首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimulation of osteoclast formation by inflammatory synovial fluid   总被引:1,自引:0,他引:1  
Peri-articular bone resorption is a feature of arthritis due to crystal deposition and rheumatoid disease. Under these conditions, the synovial fluid contains numerous inflammatory cells that produce cytokines and growth factors which promote osteoclast formation. The aim of this study was to determine whether inflammatory synovial fluid stimulates the formation of osteoclasts. Synovial fluid from rheumatoid arthritis (RA), pyrophosphate arthropathy (PPA) and osteoarthritis (OA) patients was added to cultures (n=8) of human peripheral blood mononuclear cells (PBMCs) in the presence and absence of macrophage colony-stimulating factor (M-CSF) and the receptor activator of NF-κB ligand (RANKL). Osteoclast formation was assessed by the formation of cells positive for tartrate-resistant acid phosphatase (TRAP) and vitronectin receptor (VNR) and the extent of lacunar resorption. The addition of 10% OA, RA and PPA synovial fluid to PBMC cultures resulted in the formation of numerous multinucleated or mononuclear TRAP+ and VNR+ cells which were capable of lacunar resorption. In contrast to PBMC cultures incubated with OA synovial fluid, there was marked stimulation of osteoclast formation and resorption in cultures containing inflammatory RA and PPA synovial fluid which contained high levels of tumour necrosis factor alpha, a factor which is known to stimulate RANKL-induced osteoclast formation.  相似文献   

2.
In osteoimmunology, osteoclastogenesis is understood in the context of the immune system. Today, the in vitro model for osteoclastogenesis necessitates the addition of recombinant human receptor activator of nuclear factor kappa‐B ligand (RANKL) and macrophage colony‐stimulating factor (M‐CSF). The peripheral joints of patients with rheumatoid arthritis (RA) and spondyloarthritis (SpA) are characterized by an immune‐mediated inflammation that can lead to bone destruction. Here, we evaluate spontaneous in vitro osteoclastogenesis in cultures of synovial fluid mononuclear cells (SFMCs) activated only in vivo. SFMCs were isolated and cultured for 21 days at 0.5–1.0 × 106 cells/mL in culture medium. SFMCs and healthy control peripheral blood monocytes were cultured with RANKL and M‐CSF as controls. Tartrate‐resistant acid phosphatase (TRAP) positive multinucleated cells were found in the SFMC cultures after 21 days. These cells expressed the osteoclast genes calcitonin receptor, cathepsin K, and integrin β3, formed lacunae on dentin plates and secreted matrix metalloproteinase 9 (MMP9) and TRAP. Adding RANKL and M‐CSF potentiated this secretion. In conclusion, we show that SFMCs from inflamed peripheral joints can spontaneously develop into functionally active osteoclasts ex vivo. Our study provides a simple in vitro model for studying inflammatory osteoclastogenesis.  相似文献   

3.
TNFalpha and IL-1alpha are potent stimulators of bone resorption in vivo and in vitro. Recently, it has been demonstrated that these two cytokines directly induce osteoclastogenesis in mouse marrow cultures. This study determined whether TNFalpha (+/- IL-1alpha) is also capable of inducing human osteoclastogenesis. The CD14(+) monocyte fraction of human peripheral mononuclear cells was cultured with TNFalpha +/- IL-1alpha in the presence of M-CSF. TNFalpha induced the formation of multinucleated cells (MNCs) which were positive for TRAP, VNR and cathepsin K and showed evidence of resorption pit formation. IL-1alpha stimulated TNFalpha-induced lacunar resorption two- to four-fold. Osteoprotegerin, the decoy receptor for RANKL, did not inhibit this process. Anti-human IL-1alpha neutralizing antibodies significantly inhibited resorption without inhibiting the formation of TRAP(+)/VNR(+) MNCs. These results suggest that, in the presence of M-CSF, TNFalpha is sufficient for inducing human osteoclast differentiation from circulating precursors by a process which is distinct from the RANK/RANKL signalling pathway.  相似文献   

