首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以强度20V,频率50Hz、脉宽200μs、刺激间隔时间333ms/s、持续8h建立颈神经外卡压动物模型。电刺激后,大鼠肌纤维萎缩,发生炎症反应,结缔组织出现局部纤维化,软骨细胞增生,平均肌纤维横截面积减少,神经髓鞘不连续,部分脱髓鞘改变,神经细胞显微结构受到破坏,上述现象随刺激时间的延长而加重。实验侧颈肩部及上肢肌肉可测得正尖,纤颤等失神经电位改变,变化随刺激时间延长而增大,EMG电位逐渐出现高频正尖波及多相电位,对照侧受累也有相应改变,但程度较轻。  相似文献   

2.
研究磁刺激肌肉脑诱发电位的传入机制。方法对肌松驰下腓肠机MM-SEP及电刺激踝部胫后神经体感诱发电位进行配对对比研究。结果:(1)肌松驰无机收缩时仍可记录到MMSEP;(2)配对腓肠肌MMSEP与 胫后神经SEPP40潜伏期差值伴与不伴肌收缩相差显著;(3)伴肌收空缩时,MMSEP较配对SEPP40潜伏期显著延长,不伴肌收时则相差不显著。结论:下沉伴肌收缩时,磁刺激很可能兴奋肌肉运动神经末梢致肌肉  相似文献   

3.
背景:在去神经早期大鼠骨骼肌成肌调节因子(MyoD)表达明显上调,有明显延缓骨骼肌肌萎缩的作用。临床实验证实电刺激是治疗失神经肌萎缩的有效方法。尚未有实验证实电刺激对失神经肌萎缩MyoD表达的影响。 目的:验证电刺激对大鼠骨骼肌MyoD基因表达的影响。 设计、时间及地点:随机对照动物实验,于2008-07/11在山西医科大学动物实验中心完成。 材料:健康的SD大鼠36只,雌雄不限。随机分成3组,即空白对照组、去神经组、电刺激组,每组12只。 方法:空白对照组不做任何处理;去神经组和电刺激组大鼠制作右侧坐骨神经离断,腓肠肌失神经支配模型。用电刺激对电刺激组进行刺激,1次/d,30 min/次。分别于去神经第2,7,14,28天,处死大鼠,取小腿的腓肠肌肉标本。 主要观察指标:用反转录聚合酶链式反应技术检测MyoD mRNA的表达变化,免疫组织化学检测MyoD蛋白表达的变化。 结果:在去神经支配后第2,7,14,28天,去神经组和电刺激组标本中MyoDmRNA和蛋白含量表达上调,与空白对照组比较差异有显著性意义(P < 0.05),电刺激组表达高于去神经组(P < 0.05)。 结论:通过电刺激可以上调大鼠腓肠肌失神经模型MyoD的表达,说明电刺激是延缓骨骼失神经肌萎缩的有效方法。  相似文献   

4.
目的:探讨应用阳极阻滞技术电刺激兔骶神经前根引起膀胱逼尿肌 单独收缩的可行性。方法:成年兔6只,通过手术造成痉挛性膀胱动物模型,切断骶神经后根后电刺激骶神经前根,测量电刺激时的膀胱内压和尿道内压。结果:5只兔阳极阻滞技术取得成功,刺激量以50μs,0. 02mA开始,随着刺激量的增加尿道内压先升后降,当刺激脉宽达到300 μs,刺激振幅达到1 mA时,尿道内压降为零,达到完全阻滞,此时膀胱逼尿肌会出现单独收缩,在这个过程中双下肢抖动也明显减少。结论:通过阳极阻滞技术电刺激兔骶神经前根引起膀胱逼尿肌单独收缩完全可行,但其安全性需要进一步研究。  相似文献   

