首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Drug delivery》2013,20(1):46-53
To develop a novel flurbiprofen-loaded solid dispersion without crystalline change, various flurbiprofen-loaded solid dispersions were prepared with water, sodium carboxylmethyl cellulose (Na-CMC), and Tween 80. The effect of Na-CMC and Tween 80 on aqueous solubility of flurbiprofen was investigated. The physicochemical properties of solid dispersions were investigated using SEM, DSC, and X-ray diffraction. The dissolution and bioavailability in rats were evaluated compared to commercial product. Unlike conventional solid dispersion systems, the flurbiprofen-loaded solid dispersion gave a relatively rough surface and changed no crystalline form of drug. These solid dispersions were formed by attaching hydrophilic carriers to the surface of drug without crystal change, resulting in changing the hydrophobic drug to hydrophilic form. Furthermore, the flurbiprofen-loaded solid dispersion at the weight ratio of flurbiprofen/Na-CMC/Tween 80 of 6/2.5/0.5 improved ~ 60-fold drug solubility. It gave higher AUC, Tmax, and Cmax compared to commercial product. The solid dispersion improved almost 1.5-fold bioavailability of drug compared to commercial product in rats. Thus, the flurbiprofen-loaded solid dispersion would be useful to deliver poorly water-soluble flurbiprofen with enhanced bioavailability without crystalline change.  相似文献   

2.
A novel surface-attached, spray-dried solid dispersion containing poorly water-soluble carvedilol (CV) without any change in the crystallinity was prepared using water, polyvinylpyrrolidone (PVP K30) and Tween 80. The solid dispersion was optimized by investigating the effects of the weight ratios of Tween 80/PVP K30 and carrier/drug on the aqueous solubility of CV. The optimum solid dispersion consisted of a relatively low carrier to drug weight ratio: the weight ratio of CV/PVP K30/Tween 80 was 12/4/2. Unlike conventional methods of solid dispersion preparation, this method yielded CV-loaded solid dispersion with no change in the crystallinity of the drug as was evident from SEM, DSC and XRD. It was demonstrated that the solid dispersions prepared had hydrophilic carriers attached to the surface of the drug, thus changing it from a hydrophobic to a hydrophilic form without changing the crystalline form. The optimized solid dispersion improved the drug solubility and dissolution rate by about 11,500-fold and twofold, respectively. It was further suggested that this method of solid dispersion preparation is better than conventional methods in terms of environmental and industrial standpoints. Thus, it was concluded that CV-loaded solid dispersion prepared using this method would be of use for delivering poorly water-soluble CV with enhanced solubility and dissolution, but without crystalline changes.  相似文献   

3.
The purpose of this study was to develop a raloxifene-loaded solid dispersion with enhanced dissolution rate and bioavailability via spray-drying technique. Solid dispersions of raloxifene (RXF) were prepared with PVP K30 at weight ratios of 1:4, 1:6 and 1:8 using a spray-drying method, and characterized by differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, and solubility and dissolution tests. The bioavailability of the solid dispersion in rats was also evaluated compared to those of RXF powder and commercial product. Results showed that the RXF-loaded solid dispersion was in amorphous form with increased solubility and dissolution rate. The absorption of RXF from solid dispersion resulted in approximately 2.6-fold enhanced bioavailability compared to pure drug. Moreover, RXF-loaded solid dispersion gave similar AUC, Cmax and Tmax values to the commercial product, suggesting that it was bioequivalent to the commercial product in rats. These findings suggest that an amorphous solid dispersion of RXF could be a viable option for enhancing the oral bioavailability of RXF.  相似文献   

