首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Terbutaline sulphate (TBS) is widely used in the treatment of bronchial asthma, chronic bronchitis and emphysema. Because of its short biological half life and dosing schedule, a long acting TBS formulation is required to improve patient compliance. The objective of this study was to develop a TBS containing biodegradable microsphere formulation. Poly(D,L-lactide-co-glycolide) (PLGA) and poly(L-lactic acid) (L-PLA) were chosen as matrix materials. A solvent evaporation method was used for preparation of microspheres. Surface morphology, particle size distribution and encapsulation efficiency were investigated. In vitro release studies were performed in pH 7.4 phosphate buffer. In vitro distribution of microspheres were studied in the Swiss albino male mice. All microspheres were spherical in shape and had a porous surface with mean diameters of 9-21 microm. The encapsulation efficiency was influenced by the polymer type, but not the molecular weight. About 90% of the initial amount was trapped in PLGA microspheres, and the remainder was on the surface. In the case of L-PLA, 50% of the total drug was associated with the surface of microspheres.The In vitro release pattern was biphasic characterized by an initial burst phase followed by a slower phase. The L-PLA microspheres released approximately 92% of the initial payload in 72 h. On the other hand, TBS release was increased with an increase in the molecular weight of PLGA. Biodistribution of L-PLA microspheres was characterized by an initially high uptake (35%) by the lungs. All these results suggest that L-PLA and PLGA microspheres have the potential to be used for passive lung targeting.  相似文献   

2.
Lung-targeting sophoridine-loaded poly(lactide-co-glycolide) (PLGA) microspheres were constructed by a simple oil-in-oil emulsion-solvent evaporation method. The obtained microspheres were systematically studied on their morphology, size distribution, drug loading, encapsulation efficiency, in vitro release profile, and biodistribution in rats. The drug-loaded microparticles showed as tiny spheres under SEM and had an average size of 17?μm with 90% of the microspheres ranging from 12 to 24?μm. The drug loading and encapsulation efficiency were 65% and 6.5%, respectively. The in vitro drug release behavior of microspheres exhibited an initial burst of 16.6% at 4?h and a sustained-release period of 14 days. Drug concentration in lung tissue of rats was 220.10?μg/g for microspheres and 6.77?μg/g for solution after intraveneous injection for 30?min, respectively. And the microsphere formulation showed a significantly higher drug level in lung tissue than in other major organs and blood samples for 12 days. These results demonstrated that the obtained PLGA microspheres could potentially improve the treatment efficacy of sophoridine against lung cancer.  相似文献   

3.
Biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres for the sustained release of low molecular weight heparin (LMWH) were prepared by a soild-in-oil-in-water (s/o/w) emulsion method. Prior to encapsulation, the LMWH micro-particles were fabricated by a modified freezing-induced phase separation method. The micro-particles were subsequently encapsulated into PLGA microspheres. Process optimization revealed that the NaCl concentration in the outer phase of s/o/w emulsion played a critical role in determining the properties of the microspheres. When the NaCl concentration increased from 0% to 5%, the encapsulation efficiency significantly increased from 51.5% to 76.8%. The initial burst release also decreased from 37.3% to 12.4%. In vitro release tests showed that LMWH released from PLGA microspheres in a sustained manner for about 14 days. Single injection of LMWH-loaded PLGA microspheres into rabbits resulted in an elevation of an anti-factor Xa activity for about 6 days. Furthermore, the integrity of the encapsulated LMWH was preserved during encapsulation process.  相似文献   

4.
To develop a long-acting injectable thienorphine biodegradable poly (d, l-lactide-co-glycolide) (PLGA) microsphere for the therapy of opioid addiction, the effects of formulation parameters on encapsulation efficiency and release behavior were studied. The thienorphine loaded PLGA microspheres were prepared by o/w solvent evaporation method and characterized by HPLC, SEM, laser particle size analysis, residual solvent content and sterility testing. The microspheres were sterilized by gamma irradiation (2.5 kGy). The results indicated that the morphology of the thienorphine PLGA microspheres presented a spherical shape with smooth surface, the particle size was distributed from 30.19?±?1.17 to 59.15?±?0.67μm and the drug encapsulation efficiency was influenced by drug/polymer ratio, homogeneous rotation speed, PVA concentration in the water phase and the polymer concentration in the oil phase. These changes were also reflected in drug release. The plasma drug concentration vs. time profiles were relatively smooth for about 25 days after injection of the thienorphine loaded PLGA microspheres to beagle dogs. In vitro and in vivo correlation was established.  相似文献   