5.
背景:力量训练方法多种多样,而运用负荷加上同步电刺激进行训练的方法在国内报道较少。 目的:通过选定有效增强肌力的电流参数,利用等速测试来观察同步电刺激对正常人上肢肌肉肌力的影响,探讨在传统力量训练的同时使用电刺激,对增强肌肉力量和对肌肉屈伸比的作用。 设计、时间及地点:随机分组,对照观察实验,2007-09/2008-01在江苏省机关医院康复医学实验室进行测试。 对象:南京体育学院16名在校大学生进行同步电刺激上肢肌肉力量训练。 方法:将16名参试者随机均分为2组:对照组和刺激组。对照组用哑铃进行传统力量训练;刺激组用哑铃与同步电刺激进行结合训练。哑铃负重进行屈伸力量训练肱二头肌、肱三头肌,共12周,3次/周,2组/次,每组同一质量连续举6次。刺激组在进行哑铃训练的同时将电极片分别置于肱二头肌肱三头肌起止点处,进行电刺激,刺激强度20 mA,波宽0.3 ms,每刺激6~10 s后休息30~50 s,实际共刺激100 s左右。 主要观察指标:训练12周后利用BIODEX多关节等速测力及康复系统测试参试者屈伸状态下2个不同速度:60 (°)/s和120 (°)/s的峰值力矩、平均功率、屈伸肌比值。 结果:①在60 (°)/s和120 (°)/s角速度下等速运动,实验组与对照组伸肌肌群力量增长并不明显,甚至出现了最大力量的下降。②在60 (°)/s和120 (°)/s下,刺激组和对照组平均肌肉作用能量如同最大力矩呈现的相类似的特点,即伸肌肌群增长不明显,屈肌肌群有明显增长。在60(°)/s下刺激组的平均肌肉作用能量增长55%,120 (°)/s下增长了29% ,相应对照组分别增长了16%。③在60 (°)/s下,即慢速运动下,刺激后屈伸比趋向目标值,而在120 (°)/s下,屈伸比均超过了目标值。 结论:①同步肌肉电刺激可有有效增强肌肉最大力量,但随着运动角速度的增大,增强的效果越发不明显。②同步肌肉电刺激可以有效增加肌肉做功效率,在不同角速度下均有较明显的提高。③同步肌肉电刺激可以使肌肉屈伸比趋向目标值,一定角速度下维持屈伸肌力平衡,但在快速运动时,由于屈肌肌力过度发展会引起屈伸肌比值偏离目标值,从而更易于引起肌肉损伤。  相似文献   

6.
卒中后吞咽障碍患者免疫力下降,频繁误吸易引起吸入性肺炎,预防吸入性肺炎是卒中吞咽康复的重要原则。电、磁刺激疗法作为卒中后吞咽障碍的新兴治疗手段,通过将电刺激或磁刺激作用于外周肌群、大脑皮层与周围神经,在卒中吞咽障碍的肺炎预防中发挥了重要作用。具体技术主要包括神经肌肉电刺激、咽腔电刺激、重复外周磁刺激、重复经颅磁刺激、经颅直流电刺激与迷走神经刺激。电、磁疗法对肌肉激活与神经元调控具有积极作用,可增加大脑皮层兴奋性,改善吞咽运动不充分、不协调等问题,从而减少误吸发生,达到预防肺炎的目的。  相似文献   

7.
目的 评估尺神经松解前置术结合术中超强电刺激治疗肘管综合征的治疗效果.方法 30例中重度肘管综合征患者首先进行尺神经松解前置术,测定并记录松解后小指展肌复合肌肉动作电位(CMAP)的潜伏期及波幅;然后给予尺神经超强电刺激治疗(80 mA,2Hz,10 min),按照同样的方法再次记录小指展肌CMAP的潜伏期及波幅,并将刺激前后的数据进行统计学分析.结果 患者尺神经外膜松解后与超强电刺激后小指展肌CMAP的波幅分别为(2.5±0.4) mV和(6.2±0.8)mV,潜伏期分别为(12.0±0.6)ms和(10.3±0.3)ms,经比较有统计学意义(P<0.05).超强电刺激后小指展肌CMAP的潜伏期较前平均缩短15.7%,波幅平均增大约2倍.结论 术中超强电刺激对肘管综合征患者的尺神经功能恢复具有辅助治疗作用.  相似文献   

8.
脑深部电刺激猴帕金森病模型的建立   总被引:4,自引:1,他引:3  
目的通过猴偏侧帕金森病(Parkinson disease,PD)模型丘脑底核(subthalamic nucleus,STN)脑深部电刺激(deep brain stimulation,DBS)系统的植入,对脑深部电刺激动物模型的制备进行了探讨.方法2只猴偏侧PD模型,按照猴脑立体定向图谱,在右侧STN植入脑深部刺激电极,并同期皮下植入脉冲发生器.术后行头颅X线平片和MRI检查,给予慢性高频电刺激,观察运动症状改善.结果2只偏侧猴PD模型成功的同期植入DBS系统,术后的症状观察和阿朴吗啡(apomorphine,APO)诱发旋转实验,证实STN慢性高频电刺激有效地缓解了猴PD样症状.结论通过立体定向技术同期将DBS系统植入动物体内,可以有效的建立DBS动物模型,为DBS在神经疾病的应用研究提供了良好的实验模型.  相似文献   

