for 126 and 155 MeV narrow proton beams shaped with 2-30 mm circular brass collimators. These detectors included small-volume ionization chambers, a diamond detector, an Hi-p Si diode, TLD cubes, radiographic and radiochromic films. We found that both types of film are suitable for profile measurements in narrow beams. Good agreement between depth dose distributions measured with ionization chambers, diamond and diode detectors was demonstrated in beams with diameters of 20-30 mm. The diode detector can be used in smaller beams, down to 5 mm diameter. For beams with diameters less than 5 mm, reliable depth dose data may be obtained only with radiochromic film. The tested ionization chambers are appropriate for calibration of beams with diameters of 20-30 mm. TLD cubes and diamond detectors are useful to determine relative dose in beams with diameters of 10-20 mm. Field size factors for smaller beams should be obtained with diode and radiochromic film. We conclude that dosimetry characterization of proton beams down to several millimetres in diameter can be performed using the described procedures.  相似文献   

14.
The visible absorption spectra of Gafchromic XR type-T radiochromic film have been investigated to analyse the dosimetry characteristics of the film with visible light densitometers. Common densitometers can use photospectrometry, fluorescent light (broad-band visible), helium neon (632 nm), light emitting diode (LED) or other specific bandwidth spectra. The visible absorption spectra of this film when exposed to photon radiation show peaks at 676 nm and 618 nm at 2 Gy absorbed doses which shift to slightly lower wavelengths (662 nm and 612 nm at 8 Gy absorbed dose) at higher doses. This is similar to previous models of Gafchromic film such as MD-55-2 and HS but XR type-T also includes a large absorption at lower visible wavelengths due to 'yellow' dyes placed within the film to aid with visible recognition of the film exposure level. The yellow dye band pass is produced at approximately 520 nm to 550 nm and absorbs wavelengths lower than this value within the visible spectrum. This accounts for the colour change from yellow to brown through the added absorption in the red wavelengths with radiation exposure. The film produces a relatively high dose sensitivity with up to 0.25 OD units per Gy change at 672 nm at 100 kVp x-ray energy. Variations in dose sensitivity can be achieved by varying wavelength analysis.  相似文献   

15.
16.
In this study, we present three significant artifacts that have the potential to negatively impact the accuracy and precision of film dosimetry measurements made using GAFCHROMIC EBT radiochromic film when read out with CCD flatbed scanners. Films were scanned using three commonly employed instruments: a Macbeth TD932 spot densitometer, an Epson Expression 1680 CCD array scanner, and a Microtek ScanMaker i900 CCD array scanner. For the two scanners we assessed the variation in optical density (OD) of GAFCHROMIC EBT film with scanning bed position, angular rotation of the film with respect to the scan line direction, and temperature inside the scanner due to repeated scanning. Scanning uniform radiochromic films demonstrated a distinct bowing effect in profiles in the direction of the CCD array with a nonuniformity of up to 17%. Profiles along a direction orthogonal to the CCD array demonstrated a 7% variation. A strong angular dependence was found in measurements made with the flatbed scanners; the effect could not be reproduced with the spot densitometer. An IMRT quality assurance film was scanned twice rotating the film 90' between the scans. For films scanned on the Epson scanner, up to 12% variation was observed in unirradiated EBT films rotated between 0 degrees and 90 degrees, which decreased to approximately 8% for EBT films irradiated to 300 cGy. Variations of up to 80% were observed for films scanned with the Microtek scanner. The scanners were found to significantly increase the film temperature with repeated scanning. Film temperature between 18 and 33 degrees C caused OD changes of approximately 7%. Considering these effects, we recommend adherence to a strict scanning protocol that includes: maintaining the orientation of films scanned on flatbed scanners, limiting scanning to the central portion of the scanner bed, and limiting the number of consecutive scans to minimize changes in OD caused by film heating.  相似文献   