5.
Purpose. This study describes the preparation and characterization of a controlled release formulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) encapsulated in poly(glycolide-co-D,L-lactide) (PLGA) and poly(D,L-lactide) (PLA) microspheres. Methods. GM-CSF was encapsulated in PLGA/PLA microspheres by a novel silicone oil based phase separation process. Several different blends of PLGA and low molecular weight PLA were used to prepare the microspheres. The microspheres and the encapsulated GM-CSF were extensively characterized both in vitroand in vivo. Results. Steady release of GM-CSF was achieved over a period of about one week without significant 'burst' of protein from the microspheres. Analysis of microsphere degradation kinetics by gel permeation chromatography (GPC) indicated that low molecular weight PLA enhanced the degradation of the PLGA and thereby affected release kinetics. GM-CSF released from the microspheres was found to be biologically active and physically intact by bioassay and chromato-graphic analysis. Analysis of serum from mice receiving huGM-CSF indicated that the GM-CSF was biologically active and that a concentration of greater than 10 ng/mL was maintained for a period lasting at least nine days. MuGM-CSF was not detected followingin vivo administration of muGM-CSF microspheres. The tissues of mice receiving muGM-CSF microspheres were characterized by infiltration of neutrophils, and macrophages which were in significant excess of those found in mice administered with placebo controls (i.e. microspheres without GM-CSF). Conclusions. This study demonstrates the influence of formulation parameters on the encapsulation of GM-CSF in PLGA/PLA microspheres and its controlled release in biologically active form. The intense local tissue reaction in mice to muGM-CSF microspheres demonstrates the importance of the mode of delivery on the pharmacologic activity of GM-CSF.  相似文献   

6.
To develop a long-acting injectable huperzine A-PLGA microsphere for the chronic therapy of Alzheimer's disease, the microsphere was prepared by using an o/w emulsion solvent extraction evaporation method based on a series of formulation design of the emulsion. The dialysis method was used for release analysis. The encapsulation efficiency and release amount of the microspheres were determined by a UV/VIS spectrophotometer. The morphology of the microspheres was observed by scanning electron microscopy. The distribution of the drug within microspheres was observed by a confocal laser scanning microscope. The results indicated that the PLGA 15?000 microspheres possessed a smooth and round appearance with average particle size of 50?µm or so. The encapsulation percentages of microspheres prepared from PLGA 15?000, 20?000 and 30?000 were 62.75%, 27.52% and 16.63%, respectively. The drug release percentage during the first day decreased from 22.52% of PLGA 30?000 microspheres to 3.97% of PLGA 15?000 microspheres, the complete release could be prolonged to 3 weeks. The initial burst release of microspheres with higher molecular weight PLGA could be explained by the inhomogeneous distribution of drug within microspheres. The encapsulation efficiency of the microspheres improved as the polymer concentration increased in the oil phase and PVA concentration decreased in the aqueous phase. The burst release could be controlled by reducing the polymer concentration. Evaporation temperature had a large effect on the drug release profiles. It had better be controlled under 30°C. Within a certain range of particle size, encapsulation efficiency decreased and drug release rate increased with the reducing of the particle size.  相似文献   