9.
经颅重复磁刺激(rTMS)是在经颅磁刺激基础上发展起来的新的神经电生理技术,具有检测和调节大脑皮质活性的作用,由于刺激参数和被刺激脑皮质区功能状态的不同,所引起的生物学效应也不同。rTMS通过改变大脑局部皮质兴奋性,改变皮质代谢及脑血流来达到治疗神经系统疾病的目的,其在精神疾病、癫痫、运动障碍疾病、脑梗死、脊髓损伤等治疗研究方面具有巨大的潜在价值。  相似文献   

10.
电刺激小脑顶核对脑卒中大鼠的治疗作用与机制   总被引:54,自引:2,他引:54  
研究电刺激小脑顶核对脑卒中大鼠的治疗作用及其机制。方法采用线栓法制备大鼠脑缺血模型,于24h测定脑血流量、脑含水量、髓过氧化物酶活性、梗塞体积;胶原酶法制备脑出血模型,于30h测定血肿周围组织含水量、脑血流量和血肿体积。结果电刺激脑缺血大鼠小脑顶核后,缺血组织的脑血流量上升,脑含水量和髓过氧化物酶活性下降,梗塞体积缩小;电刺激脑出血大鼠小脑顶核后,血肿周围组织血流量增加,含水量下降。电刺激后大鼠的生理参数和血肿体积无改变。结论电刺激小脑顶核可改善脑卒中大鼠的局部血供,缩小梗塞体积,减轻组织水肿。电刺激脑卒中大鼠小脑顶校无明显副作用。  相似文献   

11.
Brain stimulation has become one of the most acceptable therapeutic approaches in recent years and a powerful tool in the remedy against neurological diseases. Brain stimulation is achieved through the application of electric currents using non-invasive as well as invasive techniques. Recent technological advancements have evolved into the development of precise devices with capacity to produce well-controlled and effective brain stimulation. Currently, most used non-invasive techniques are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), whereas the most common invasive technique is deep brain stimulation (DBS). In last decade, application of these brain stimulation techniques has not only exploded but also expanded to wide variety of neurological disorders. Therefore, in the current review, we will provide an overview of the potential of both non-invasive (rTMS and tDCS) and invasive (DBS) brain stimulation techniques in the treatment of such brain diseases.  相似文献   

12.
Magnetic and electric activation of limb nerve and muscle were compared in normal subjects of different age, gender, and habitus. Direct stimulation of nerve and muscle showed that activation of intramuscular nerve fibers in the arm and leg occurs at a lower threshold for magnetic stimulation than for electric stimulation. Sensory nerve fibers had a lower threshold with electric stimulation. Muscle activation and stimulus artifact with magnetic stimulation precluded reliable recording of distal sensory nerve action potential in all subjects.  相似文献   

13.
14.
Abstract

The effective treatment of many diseases requires the use of multiple treatment strategies among which neuromodulation is playing an increasingly important role. Neuromodulation devices that act to normalize or modulate nerve activity through the targeted delivery of electrical stimuli will be the focus of this review. These devices encompass deep brain stimulators, vagus nerve stimulators, spinal cord simulators and sacral nerve stimulators. Already neuromodulation has proven successful in the treatment of a broad range of conditions from Parkinson’s disease to chronic pain and urinary incontinence. Many of these approaches seek to exploit the activities of the autonomic nervous system, which influences organ function through the release of neurotransmitters and associated signalling cascades. This review will outline existing and emerging applications for each of these neuromodulation devices, proposed mechanisms of action and clinical studies evaluating both their safety and therapeutic efficacy.  相似文献   

15.
Treatment for brain diseases has been disappointing because available medications have failed to produce clinical response across all the patients. Many patients either do not respond or show partial and inconsistent effect, and even in patients who respond to the medications have high relapse rates. Brain stimulation has been seen as an alternative and effective remedy. As a result, brain stimulation has become one of the most valuable therapeutic tools for combating against brain diseases. In last decade, studies with the application of brain stimulation techniques not only have grown exponentially but also have expanded to wide range of brain disorders. Brain stimulation involves passing electric currents into the cortical and subcortical area brain cells with the use of noninvasive as well as invasive methods to amend brain functions. Over time, technological advancements have evolved into the development of precise devices; however, at present, most used noninvasive techniques are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), whereas the most common invasive technique is deep brain stimulation (DBS). In the current review, we will provide an overview of the potential of noninvasive (rTMS and tDCS) and invasive (DBS) brain stimulation techniques focusing on the treatment of mental, psychiatric, and cognitive disorders.  相似文献   