4.
To develop a novel itraconazole-loaded solid dispersion without crystalline change with improved bioavailability, various itraconazole-loaded solid dispersions were prepared with water, polyvinylpyrroline, poloxamer and citric acid. The effect of carriers on aqueous solubility of itraconazole was investigated. Their physicochemical properties were investigated using SEM, DSC, and powder X-ray diffraction. The dissolution, bioavailability in rats and stability of solid dispersions were evaluated. Unlike conventional solid dispersion system, the itraconazole-loaded solid dispersion with relatively rough surface did not change crystalline form of drug. Our DSC and powder X-ray diffraction results suggested that this solid dispersion was formed by attaching hydrophilic carriers to the surface of drug without crystal change, resulting in conversion of the hydrophobic drug to hydrophilic form. The itraconazole-loaded solid dispersion at the weight ratio of itraconazole/polyvinylpyrroline/poloxamer of 10/2/0.5 gave maximum drug solubility of about 20 μg/mL. It did not change the crystalline form of drug for at least 6 months, indicating that it was physically stable. It gave higher AUC, Cmax and Tmax compared to itraconazole powder and similar values to the commercial product, suggesting that it was bioequivalent to commercial product in rats. Thus, it would be useful to deliver a poorly water-soluble itraconazole without crystalline change with improved bioavailability.  相似文献   

5.
Oral bioavailability of a poorly water-soluble drug was greatly enhanced by using its solid dispersion in a surface-active carrier. The weakly basic drug (pK(a) approximately 5.5) had the highest solubility of 0.1mg/ml at pH 1.5, < 1 microg/ml aqueous solubility between pH 3.5 and 5.5 at 24+/-1 degrees C, and no detectable solubility (< 0.02 microg/ml) at pH greater than 5.5. Two solid dispersion formulations of the drug, one in Gelucire 44/14 and another one in a mixture of polyethylene glycol 3350 (PEG 3350) with polysorbate 80, were prepared by dissolving the drug in the molten carrier (65 degrees C) and filling the melt in hard gelatin capsules. From the two solid dispersion formulations, the PEG 3350-polysorbate 80 was selected for further development. The oral bioavailability of this formulation in dogs was compared with that of a capsule containing micronized drug blended with lactose and microcrystalline cellulose and a liquid solution in a mixture of PEG 400, polysorbate 80 and water. For intravenous administration, a solution in a mixture of propylene glycol, polysorbate 80 and water was used. Absolute oral bioavailability values from the capsule containing micronized drug, the capsule containing solid dispersion and the oral liquid were 1.7+/-1.0%, 35.8+/-5.2% and 59.6+/-21.4%, respectively. Thus, the solid dispersion provided a 21-fold increase in bioavailability of the drug as compared to the capsule containing micronized drug. A capsule formulation containing 25 mg of drug with a total fill weight of 600 mg was subsequently selected for further development. The selected solid dispersion formulation was physically and chemically stable under accelerated storage conditions for at least 6 months. It is hypothesized that polysorbate 80 ensures complete release of drug in a metastable finely dispersed state having a large surface area, which facilitates further solubilization by bile acids in the GI tract and the absorption into the enterocytes. Thus, the bioavailability of this poorly water-soluble drug was greatly enhanced by formulation as a solid dispersion in a surface-active carrier.  相似文献   

6.
The objective of this study was to improve the oral bioavailability and therapeutic efficacy of albendazole (ABZ) employing solid dispersion and cyclodextrin complexation techniques. Solid dispersion (dispersion) was prepared using ABZ and polyvinylpyrrolidone (PVP) polymer (1:1 weight ratio). Ternary inclusion complex (ternary complex) was prepared using ABZ, hydroxypropyl beta-cyclodextrin (HPbetaCD) and L-tartaric acid (1:1:1 molar ratio). In rabbits with high gastric acidity (gastric pH approximately 1), ternary complex and solid dispersion showed a bioavailability enhancement of 3.2 and 2.4 fold respectively, compared to a commercial suspension (p < 0.05). The rise in gastric pH (pH > 5) caused a 62% reduction in AUC (area under the plasma level curve) for the commercial suspension, whereas the reduction in case of PVP dispersion and ternary complex was only 43% and 37% respectively. The rapid absorption of the drug from solid dispersion and ternary complex was reflected in improved anthelmintic efficacy against the systemic phases of Trichinella spiralis. The ternary complex was significantly more efficient than solid dispersion and exhibited the highest larvicidal activity (90%) at a dose of 50 mg x kg(-1) (p < 0.05). These results suggest that the bioavailability and therapeutic efficacy of the ternary complex might be high even if there is a great variation in the gastric pH.  相似文献   