7.
Cleland  Jeffrey L.  Mac  Anne  Boyd  Brooks  Yang  Janet  Duenas  Eileen T.  Yeung  Douglas  Brooks  Dennis  Hsu  Chung  Chu  Herman  Mukku  Venkat  Jones  Andrew J. S. 《Pharmaceutical research》1997,14(4):420-425
Purpose. The development of a sustained release formulation for recombinant human growth hormone (rhGH) as well as other proteins requires that the protein be stable at physiological conditions during its in vivo lifetime. Poly(lactic-co-glycolic acid) (PLGA) microspheres may provide an excellent sustained release formulation for proteins, if protein stability can be maintained. Methods. rhGH was encapsulated in PLGA microspheres using a double emulsion process. Protein released from the microspheres was assessed by several chromatrographic assays, circular dichroism, and a cell-based bioassay. The rates of aggregation, oxidation, diketopiperazine formation, and deamidation were then determined for rhGH released from PLGA microspheres and rhGH in solution (control) during incubation in isotonic buffer, pH 7.4 and 37°C. Results. rhGH PLGA formulations were produced with a low initial burst (<20%) and a continuous release of rhGH for 30 days. rhGH was released initially from PLGA microspheres in its native form as measured by several assays. In isotonic buffer, pH 7.4 and 37°C, the rates of rhGH oxidation, diketopiperazine formation, and deamidation in the PLGA microspheres were equivalent to the rhGH in solution, but aggregation (dimer formation) occured at a slightly faster rate for protein released from the PLGA microspheres. This difference in aggregation rate was likely due to the high protein concentration used in the encapsulation process. The rhGH released was biologically active throughout the incubation at these conditions which are equivalent to physiological ionic strength and pH. Conclusions. rhGH was successfully encapsulated and released in its fully bioactive form from PLGA microspheres over 30 days. The chemical degradation rates of rhGH were not affected by the PLGA microspheres, indicating that the internal environment of the microspheres was similar to the bulk solution. After administration, the microspheres should become fully hydrated in the subcutaneous space and should experience similar isotonic conditions and pH. Therefore, if a protein formulation provides stability in isotonic buffer, pH 7.4 and 37°C, it should allow for a safe and efficacious sustained release dosage form in PLGA microspheres.  相似文献   

8.
Abstract

The objective of this study was to produce biodegradable poly(lactide-co-glycolide) (PLGA; 50/50) microspheres by an oil-in-oil (o/o) solvent evaporation method to prolong the in vitro release of ovalbumin (OVA) as a model protein. The effects, on loading efficiency, microsphere yield, morphology and drug release, of two dispersing agents, aluminum tristearate and Span 80, in mineral oil were examined. PLGA 50/50 microspheres containing OVA powder (sieved through a 53 μm mesh) were prepared using an o/o solvent evaporation method. When aluminum tristearate was employed as a dispersing agent, the loading efficiency and yield of OVA had maximum values of 89 and 72% at 0·15% (w/v) aluminum tristearate, respectively. Morphology studies suggested that the obtained microspheres were spherical, and had a smooth surface. The diameters of the microspheres ranged between 100 and 200 μm. The loading efficiency, or yield, for microspheres decreased significantly above or below 0·15% (w/v) aluminum tristearate, and microspheres wkh irregular shapes were observed. The minimum sedimentation volume ratio (F) was obtained at a dispersity of carbon black particles in ethanol containing 0·15% (w/v) aluminum tristearate by a sedimentation study, and the cloudy supernatant suggested a defiocculated suspension. However, on the contrary, when Span 80 was added into the mineral oil as a dispersing agent, the concentration of Span 80 had little or no effect on the characteristics of the prepared microspheres. Drug loadings (60–70%) were obtained within the Span 80 concentrations employed in the present study (0·05–1·0% (w/v)). The yields were also in the same levels. The microspheres prepared in mineral oil containing Span 80 had an average diameter less than 50 μm in all cases. Sustained-release characteristics were demonstrated for PLGA microspheres prepared in mineral oil containing aluminum tristearate as a dispersing agent, even though a burst release at the initial phase was observed. This initial burst release from PLGA microspheres was reduced to some extent by micronization of the OVA powder using a planetary-type ball mill. However, PLGA microspheres prepared in mineral oil containing Span 80 as a dispersing agent, exhibited a large initial burst release. This burst release seems to be due to the smaller size of microspheres and the OVA powder adhering to the surface of PLGA microspheres (confirmed by scanning electron microscope (SEM) study).  相似文献   

9.
姜庆城  刘莉  魏欣 《中国药事》2011,(9):887-890
目的 研究以聚乳酸羟基乙酸共聚物为囊材,制备长效缓释的单唾液酸四己糖神经节苷脂微球制剂.方法运用复乳溶剂挥发法,考虑多个条件对制备工艺的影响,并采用正交设计对处方进行优化.测定微球的载药量、包封率和释放曲线.结果制备得到的GM-1微球粒径大小均匀,球形致密圆整,微球粒径为(8.2±6.0)μm,载药量和包封率分别为18...  相似文献   