16.
17.
Stephen N. Davies   《Brain research》1984,301(2):299-305
The effects of locus coeruleus (LC), periaqueductal grey (PAG) and segmental stimulation (all of which are known to inhibit convergent nociceptive cells), were tested on the activity of cold receptive cells in the trigeminal system of the rat. LC and PAG stimulation from sites which inhibited convergent nociceptive cells had no effect on cells with cold receptive input in the trigeminal nucleus caudalis. Electrical or mechanical segmental stimulation caused suppression of activity in cold receptive trigeminal nucleus neurons. Recording from the trigeminal ganglion showed this suppression to be a property of the primary afferent cold receptors themselves and therefore it is not analogous to the proposed mechanism for the segmental inhibition of convergent nociceptive neurons.  相似文献   

18.
目的:观察磁刺激运动诱发肌电位对运动机能的评价。方法:用磁刺激装置对正常人12例,运动障碍患者31例进行了经颅脑刺激,记录运动诱发肌电位。结果:受检测的43例,无一例引起头痛和感觉异常,也无癫痫及意识障碍等副作用。正常人中,诱发肌电位的潜伏期相对恒定,振幅在个体间虽存有差异,但同一例左右侧几乎相同。对20例单侧肢体功能障碍的肌力按体征分级,比较患侧和健侧的诱发肌电位,发现患侧振幅较健侧明显减低。对肌力0~2级的病例,不能诱发出肌电位。结论:磁刺激运动诱发肌电位,在临床上可在数量上正确评价肢体的运动机能,并且经颅磁刺激法是安全的。  相似文献   

19.
It was shown previously that luteinizing hormone-releasing hormone (LHRH) affects the neurohypophysial oxytocin release in water-deprived rats. However, the detailed mechanisms by which LHRH modifies the oxytocin response to hyperosmotic stimulation have not been explained so far. Using the isolated hypothalamo-neurohypophysial explants obtained from euhydrated rats, the effect of LHRH on the oxytocin secretion was studied under conditions of direct osmotic (i.e., Na(+)- evoked) as well as nonosmotic (i.e., K(+)-evoked) stimulation. Additionally, the oxytocin response to LHRH was investigated using the explants obtained from animals drinking 2% saline for eight days (systemic, i. e., both direct and indirect, osmotic stimulation). LHRH significantly enhanced Na(+)- and K(+)-evoked oxytocin release from explants taken from rats drinking tap water, indicating that LHRH could affect the Na(+)/K(+)-dependent depolarization of perikarya of oxytocin neurones. In contrast, LHRH significantly diminished the K(+)-stimulated hormone release when the neurohypophysial complex was obtained from previously salt-loaded rats, suggesting that peripheral osmotic stimulation somehow modifies the sensitivity of oxytocinergic neurones to LHRH (possible mechanisms are discussed). It is concluded that LHRH may participate in the regulation of oxytocin secretion via both direct and indirect impact on magnocellular oxytocinergic neurones depending on the current functional status of the hypothalamo-neurohypophysial complex.  相似文献   

20.
Transcranial direct current stimulation (tDCS) and caloric vestibular stimulation (CVS) are safe methods for selectively modulating cortical excitability and activation, respectively, which have recently received increased interest regarding possible clinical applications. tDCS involves the application of low currents to the scalp via cathodal and anodal electrodes and has been shown to affect a range of motor, somatosensory, visual, affective and cognitive functions. Therapeutic effects have been demonstrated in clinical trials of tDCS for a variety of conditions including tinnitus, post-stroke motor deficits, fibromyalgia, depression, epilepsy and Parkinson's disease. Its effects can be modulated by combination with pharmacological treatment and it may influence the efficacy of other neurostimulatory techniques such as transcranial magnetic stimulation. CVS involves irrigating the auditory canal with cold water which induces a temperature gradient across the semicircular canals of the vestibular apparatus. This has been shown in functional brain-imaging studies to result in activation in several contralateral cortical and subcortical brain regions. CVS has also been shown to have effects on a wide range of visual and cognitive phenomena, as well as on post-stroke conditions, mania and chronic pain states. Both these techniques have been shown to modulate a range of brain functions, and display potential as clinical treatments. Importantly, they are both inexpensive relative to other brain stimulation techniques such as electroconvulsive therapy (ECT) and transcranial magnetic stimulation (TMS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号