4.
Aneurysmal bone cyst (ABC) is a benign osteolytic bone lesion in which there are blood-filled spaces separated by fibrous septa containing giant cells. The nature of the giant cells in this lesion and the mechanism of bone destruction in ABC is not certain. In this study, we have analysed several characteristics of mononuclear and multinucleated cells in the ABC and examined the cellular and molecular mechanisms of ABC osteolysis. The antigenic and functional phenotype of giant cells in ABC was determined by histochemistry/immunohistochemistry using antibodies to macrophage and osteoclast markers. Giant cells and CD14+ and CD14- mononuclear cells were isolated from ABC specimens and cultured on dentine slices and coverslips with receptor activator of nuclear factor κB ligand (RANKL)+/- macrophage-colony stimulating factor (M-CSF) and functional and cytochemical evidence of osteoclast differentiation sought. Giant cells in ABC expressed an osteoclast-like phenotype (CD51+, CD14-, cathepsin K+, TRAP+) and were capable of lacunar resorption, which was inhibited by zoledronate, calcitonin and osteoprotegerin (OPG). When cultured with RANKL±M-CSF, CD14+, but not CD14-, mononuclear cells differentiated into TRAP+ multinucleated cells that were capable of lacunar resorption. M-CSF was not necessary for osteoclast formation from CD14+ cell cultures. CD14- cells variably expressed RANKL, OPG and M-CSF but supported osteoclast differentiation. Our findings show that the giant cells in ABC express an osteoclast-like phenotype and are formed from CD14+ macrophage precursors. CD14- mononuclear stromal cells express osteoclastogenic factors and most likely interact with CD14+ cells to form osteoclast-like giant cells by a RANKL-dependent mechanism.  相似文献   

5.
Four cases of giant cell reparative granuloma (GCRG) of small bones were analysed in order to determine the pathogenesis of the lesion and the nature of the component mononuclear and multinucleated cells. In cell cultures, giant cells formed a non-proliferating homogeneous population which expressed features characteristic of the osteoclast phenotype, including leucocyte common antigen, CD68, vitronectin receptor, and tartrate-resistant acid phosphatase. The giant cells were capable of lacunar resorption and their activity was inhibited by calcitonin. In addition to numerous macrophage-like cells, some of which expressed osteoclast phenotypic characteristics, there were also mononuclear stromal cells which proliferated in culture and were alkaline phosphatase-positive; these cells expressed receptor activator of NF-kappaB ligand (RANKL) and were capable of supporting human osteoclast formation from circulating precursors in vitro. These findings suggest that the osteoclast-like giant cells in GCRG of small bones are formed from monocyte/macrophage-like osteoclast precursors which differentiate into osteoclasts under the influence of mononuclear osteoblast-like stromal cells.  相似文献   

6.
Focal resorption of bone at the bone-pannus interface is common in rheumatoid arthritis (RA) and juvenile rheumatoid arthritis (JRA) and can result in significant morbidity. However, the specific cellular and hormonal mechanisms involved in this process are not well established. We examined tissue sections from areas of bone erosion in patients with RA and JRA. Multinucleated cells (MNCs) were present in resorption lacunae in areas of calcified cartilage and in subchondral bone immediately adjacent to calcified cartilage, as previously described. mRNA for the calcitonin receptor (CTR) was localized to these MNCs in bone resorption lacunae, a finding that definitively identifies these cells as osteoclasts. These MNCs were also positive for tartrate-resistant acid phosphatase (TRAP) mRNA and TRAP enzymatic activity. Occasional mononuclear cells on the bone surface were also CTR positive. Mononuclear cells and MNCs not on bone surfaces were CTR negative. The restriction of CTR-positive cells to the surface of mineralized tissues suggests that bone and/or calcified cartilage provide signals that are critical for the differentiation of hematopoietic osteoclast precursors to fully differentiated osteoclasts. Some MNCs and mononuclear cells off bone and within invading tissues were TRAP positive. These cells likely represent the precursors of the CTR-TRAP-positive cells on bone. Parathyroid hormone receptor mRNA was present in cells with the phenotypic appearance of osteoblasts, in close proximity to MNCs, and in occasional cells within pannus tissue, but not in the MNCs in bone resorption lacunae. These findings demonstrate that osteoclasts within the rheumatoid lesion do not express parathyroid hormone receptor. In conclusion, the resorbing cells in RA exhibit a definitive osteoclastic phenotype, suggesting that pharmacological agents that inhibit osteoclast recruitment or activity are rational targets for blocking focal bone erosion in patients with RA and JRA.  相似文献   