7.
Sun N  Zhang X  Lu Y  Wu W 《Planta medica》2008,74(2):126-132
The solid dispersion of a poorly water-soluble Silybum marianum extract (SME) was prepared by a one-step fluid-bed coating technique depositing onto non-pareil pellets. In vitro evaluation indicated that this technique was highly efficient and reproducible producing pellets with acceptable appearance, flowability, friability, uniformity of drug content and enhanced dissolution. Physical characterization by DSC, powder X-ray diffractometry and FT-IR suggested the formation of a solid dispersion and possible interaction between PVP and the flavonolignans. Stress testing showed that the drug content and dissolution profiles of the SME solid dispersion pellets were sensitive to heat and humidity, while they are not affected under accelerated and long-term testing conditions. The relative bioavailability of solid dispersion pellets in dogs based on quantification of silibinin was about five-fold that of the SME suspension confirming enhanced oral bioavailability. It was concluded that the solid dispersion pellets prepared by fluid-bed coating showed favorable in vitro characteristics and enhanced oral bioavailability.  相似文献   

8.
BackgroundSilymarin, a hepatoprotective agent, has poor oral bioavailability. However, the current dosage form of the drug does not target the liver and inflammatory cells selectively. The aim of the present study was to develop lecithin-based carrier system of silymarin by incorporating phytosomal–liposomal approach to increase its oral bioavailability and to make it target-specific to the liver for enhanced hepatoprotection.MethodsThe formulation was prepared by film hydration method. Release of drug was assessed at pH 1.2 and 7.4. Formulation was assessed for in vitro hepatoprotection on Chang liver cells, lipopolysaccharide-induced reactive oxygen species (ROS) production by RAW 267.4 (murine macrophages), in vivo efficacy against paracetamol-induced hepatotoxicity and pharmacokinetic study by oral route in Wistar rat.ResultsThe formulation showed maximum entrapment (55%) for a lecithin–cholesterol ratio of 6:1. Comparative release profile of formulation was better than silymarin at pH 1.2 and pH 7.4. In vitro studies showed a better hepatoprotection efficacy for formulation (one and half times) and better prevention of ROS production (ten times) compared to silymarin. In in vivo model, paracetamol showed significant hepatotoxicity in Wistar rats assessed through LFT, antioxidant markers and inflammatory markers. The formulation was found more efficacious than silymarin suspension in protecting the liver against paracetamol toxicity and the associated inflammatory conditions. The liposomal formulation yielded a three and half fold higher bioavailability of silymarin as compared with silymarin suspension.ConclusionsIncorporating the phytosomal form of silymarin in liposomal carrier system increased the oral bioavailability and showed better hepatoprotection and better anti-inflammatory effects compared with silymarin suspension.  相似文献   

9.
Solid dispersion is one of the most promising strategies to improve oral bioavailability of poorly soluble API. However, there are inconsistent dissolution performances of solid dispersion reported which entails further investigation. In this study, solid dispersions of ketoprofen in three hydrophilic carriers, i.e. PVP K30, PVPVA 6:4 and PVA were prepared and characterized. Physical characterization of the physical mixture of ketoprofen and carriers shows certain extent of amorphization of the API. This result is coinciding to evaluation of drug–polymer interaction using ATR-FTIR whereby higher amorphization was seen in samples with higher drug–polymer interaction. XRPD scanning confirms that fully amorphous solid dispersion was obtained for SD KTP PVP K30 and PVPVA system whereas partially crystalline system was obtained for SD KTP PVA. Interestingly, dissolution profiles of the solid dispersion had shown that degree of amorphization of KTP was not directly proportional to the dissolution rate enhancement of the solid dispersion system. Thus, it is concluded that complete amorphization does not guarantee dissolution enhancement of an amorphous solid dispersion system.  相似文献   