17.
High sensitivity radiochromic film dose comparisons   总被引:3,自引:0,他引:3  
This short note investigates the dose characteristics of a relatively new high sensitivity radiochromic film (Gafchromic HS) and compares dose and energy response to various Gafchromic film types and radiographic (EDR-2) film. The original MD-55-1 and two improved sensitivity films, MD-55-2 and HS film, were investigated for energy and dose response. Results show that the energy response of the new HS film is relatively the same as the original MD-55-1 and MD-55-2 films with a decrease in sensitivity at lower x-ray energies, with response decreasing down to approximately 0.64 (normalized to 1 for a 6 MV beam) for a 28 keV effective energy beam. This is compared to an over response of 9.2 at the same energy for EDR-2 film. The dose response at the maximum absorption peak was found to be approximately 3.8 and 1.9 times more sensitive than MD-55-1 and MD-55-2 films, respectively. At the absorption peak yielding the maximum optical density change, HS was found to be approximately 0.2 to 0.25 times the sensitivity of EDR-2.  相似文献   

18.
The suitability of radiochromic EBT film was studied for high-precision clinical quality assurance (QA) by identifying the dose response for a wide range of irradiation parameters typically modified in highly-conformal treatment techniques. In addition, uncertainties associated with varying irradiation conditions were determined. EBT can be used for dose assessment of absorbed dose levels as well as relative dosimetry when compared to absolute absorbed dose calibrated using ionization chamber results. For comparison, a silver halide film (Kodak EDR-2) representing the current standard in film dosimetry was included. As an initial step a measurement protocol yielding accurate and precise results was established for a flatbed transparency scanner (Epson Expression 1680 Pro) that was utilized as a film reading instrument. The light transmission measured by the scanner was found to depend on the position of the film on the scanner plate. For three film pieces irradiated with doses of 0 Gy, approximately 1 Gy and approximately 7 Gy, the pixel values measured in portrait or landscape mode differed by 4.7%, 6.2% and 10.0%, respectively. A study of 200 film pieces revealed an excellent sheet-to-sheet uniformity. On a long time scale, the optical development of irradiated EBT film consisted of a slow but steady increase of absorbance which was not observed to cease during 4 months. Sensitometric curves of EBT films obtained under reference conditions (SSD = 95 cm, FS = 5 x 5 cm(2), d = 5 cm) for 6, 10 and 25 MV photon beams did not show any energy dependence. The average separation between all curves was only 0.7%. The variation of the depth d (range 2-25 cm) in the phantom did not affect the dose response of EBT film. Also the influence of the radiation field size (range 3 x 3-40 x 40 cm(2)) on the sensitometric curve was not significant. For EDR-2 films maximum differences between the calibration curves reached 7-8% for X6MV and X25MV. Radiochromic EBT film, in combination with a flatbed scanner, presents a versatile system for high-precision dosimetry in two dimensions, provided that the intrinsic behaviour of the film reading device is taken into account. EBT film itself presents substantial improvements on formerly available models of radiographic and a radiochromic film and its dosimetric characteristics allow us to measure absorbed dose levels in a large variety of situations with a single calibration curve.  相似文献   

19.
The effect of dose rate on the real-time change in optical density (DeltaOD) of a GAFCHROMIC EBT film is quantified using a previously reported optical readout approach. A range of doses (5-1000 cGy) and dose rates (16-520 cGy min(-1)) are used, and a statistically significant difference between DeltaOD of films exposed at different dose rates occurs within approximately one order of magnitude change in the dose rate. A small increase in per cent standard deviation of measured DeltaOD values is also observed when the entire dose rate range was used, but in all cases combining all DeltaOD values produces per cent standard deviation of <4.5%. Thus, whether the dose rate effect is clinically significant depends on the specific application of EBT and the desired accuracy.  相似文献   

20.
不同探测器在多叶准直器质量保证中的定位精度比较   总被引:2,自引:0,他引:2  
目的:比较辐射自显影胶片、电子射野影像系统、电离室矩阵等不同探测器在多叶准直器质量保证中的定位精度。方法:采用辐射自显影胶片(GAFCHROMIC EBT胶片)、电子射野影像系统、电离室矩阵(IBA公司Matrixx和PTW公司Seven29)测量和比较瓦里安公司Clinac ix加速器的多叶准直器叶片的边缘的边响应函数,比较测量结果,评价不同探测器的定位精度。结果:四种探测器的定位精度均可达到0.1mm,其中电子射野影像系统的灵敏度最高。结论:上述探测器均能满足临床质控需要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号