7.
Macrophages are commonly found within osteolytic secondary carcinomas in bone, but the manner in which these cells contribute to malignant bone resorption is uncertain. Macrophages isolated from primary breast carcinomas were co-cultured for up to 21 days with UMR 106 rat osteoblast-like cells on bone slices and glass coverslips in the presence and absence of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and human macrophage colony stimulating factor (M-CSF). Cell cultures were then assessed for the presence of phenotypic markers of macrophage and osteoclast differentiation. Isolated cells were negative for osteoclast markers including tartrate-resistant acid phosphatase (TRAP), vitronectin receptor (VNR), and the ability to carry our lacunar bone resorption, but were positive for CD11b and CD14, macrophage markers which are not present on osteoclasts. In 21-day co-cultures of breast carcinoma tumour-associated macrophages (TAMs) and UMR 106 cells, incubated in the presence of 1,25(OH)2D3 and M-CSF, numerous TRAP- and VNR-positive multinucleated cells capable of extensive lacunar resorption were formed. Contact with UMR 106 cells and the presence of 1,25(OH)2D3 and M-CSF were absolute requirements for differentiation of human breast carcinoma TAMs into mature functional osteoclasts. TAM–osteoclast differentiation may represent an important cellular mechanism of osteolysis in metastatic skeletal carcinomas. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
The existence of murine peritoneal osteoclast precursors has been already described. Also, recent reports evidenced an interplay between B lymphocytes and osteoclasts development. B-1 cells comprise a B-lymphocyte subset that resides mostly in pleural and peritoneal cavities. It has been demonstrated that B-1 cells can differentiate into mononuclear phagocytes and form multinucleated giant cells. Based on these findings, we investigated the role of B-1 lymphocytes in bone resorption and osteoclastogenesis. In vivo experimental periodontitis induced in B-1 deficient Xid mice demonstrated that bone resorption is impaired in these animals. However, reconstitution of Xid mice with B-1 cells increased bone resorption to near Balb/c values. B-1 cell derived phagocytes express the receptor activator of nuclear factor-κB (RANK) and the macrophage colony-stimulating factor receptor (M-CSFR). When cultured with RANK-ligand (RANKL) and M-CSF, B-1 cells became tartrate resistant acid phosphatase (TRAP) positive multinucleated cells, a typical osteoclast phenotype. Lacunae formation was observed when cells were cultivated onto a calcium phosphate analog, indicating functional differentiation of B1 cells into osteoclast-like cells. The dynamics of their IgM expression showed that this lymphoid marker was downregulated along the differentiation of B-1 lymphocytes into osteoclasts. Our results unveiled the first evidence that B-1 cells have a role in osteoclastogenesis and bone resorption and offer new insights in the relationship between bone and lymphoid cells.  相似文献   