10.
The objective of our study was to incorporate and evaluate Silymarin, a chemically defined natural hepatoprotective agent, in lipid microstructured systems. Various constituents of lipid microspheres—namely, internal oily core; surfactant such as soyabean lecithin; and cosurfactants such as span 20, tween 20, tween 80, and propylene glycol—were tried in different concentrations to optimize the final formulation characteristics such as globule size range, structural integrity, sustainability, and percent drug-holding capacity. The final formulation (formulation A) was characterized with respect to size and morphology using transmission electron microscopy and laser diffraction technique. The enhanced mean percent release of 56.70 ± 2.03% was observed in 36 hr from silymarin-loaded lipid microspheres (formulation A), as compared to 18.67 ± 0.192% with silymarin solution (formulation B). Thus, a stable delivery system having synergistic hepatoprotective effect of silymarin and soyabean lecithin could successively be produced for passive targeting to the liver.  相似文献   

11.
Objectives Rebamipide, a novel anti‐ulcer agent, is listed in biopharmaceutics classification class IV because of its low aqueous solubility and permeability. Consequently, the bioavailability of rebamipide is under 10% in humans. The aim of this study was to increase the solubility and determine the effect of solubility enhancement on the bioavailability and efficacy of rebamipide (RBM). Methods After taking into account the physiochemical properties of RBM (solubility, melting point, dosage etc.), solid dispersion was chosen as the solubility enhancement method. A rebamipide solid dispersion system containing the drug, l ‐lysine, PVP‐VA 64 and poloxamer 407 was obtained from a spray‐drying method. Solubility enhancement of RBM from the solid dispersion was determined by a dissolution test in 900 ml at pH 1.2. The bioavailability and efficacy of RBM solid dispersion were evaluated in a rat model. Key findings The aqueous solubility of RBM was improved 62.17 times by solid dispersion. The oral bioavailability of the drug was also increased 1.74‐fold from solid dispersion compared with the reference product in a rat model. With regard to the anti‐ulcer effect, the percentage inhibition of the solid dispersion was 2.71 times higher than that of the reference product in the ulcer‐induced rat model. Conclusions A solid dispersion of rebamipide was successfully formulated using the spray‐drying method. Bioavailability and efficacy of rebamipide were increased significantly by solubility enhancement of the drug.  相似文献   

12.
To develop a novel ibuprofen-loaded solid dispersion with enhanced bioavailability, various ibuprofen-loaded solid dispersions were prepared with water, HPMC and poloxamer. The effect of HPMC and poloxamer on aqueous solubility of ibuprofen was investigated. The dissolution and bioavailability of solid dispersion in rats were then evaluated compared to ibuprofen powder. When the amount of carrier increased with a decreased in HPMC/poloxamer ratio, the aqueous solubility of ibuprofen was elevated. The solid dispersion composed of ibuprofen/HPMC/poloxamer at the weight ratio of 10:3:2 improved the drug solubility approximately 4 fold. It gave significantly higher initial plasma concentration, AUC and Cmax of drug than did ibuprofen powder in rats. The solid dispersion improved the bioavailability of drug about 4-fold compared to ibuprofen powder. Thus, this ibuprofen-loaded solid dispersion with water, HPMC and poloxamer was a more effective oral dosage form for improving the bioavailability of poor water-soluble ibuprofen.  相似文献   

13.
BackgroundSilymarin, a known hepatoprotectant, owing to its poor oral bioavailability, has limited pharmacological effects. The present study was designed to improve its in vitro and in vivo hepatoprotection and increase its oral bioavailability against alcohol intoxication by formulating it in four different liposomal formulations namely conventional, dicetyl phosphate, stearyl amine and PEGylated liposomes.MethodThe liposomes were prepared using phosphatidylcholine, cholesterol, and silymarin in addition to dicetyl phosphate, stearyl amine and DSPE mPEG 2000 by film hydration method with 5% sucrose as a cryo-protectant. The optimized formulations were studied for their release profile at pH 1.2 and 6.8. Liposomes were studied for in vitro protection on Chang liver cells and efficacious liposomes were selected for in vivo hepatoprotection study. Further, conventional liposomes were studied for bioavailability in alcohol intoxicated Wistar rats.ResultsThe conventional liposomes increased in vitro release profile at pH 1.2 and 6.8 and also showed better in vitro protection compared to silymarin alone. Conventional and PEGylated liposomes showed better improvement in liver function, better efficacy in combating inflammatory conditions, better improvement in antioxidant levels and reversal of histological changes compared to silymarin alone. Conventional also showed an almost fourfold increase in area under the curve compared to silymarin suspension.ConclusionConventional and PEGylated liposomes of silymarin were found to be more efficacious as hepatoprotective against alcohol-induced hepatotoxicity by its free radical scavenging and anti-inflammatory effects. Conventional liposomes showed enhanced bioavailability compared to silymarin alone.  相似文献   