10.
This paper describes an investigation of the use of poly(lactic/glycolic acid) polymers for long-term delivery of high molecular weight, water-soluble proteins. Poly(lactic/glycolic acid) (PLGA) microspheres, containing (fluorescein isothiocyanate)-labeled bovine serum albumin and (fluorescein isothiocyanate)-labeled horseradish peroxidase, were prepared by a modified solvent evaporation method using a double emulsion. The microspheres were spherical with diameters of 55–95 µm and encapsulated more than 90% of the protein. The preparation method was gentle and maintained enzyme activity and protein solubility. Stability studies showed that the encapsulation of an enzyme inside PLGA microspheres can protect them from activity loss. When not placed inside PLGA microspheres, (fluorescein isothiocyanate)-labeled horseradish peroxidase lost 80% of its activity in solution at 37°C in a few days, whereas inside the PLGA microspheres it retained more than 55% of its activity after 21 days of incubation at 37°C. In vitro release studies revealed that different release profiles (i.e., near-constant or biphasic) and release rates can be achieved by simply modifying factors in the preparation procedure such as mixing rate and volume of inner water and organic phases. Degradation studies by scanning electron microscopy and gel-permeation chromatography suggested that the mechanism responsible for protein release is mainly through matrix erosion.  相似文献   

11.
Determinants of Release Rate of Tetanus Vaccine from Polyester Microspheres   总被引:7,自引:0,他引:7  
Controlled-release formulations based on poly(lactic) (PLA) and poly(lactic/glycolic) acid (PLGA) microspheres containing tetanus vaccine were designed. The polymers forming the microspheres were L-PLA of different molecular weights and DL-PLGA, 50:50. These microspheres were prepared by two solvent elimination procedures, both using a double emulsion, and were characterized for size, morphology, and toxoid release kinetics. The influence of formulation variables such as polymer type, vaccine composition, and vaccine/polymer ratio was also investigated. Both techniques yielded microspheres with similar size, morphology, and release properties. Microsphere size was dependent on the type of polymer and the presence of the surfactant L--phosphatidylcholine, which led to a reduction in microsphere size. On the other hand, the release kinetics of encapsulated protein were affected by the polymer properties (ratio lactic/glycolic acid and molecular weight) as well as by the vaccine composition, vaccine loading, and microsphere size. Moreover, for some formulations, a decrease in microsphere size occurred simultaneously, with an increase in porosity leading to an augmentation of release rate. The changes in the PLA molecular weight during in vitro release studies indicated that release profiles of tetanus toxoid from these microspheres were only marginally influenced by polymer degradation. A significant fraction of protein (between 15 and 35%) was initially released by diffusion through water-filled channels. In contrast, the decrease in the PLGA molecular weight over the first 10 days of incubation suggested that erosion of the polymer matrix substantially affects protein release from these microspheres. Among all formulations developed, two differing in microsphere size, polymer hydrophobicity, and release profile were selected for in vivo administration to mice. Administration of both formulations resulted in tetanus neutralizing antibody levels that were higher than those obtained after administration of the fluid toxoid.  相似文献   

12.
缓释微粒给药系统是蛋白质/多肽药物传输系统的一个重要研究方向,聚乳酸和乳酸-羟基乙酸共聚物是制备缓释微球最常用的载体材料。蛋白质/多肽药物聚乳酸/乳酸-羟基乙酸共聚物微球常用的制备方法包括溶剂萃取/挥发法(复乳法)、相分离法和喷雾干燥法。本文总结了微球制备中面临的难点如蛋白质/多肽药物稳定性、包封率、药物突释和药物吸附等问题,并综述了保持药物结构稳定性和生物活性、提高包封率、改善药物释放曲线等微球制备方法和进展。  相似文献   