9.
Background: It is not well known how the immediate precursors of osteoclast develop into osteoclasts in the fetus. This ultrastructural-cytochemical study was designed to clarify the formation process of the osteoclasts and their increased activities in the fetal mouse limb buds after administration of high dose parathyroid hormone (PTH). Methods: Twenty-four or forty-eight hours after the high doses of PTH were injected into amniotic fluid of the pregnant C3H mice, the femoral limb buds of embryos were dissected out. Tartrate-resistant acid phosphatase (TRAP) reactions were performed while preparing specimens for electron microscopy. Results: Both control and PTH-given preosteoclasts and osteoclasts exhibited TRAP-positivities in dense bodies and vesicles. As effects of PTH, a binucleated preosteoclast of tandem fashion was observed. More osteoclastic hyperactivities were observed in the diaphyseal bone marrow. An osteoclast with a large cytoplasm exhibited two sets of clear zones and ruffled borders. Some osteoclasts demonstrated prominent amoeboid figures, while other osteoclasts developed large cytoplasmic vacuoles, which contained pieces of calcified chondroid bars. Conclusions: Our results revealed the progression of maturation from young preosteoclasts to osteoclasts. An existence of a peculiar binucleated preosteoclasts suggested one of the processes for multinucleation of the osteoclast. Quite remarkable osteoclastic hyperactivities were obviously the effects of high dose PTH. Our results also indicated the endophagocytic ability of the osteoclast. How PTH affected the osteoclasts and their precursors in the diaphyseal bone marrow can be speculated. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Osteoclast progenitors are seeded via the blood stream in the mesenchyme surrounding embryonic long bone models long before the appearance of multinucleated osteoclasts. The proliferation and differentiation of these progenitors in embryonic mouse metatarsal bones was studied with acid phosphatase (AcP) histochemistry and 3H-thymidine autoradiography. In vivo, tartrate-resistant, acid phosphatase-positive, mononuclear cells appear in the periosteum (AcPP-P cells) at the age of 17 days (after conception). On day 18, AcP-positive, multinucleated osteoclasts invade the bone rudiment and start resorbing the calcified cartilage matrix, resulting in the formation of the marrow cavity. The kinetics of osteoclast formation in vitro was studied in metatarsal bones of embryonic mice of different ages cultured in the continuous presence of 3H-thymidine. In young bones (15 days), mainly proliferating, 3H-thymidine-incorporating progenitors gave rise to AcPP-P cell and osteoclast formation. In older bones (16 and 17 days) osteoclasts were progressively more derived from postmitotic, unlabeled precursors. Irradiation of the metatarsal bones with a radiation dose of 5.0 Gy prior to culture resulted in a selective elimination of the proliferating progenitors, whereas the contribution of postmitotic precursors in AcPP-P cell and osteoclast formation remained unchanged. The results demonstrate that in the periosteum of embryonic metatarsal bones a shift occurs from a population composed of proliferating osteoclast progenitors (15 days) to a population composed of postmitotic precursors (17 days) before multinucleated osteoclasts are formed (18 days). Obviously, postmitotic AcP-negative precursors, already present in 16-day-old bones, differentiate into precursors characterized by tartrate-resistant AcP activity, the preosteoclasts (17 days), which in their turn fuse into osteoclasts.  相似文献   

11.
AIM: To determine the cytochemical and functional phenotype of multinucleated giant cells in pigmented villo nodular synovitis (PVNS). METHODS: Giant cells isolated from a patient with PVNS of the knee were assessed for a number of markers used to distinguish osteoclasts from macrophages/ macrophage polykaryons: evidence of tartrate resistant acid phosphatase (TRAP) activity; expression of CD11b, CD14, CD51, and calcitonin receptors; and the ability of the giant cells to carry out lacunar resorption. RESULTS: Isolated giant cells expressed an osteoclast antigenic phenotype (positive for CD51, negative for CD11b and CD14) and were TRAP and calcitonin receptor positive. They also showed functional evidence of osteoclast differentiation, producing numerous lacunar bone resorption pits on bone slices in short term culture. CONCLUSIONS: The giant cells in this case of PVNS express all the phenotypical features of osteoclasts including the ability to carry out lacunar resorption. This may account for the bone destruction associated with this aggressive synovial lesion.  相似文献   

12.

Background  

Bone-resorbing osteoclasts are multinucleated cells that are formed via fusion of their hematopoietic stem cells. Many of the details of osteoclast formation, activation and motility remain unsolved. Therefore, there is an interest among bone biologists to transfect the terminally differentiated osteoclasts and follow their responses to the transgenes in vitro. Severe difficulties in transfecting the large, adherent osteoclasts have been encountered, however, making the use of modern cell biology tools in osteoclast research challenging. Transfection of mature osteoclasts by non-viral gene transfer systems has not been reported.  相似文献   