14.
With the aim of developing a novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes, various valsartan-loaded solid dispersions were prepared with water, hydroxypropyl methylcellulose (HPMC) and sodium lauryl sulphate (SLS). Effects of the weight ratios of SLS/HPMC and carrier/drug on both the aqueous solubility of valsartan and the drug-release profiles of solid dispersions were investigated. The physicochemical properties of solid dispersions were characterized using scanning electron microscope (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The bioavailability of the solid dispersions in rats was evaluated compared to valsartan powder and a commercial product (Diovan). Unlike the conventional solid dispersion system, the valsartan-loaded solid dispersion had a relatively rough surface and did not change the crystalline form of the drug. It was suggested that the solid dispersions were formed by attaching hydrophilic carriers to the surface of the drug, thus changing from a hydrophobic to a hydrophilic form without changing the crystalline form. The drug-loaded solid dispersion composed of valsartan/HPMC/SLS at a weight ratio of 3/1.5/0.75 improved the drug solubility by about 43-fold. It gave a higher AUC, C(max) and shorter T(max) compared to valsartan powder and the commercial product. The solid dispersion improved the bioavailability of the drug in rats by about 2.2 and 1.7-fold in comparison with valsartan powder and the commercial product, respectively. Thus, the valsartan-loaded solid dispersion would be useful for delivering poorly water-soluble valsartan with enhanced bioavailability and no crystalline changes.  相似文献   

15.
 Due to low solubility and bioavailability, atorvastatin calcium is confronted with challenge in conceiving appropriate formulation. Solid dispersion of atorvastatin calcium was prepared through the solvent evaporation method, with Poloxamer 188 as hydrophilic carriers. This formulation was then characterized by scanning electron microscopy, differential scanning calorimetry,powder X-ray diffraction and fourier transform infrared spectroscopy. Moreover, all these studies suggested the conversion of crystalline atorvastatin calcium. In addition, the drug solubility studies as well as dissolution rates compared with bulk drug and market tablets Lipitor were also examined. Furthermore, the study investigated the pharmacokinetics after oral administration of Lipitor and solid dispersion. And the AUC0–8 h and Cmax increased after taking ATC-P188 solid dispersion orally compared with that of Lipitor. All these could be demonstrated that ATC-P188 solid dispersions would be prospective means for enhancing higher oral bioavailability of ATC.  相似文献   

16.
目的制备索拉非尼(sorafenib,SFN)/介孔硅的固体分散体,并进行体内外性质研究。方法利用溶剂挥发法制备固体分散体,以溶出度为指标筛选药物和介孔硅比例;采用差示扫描量热法(DSC)和粉末X射线衍射(XRD)技术,考察药物存在状态及物理稳定性;通过电镜观察样品形貌;以大鼠为实验动物,以自制SFN粉末为对照,对固体分散体进行体内药动学研究。结果原料药为结晶态,溶出度<10%;随着介孔硅的比例增大,固体分散体的溶出度增加,当SFN与介孔硅的比例为1∶5时,SFN以非晶态存在,溶出度>90%,在6个月的加速实验中,药物存在状态和溶出度未见明显改变。固体分散体组的cmax是SFN粉末组的1.8倍,相对生物利用度为175%。结论 SFN/介孔硅固体分散体物理稳定性良好,能提高SFN的溶出度,改善其口服吸收效果。  相似文献   