13.
Woo  Byung H.  Jiang  Ge  Jo  Yeong W.  DeLuca  Patrick P. 《Pharmaceutical research》2001,18(11):1600-1606
Purpose. To prepare and characterize a novel composite microsphere system based on poly(D,L-lactide-co-glycolide) (PLGA) and poly(acryloyl hydroxyethyl starch) (acHES) hydrogel for controlled protein delivery. Methods. Model proteins, bovine serum albumin, and horseradish peroxidase were encapsulated in the acHES hydrogel, and then the protein-containing acHES hydrogel particles were fabricated in the PLGA matrix by a solvent extraction or evaporation method. The protein-loaded PLGA-acHES composite microspheres were characterized for protein loading efficiency, particle size, and in vitro protein release. Protein stability was examined by size-exclusion chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and monitoring the enzymatic activity. Results. Scanning electron microscopy showed discrete PLGA microspheres containing many acHES particles. The composite microspheres were spherical and smooth in size range of 39-93 m. The drug loading efficiency ranged from 51 to 101%. The composite microspheres showed more favorable in vitro release than conventional PLGA microspheres. The composite microspheres showed 20% less initial with a gradual sustained release compared to high burst (60%) followed by a very slow release with the conventional PLGA microspheres. The composite microspheres also stabilized encapsulated proteins from the loss of activity during the microsphere preparation and release. Proteins extracted from the composite microspheres showed good stability without protein degradation products and structural integrity changes in the size-exclusion chromatography and SDS-PAGE analyses. Horseradish peroxidase extracted from microspheres retained more than 81% enzymatic activity. Conclusion. The PLGA-acHES composite microsphere system could be useful for the controlled delivery of protein drugs.  相似文献   

14.
A local drug delivery system based on sustained drug release is an attractive approach to treat brain tumors. We have developed a novel device using drug-incorporated poly(lactic-co-glycolic acid) (PLGA) microspheres embedded in thermoreversible gelation polymer (TGP) formulation (drug/PLGA/TGP formulation). TGP forms a gel at body temperature but sol at room temperature. Therefore, when this formulation is injected into the brain tumor, the PLGA microspheres in TGP gel are localized at the injection site and do not diffuse throughout the brain tissue; eventually, sustained drug release from PLGA microspheres is achieved at the target site. In this study, two chemotherapeutic drugs (camptothecin (CPT) or vincristine (VCR)) were incorporated into PLGA microspheres to prepare drug/PLGA/TGP formulations. VCR/PLGA microspheres exhibited the higher encapsulation efficiency than CPT/PLGA microspheres (70.1% versus 30.1%). In addition, VCR/PLGA microspheres showed a higher sustained release profile than CPT/PLGA microspheres (54.5% versus 72.5% release, at 28 days). Therapeutic effect (mean survival) was evaluated in the C6 rat glioma model (control group, 18 days; CPT/PLGA/TGP treatment group, 24 days; VCR/PLGA/TGP treatment group, 33 days). In particular, the VCR/PLGA/TGP formulation produced long-term survivors (>60 days). Therefore, this formulation can be therapeutically effective formulation for the glioma therapy.  相似文献   

15.
In order to study the development of the delivery device of long-acting local anaesthetics for post-operative analgesia and control of chronic pain of cancer patient, fentanyl loaded poly(l-lactide-co-glycolide) (PLGA, molecular weight; 5000, 8000, 20000, and 33 000 g/mole) microspheres (FMS) were studied. FMS were prepared by an emulsion solvent-evaporation method. The influence of several preparation parameters such as initial drug loading, PLGA concentrations, emulsifier concentrations, oil phase volume and mole ratio and molecular weight has been investigated on the fentanyl release patterns. Generally, the drug showed the biphasic release patterns, with an initial diffusion followed by a lag period before the onset of the degradation phase, but there were no lag times in the device. Fentanyl was slowly released from FMS over 10 days in vitro, with a quasi-zero order property. The release rate increased with increasing drug loading as well as increasing polymer concentration with a relatively small initial burst effect. From the results, FMS may be a good formulation to deliver the anaesthesia for the treatment of chronic pain.  相似文献   

16.
The aim of this study was to prepare cefquinome-loaded poly lactic-co-glycolic acid (PLGA) microspheres and to evaluate their in vitro and in vivo characteristics. Microspheres were prepared using a spry drier and were characterized in terms of morphology, size, drug-loading coefficient, encapsulation ratio and in vitro release. The prepared microspheres were spherical with smooth surfaces and uniform size (12.4?±?1.2?μm). The encapsulation efficiency and drug loading of cefquinome was 91.6?±?2.6 and 18.3?±?1.3%, respectively. In vitro release of cefquinome from the microspheres was sustained for 36?h. In vivo studies identified the lung as the target tissue and the region of maximum cefquinome release. A partial lung inflammation was observed but disappeared spontaneously as the microspheres were removed through in vivo decay. The sustained cefquinome release from the microspheres revealed its applicability as a drug delivery system that minimized exposure to healthy tissues while increasing the accumulation of therapeutic drug at the target site. These results indicated that the spray-drying method of loading cefquinome into PLGA microspheres is a straightforward method for lung targeting in animals.  相似文献   