13.
Cartilage resorption in forming primary fallow deer antlers was studied by histochemistry and electron microscopy. A high activity of tartrate-resistant acid phosphatase (TRAP), a histochemical marker of skeletal resorbing cells, was first detected in cells located in the mesenchymal tissue separating the columns of hypertrophic cartilage. No cartilage resorption was observed in this region. Intense TRAP staining occurred in large multinucleated cells (identified as inactive osteoclasts) as well as in smaller cells (regarded as mononuclear osteoclast progenitors). On the basis of these findings it was concluded that this was the region where osteoclasts differentiated from progenitor cells. Further proximally, the mineralized cartilage was eroded by active osteoclasts that were located in Howship's lacunae and exhibited an intense TRAP staining. Electron microscopy showed that the cells identified as inactive osteoclasts lacked a polarized organization. In contrast, the active osteoclasts in the zone of cartilage resorption exhibited a typical polarized organization: the nuclei congregated near the basolateral cell surface, and there was a zone of deep membrane infoldings (ruffled border) surrounded by a clear zone at the apical cell pole adjacent to the resorption surface of the mineralized cartilage. The multinucleated cartilage-resorbing cells of the forming antler thus exhibited the typical histochemical and morphological features of active mammalian osteoclasts. Low levels of TRAP activity were also observed in hypertrophic chondrocytes; however, the specificity and potential significance of this staining remain to be elucidated.  相似文献   

14.
Osteoclast-associated receptor (OSCAR) is a co-stimulatory receptor in osteoclastogenesis. Synovial tissues from active rheumatoid arthritis (RA) patients express higher levels of OSCAR compared with osteoarthritic and normal patients; however, the comparison of OSCAR levels in different regions of active RA synovium has not been reported. The regulation of OSCAR by TNF-α and receptor activator of NF kappa β ligand (RANKL) in pre-osteoclasts/osteoclasts in vitro is unclear. OSCAR and tartrate-resistant acid phosphatase (TRAP) expression levels did not differ between the cartilage pannus junction (CPJ) and non-CPJ regions in active RA. We demonstrate a similar pattern of OSCAR expression in the CPJ and non-CPJ synovial tissue from patients with active RA. OSCAR was associated with mononuclear cells in both the lining and sub-lining and endothelial cells (von Willebrand factor positive). Pre-osteoclasts (TRAP-positive cells) were present in the lining and sub-lining of both regions. OSCAR messenger RNA (mRNA) expression and release by pre-oscteoclasts/osteoclasts was modulated by RANKL with/without TNF-α in vitro. Osteoclast resorption on dentine slices was significantly greater with TNF-α pre-treatment and RANKL (10 ng/ml) than RANKL 10 or 50 ng/ml alone or RANKL 10 ng/ml with TNF-α given from day 3 post-RANKL. The lower levels of OSCAR mRNA expression corresponded with high osteoclast activity levels.  相似文献   

15.
It has been demonstrated that histamine interferes with the recruitment, formation and activity of osteoclasts via H1‐ and H2‐receptors. Cimetidine is a H2‐receptor antagonist used for treatment of gastric ulcers that seems to prevent bone resorption. In this study, a possible cimetidine interference was investigated in the number of alveolar bone osteoclasts. The incidence of osteoclast apoptosis and immunoexpression of RANKL (receptor activator of nuclear factor κB ligand) was also evaluated. Adult male rats were treated with 100 mg kg?1 of cimetidine for 50 days (CimG); the sham group (SG) received saline. Maxillary fragments containing the first molars and alveolar bone were fixed, decalcified and embedded in paraffin. The sections were stained by H&E or submitted to tartrate‐resistant acid phosphatase (TRAP) method. TUNEL (terminal deoxynucleotidyl transferase‐mediated dUTP nick‐end labeling) method and immunohistochemical reactions for detecting caspase‐3 and RANKL were performed. The number of TRAP‐positive osteoclasts, the frequency of apoptotic osteoclasts and the numerical density of RANKL‐positive cells were obtained. Osteoclast death by apoptosis was confirmed by transmission electron microscopy (TEM). In CimG, TRAP‐positive osteoclasts with TUNEL‐positive nuclei and caspase‐3‐immunolabeled osteoclasts were found. A significant reduction in the number of TRAP‐positive osteoclasts and a high frequency of apoptotic osteoclasts were observed in CimG. Under TEM, detached osteoclasts from the bone surface showed typical features of apoptosis. Moreover, a significant reduction in the numerical density of RANKL‐positive cells was observed in CimG. The significant reduction in the number of osteoclasts may be due to cimetidine‐induced osteoclast apoptosis. However, RANKL immunoexpression reduction also suggests a possible interference of cimetidine treatment in the osteoclastogenesis.  相似文献   