17.
The present study was aimed to formulate and evaluate fast dissolving oral film of Rosuvastatin calcium to improve its bioavailability in comparison to typical solid oral dosage forms. The drug was formulated as solid dispersion with hydrophilic polymers and assessed for different constraints such as drug content, saturated solubility, and drug-polymer interaction. Best formula was selected and prepared in the form of orodispersible film. The films were developed by solvent casting method and examined for weight variations, drug content, folding endurance, pH, swelling profile, disintegration time, and in vitro dissolution. Further pharmacokinetic study was also performed on rabbit and compared with that of the marketed oral formulation. The drug and the polymers were found to be compatible with each other by FTIR study. Maximum solubility was found at drug polymer ratio of 1:4 and that was 54.53 ± 2.05 µg/mL. The disintegration time of the developed film was observed to be 10 ± 2.01 s, while release of the Rosuvastatin from the film was found to be 99.06 ± 0.40 in 10 min. Stability study shown that developed film was stable for three months. Further pharmacokinetic study revealed that developed orodispersible film had enhance oral bioavailability as compared to marketed product (Crestor® tablets). Conclusively, the study backs the development of a viable ODF of Rosuvastatin with better bioavailability.  相似文献   

18.
《Saudi Pharmaceutical Journal》2022,30(11):1589-1602
PurposeThe aim of this study was to design fast dissolving tablets (FDT) of the anti –psychiatric drug haloperidol in solid dispersion forms as a way to enhance its dissolution profile and anti-psychiatric effect.MethodsSolubility studies of haloperidol in various polymers solutions were investigated. The selected polymer with high drug solubility (Poly ethylene glycol 4000) was used for preparation of solid dispersion through two methods solvent evaporation method and melting method. Haloperidol solid dispersion mixed with other solid powder excipients and compressed into tablets. The resulted tablets were evaluated according to British Pharmacopoeia (B.P.) specifications. Pre- and post -compression studies were performed to determine the flow properties and evaluate the solid dispersion systems, followed by in vivo studies through forced swimming test (FST)ResultsPre-compression studies showed adequate flowability and compatibility of polymer and solid excipients with haloperidol. The selected solid dispersion tablet (SD2) demonstrated the best disintegration and water absorption ratio in addition to satisfactory friability and hardness. Attempts of in vitro dissolution results and thermodynamic stability studies showed acceptable results for (SD2) formulation containing PEG 4000 polymer prepared by melting method.The in vivo study of (SD2) formulation revealed the highest immobility time to rats compared to control rats and others treated with commercial haloperidol product.ConclusionFast dissolving tablets prepared from solid dispersion of haloperidol with PEG4000 expressed rapid onset of action with enhanced anti-psychiatric effect of haloperidol.  相似文献   

19.
To develop a novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamylose, it was prepared using spray-drying techniques with cycloamylose at a weight ratio of 1:1. The effect of cycloamylose on aqueous solubility of ibuprofen was investigated. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction. The dissolution and bioavailability in rats were evaluated compared with ibuprofen powder. This ibuprofen-loaded solid dispersion improved about 14-fold drug solubility. Ibuprofen was present in an unchanged crystalline state, and cycloamylose played the simple role of a solubilizing agent in this solid dispersion. Moreover, the dispersion gave 2-fold higher AUC (area under the drug concentration-time curve) value compared with a ibuprofen powder, indicating that it improved the oral bioavailability of ibuprofen in rats. Thus, the solid dispersion may be useful to deliver ibuprofen with enhanced bioavailability without crystalline change.  相似文献   

20.
The influence of preparation methodology of silymarin solid dispersions using a hydrophilic polymer on the dissolution performance of silymarin was investigated. Silymarin solid dispersions were prepared using HPMC E 15LV by kneading, spray drying and co-precipitation methods and characterized by FTIR, DSC, XRPD and SEM. Dissolution profiles were compared by statistical and model independent methods. The FTIR and DSC studies revealed weak hydrogen bond formation between the drug and polymer, while XRPD and SEM confirmed the amorphous nature of the drug in co-precipitated solid dispersion. Enhanced dissolution compared to pure drug was found in the following order: co-precipitation > spray drying > kneading methodology (p < 0.05). All preparation methods enhanced silymarin dissolution from solid dispersions of different characteristics. The co-precipitation method proved to be best and provided a stable amorphous solid dispersion with 2.5 improved dissolution compared to the pure drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号