17.
Interferon-alpha2b (IFN α-2b) microspheres were prepared at various concentrations (5%, 10%, 15%, 20% and 25%) and viscosities (0.39, 0.6, 0.89 and 1.13?dL/g) of poly(lactic-co-glycolic acid) (PLGA) using double emulsion solvent evaporation. The optimal formulation of IFN α-2b microspheres was determined to be 0.89?dL/g PLGA, as assessed by the in vitro release test. The pharmacokinetics of IFN α-2b microspheres was investigated. Nine groups of rats were injected intramuscularly with three doses (0.5, 1 and 2?MIU) of commercial lyophilized IFNα-2b injection or IFN α-2b microspheres. At a dose of 0.5?MIU, the IFN α-2b microsphere released significantly longer than that of the IFN α-2b injection. At a dose of 2?MIU, each pharmacokinetics parameter of microspheres prepared with the IFNa-2b stock solution was manifestly greater than those of the injection. Our study indicated that the IFN α-2b microspheres prepared in 15% of 0.89?dL/g PLGA provided a sustained drug effect for up to 21 days in rats.  相似文献   

18.
考察了不同型号聚乳酸-羟基乙酸共聚物(PLGA)作为水溶性药物奥曲肽微球载体对载药量、包封率和体外释放行为的影响.结果表明,PLGA中丙交酯含量降低,载药量和包封率降低,而突释量增大.PLGA型号相同时,黏度较大的PLGA微球载药量和包封率较高,突释量较小.采用PLGA与聚乳酸(PLA)混合材料制备的微球比单用PLGA材料微球的突释量小、载药量和包封率高、缓释效果好.  相似文献   

19.
微球的制备和表征   总被引:4,自引:2,他引:4  
目的制备葡激酶突变体(K35R,DGR)的聚乳酸-羟基乙酸(PLGA)微球,使其在包封和释放过程中都能保持活性。方法使用复乳溶剂挥发法制备DGR的PLGA微球,研究了搅拌速度、PLGA浓度、内水相和外水相中的添加剂对蛋白包封率以及微球性质的影响,并进行了DGR微球的体外和体内释放试验。结果2%聚乙烯醇可以有效抑制超声乳化时DGR在水/二氯甲烷界面上的变性,将DGR的活性回收率从16%提高到几乎100%。在外水相中加入NaCl可以显著提高蛋白包封率,同时对微球的粒径分布和表面形态也产生了重要影响。DGR微球的体外释放呈现两个时相,15 d释放大约DGR总活性的50%。DGR微球在体内持续释放5 d。结论制备的PLGA微球,DGR包封率高,稳定性较好,是DGR的良好载药系统。  相似文献   

20.
A sustained drug release system based on the injectable poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with β-methasone was prepared for localized treatment of rheumatic arthritis. The microscopy and structure of microspheres were characterized by scanning electron microscope (SEM) and Fourier transform infrared (FTIR). The effects of various formulation parameters on the properties of microspheres and in vitro release pattern of β-methasone were also investigated. The results demonstrated that increase in drug/polymer ratio led to increased particle size as well as drug release rate. Increase in PLGA concentration led to increased particle size, but decreased burst release. The drug encapsulation efficiency increased sharply by increasing polyvinyl alcohol (PVA) concentration in the aqueous phase from 1.5 to 2.0%. β-methasone release rate decreased considerately with decreasing OP (organic phase)/AP (aqueous phase) volume ratio. Stirring rate had significantly influence on the particle size and encapsulation efficiency. Independent of formulation parameters, β-methasone was slowly released from the PLGA microspheres over 11 days. The drug release profile of high drug loaded microspheres agree with Higuchi equation with a release mechanism of diffusion and erosion, that of middle drug loaded microspheres best agreed with Hixcon-Crowell equation and controlled by diffusion and erosion as well. The low drug loaded microspheres well fitted to logarithm normal distribution equation with mechanism of purely Fickian diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号