16.
Positive identification of osteoclast percursors has not yet been possible. The authors have, in the present report, used a model system in the rat in which it is possible to induce the formation of multinucleated osteoclasts at a predictable and reproducible site and time (Tran Van P, Vignery A, Baron R. Anat Rec 1982, 202:445-451; Cell Tissue Res 1982, 225:283-292). This system allowed the investigation of the cellular events occurring locally during the recruitment and differentiation of osteoclast precursors. Prior to the formation of multinucleated osteoclasts, mononuclear cells positive for fluoride-inhibitable nonspecific esterase and cells positive for tartrate-resistant acid phosphatase increase in number locally. Double staining procedures demonstrated the presence of both enzymes in a number of cells, thereby suggesting that they are steps in the differentiation of a single cell population. Ultrastructural studies show that lysosomal enzymes are present in every compartment of the biosynthetic pathway, in small primary lysosomes and various forms of storage granules. As these precursors arrive at the bone surface, the storage granule lysosomes are markedly depleted. It is concluded that mononuclear precursors of the osteoclast are members of the mononuclear-phagocyte lineage and differentiate early to synthesize, store, and later secrete large quantities of lysosomal enzymes. The mature osteoclast, which, as its precursor, is positive for the mononuclear-phagocyte marker enzyme nonspecific esterase, results from the fusion of these mononuclear precursors, which occurs only after their attachment to the bone surface to be resorbed.  相似文献   

17.
Osteoclast-like multinucleated cells were formed from mouse bone marrow mononuclear cells, and their morphology on coverslips and on calcified dentine slices was compared by means of transmission electron microscopy. Addition of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] to bone marrow cells cultured on coverslips greatly stimulated the formation of multinucleated cells within 8 days. These multinucleated cells had the cytological features of osteoclasts (abundant pleomorphic mitochondria, a large number of vacuoles and lysosomes, many stacks of Golgi membranes, and an extensive canalicular system), but they developed neither ruffled borders nor clear zones. The multinucleated cells appeared to result from direct fusion of mononuclear progenitor cells, whose structural features were similar to those of multinucleated cells. Like isolated osteoclasts, both multinucleated cells and their precursors exhibited an intense reaction for tartrate-resistant acid phosphatase (TRACP) in the cisterns of endoplasmic reticulum and lysosomes. Multinucleated cells formed from alveolar macrophages in the presence of 1α,25(OH)2D3 were totally negative for TRACP reaction. When marrow cells were cultured on dentine slices in the presence of 1α,25(OH)2D3, some of the multinucleated cells were located in the shallow resorption lacunae of dentine surfaces, and they developed the characteristic ruffled borders and clear zones. The narrow extracellular spaces of the ruffled borders, the adjacent pale endocytotic vacuoles, and the dark lysosomes located in the perinuclear cytoplasm of the multinucleated cells contained numerous apatite crystals delete in resorption lacunae. These results indicate that (1) the multinucleated cells formed on coverslips from mouse marrow cells treated with 1α,25(OH)2D3 exhibit non-functional basic features of osteoclast morphology, and (2) differentiation of the multinucleated cells into functional osteoclasts requires some components of calcified dentine.  相似文献   

18.
Gorham-Stout disease (GSD) is a rare, massively osteolytic condition which is associated with increased vascularity and an increase in osteoclast numbers. To determine the cellular and humoral mechanisms underlying the increase in osteoclast numbers and osteolysis in GSD, this study analysed circulating osteoclast precursor numbers and sensitivity to osteoclastogenic factors in a GSD patient and age/sex-matched controls. Monocytes were cultured with M-CSF (25 ng/ml) and RANKL (30 ng/ml) and osteoclast formation was assessed in terms of the formation of TRAP(+) and VNR(+) multinucleated cells and the extent of lacunar resorption. There was no increase in the proportion of circulating osteoclast precursors in GSD relative to controls, but lacunar resorption was consistently greater in GSD monocyte cultures. Increased osteoclast formation in GSD was noted when monocytes were incubated with IL-1beta (1 ng/ml), IL-6/sIL-6R (100 ng/ml), and TNFalpha (10 ng/ml). An increase in osteoclast differentiation and bone resorption was also noted in control monocyte cultures in the presence of GSD serum. These results indicate that the increase in osteoclast formation in GSD is due not to an increase in the number of circulating osteoclast precursors, but rather to an increase in the sensitivity of these precursors to humoral factors which promote osteoclast formation and bone resorption.  相似文献   

19.
The effects of ionizing irradiation on the differentiation and activity of the osteoclast were investigated. Embryonic mouse metatarsal bones of different ages (14, 15, 16, 17 days) in which no osteoclasts had as yet been formed were irradiated with various x-ray doses and cultured until a marrow cavity became visible in the nonirradiated paired control bones. Bone growth and calcification were followed microscopically during culture. Irradiation caused a dose-dependent stunting of the longitudinal growth. Calcification was inhibited by high radiation doses (10 to 20 Gray (Gy), whereas a dose of 2.5 Gy stimulated the process in the early stages of long bone development. Histologic examination revealed complete inhibition of osteoclast formation in the 14- and 15-day-old bones after irradiation with 2.5 Gy or more. The number of osteoclasts in cultured older bones (16 days) was significantly reduced by irradiation, but osteoclast formation could not be completely prevented even by high dosages. Irradiation of explanted bone rudiments which were in a stage 1 day prior to the appearance of osteoclasts in vivo (17 days) did not significantly influence the formation of osteoclasts. Autoradiographic experiments using young bones showed that differentiation of osteoclast precursors into multinucleated osteoclasts is preceded by one or more divisions of the precursors in the periosteum. Furthermore, it was established from continuous 3H-thymidine-labeling experiments that in older bones (16 days) a part of the osteoclast nuclei originated from postmitotic osteoclast precursors. Irradiation mainly inhibited the appearance of labeled osteoclast nuclei in these bones. The results indicate that the osteoclast precursor, already present in the periosteum at an early stage of embryonic development, first proliferates and then differentiates into a mononuclear postmitotic preosteoclast. The proliferation is probably highly radiosensitive. Subsequently, the preosteoclasts fuse into multinucleated osteoclasts and invade the calcified hypertrophic cartilage zone. The resorbing activity of the osteoclast is less radiosensitive but can be inhibited by 5.0 Gy or more, as was established by morphometric and biochemical methods.  相似文献   

20.
In order to investigate the effects of different degrees of bioactivity of xerogels on connexin 43 (cx43) signaling of osteoclasts a cell culture approach was developed. Cells isolated from peripheral blood mononuclear cells were cultured in combination with the xerogels and were harvested for further investigations on day 1, day 5, and day 10. By means of quantitative PCR increased cx43 mRNA levels and coincident decreasing mRNA levels of the calcium sensing receptor, TRAP, and Cathepsin K were detected with increasing bioactivity of the xerogel samples. Additionally, osteoclasts cultured on tissue culture plates were used to perform principle investigations on cell differentiation by means of transmission electron microscopy, life cell imaging, and immunofluorescence, and the results demonstrated that cx43-signaling could be attributed to migration and fusion of osteoclast precursors. Therefore, the positive correlation of cx43 expression with high xerogel bioactivity was caused by proceeding differentiation of the osteoclasts. Finally, the presently observed pattern of cx43 signaling refers to strong effects regarding bioactivity on cx43-associated cell differentiation of osteoclasts influenced by extracellular calcium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号