首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Harsh gastric condition causes low bioavailability of probiotics when supplied orally. Polymeric encapsulation has successfully protected bacteria from harsh gastric condition and ultimately increased persistency and multiplication at the targeted region. In this study, we encapsulated LS29 into ACA microcapsules and characterized them. The survivability and release of LS29 from LS29-loaded ACA microcapsules in SGF and SIF were studied. Encapsulation efficiency of LS29 in ACA microcapsules was 99.9%. Approximately 70% of bacteria survived at pH 2 by 120?min after encapsulation. Although not much difference of the survivability of LS29 encapsulated into ACA and FDACA was observed, freeze-drying improved the controlled-release of LS29 in SIF and also showed better storage survivability at 4°C for 8 weeks. Furthermore, investigation of in?vitro production of cytokines in RAW264.7 showed high level of induction of TNF-α and IL-10. These in?vitro results support that the LS29 might have a balanced immunomodulatory effect.  相似文献   

2.
Viable Saccharomyces boulardii, used as a biotherapeutic agent, was encapsulated in food-grade whey protein isolate (WP) and alginate (ALG) microparticles, in order to protect and vehicle them in gastrointestinal environment. Yeast-loaded microparticles with a WP/ALG ratio of 62/38 were produced with high encapsulation efficiency (95%) using an extrusion/cold gelation method and coated with ALG or WP by a simple immersion method. Swelling, yeast survival, WP loss and yeast release in simulated gastric and intestinal fluids (SGF and SIF, pH 1.2 and 7.5) with and without their respective digestive enzymes (pepsin and pancreatin) were investigated. In SGF, ALG network shrinkage limited enzyme diffusion into the WP/ALG matrix. Coated and uncoated WP/ALG microparticles were resistant in SGF even with pepsin. Survival of yeast cells in microparticles was 40% compared to 10% for free yeast cells and was improved to 60% by coating. In SIF, yeast cell release followed coated microparticle swelling with a desirable delay. Coated WP/ALG microparticles appear to have potential as oral delivery systems for Saccharomyces boulardii or as encapsulation means for probiotic cells in pharmaceutical or food processing applications.  相似文献   

3.
Nigella sativa extract (NSE) was incorporated in alginate microcapsules using aerosolisation and homogenisation methods, respectively, with the aim of delivering high concentrations of the active species, thymoquinone (TQ), directly to sites of inflammation in the colon following oral administration. Encapsulation of NSE was accomplished either by direct loading or diffusion into blank microparticles. Microcapsules in the size range 40–60 µm exhibited significantly higher NSE loading up to 42% w/w and encapsulation efficiency (EE) up to 63% when the extract was entrapped by direct encapsulation compared with 4.1 w/w loading, 6.2% EE when NSE was incorporated by diffusion loading. Sequential exposure of samples to simulated intestinal fluids (SIFs) revealed that the microcapsules suppressed NSE release in simulated gastric fluid (SGF) for 2?h and SIF for 4?h and liberated most of the NSE content (80%) in simulated colonic fluid (SCF) over 18?h. NSE released in SCF at 12?h exhibited antioxidant activity, when measured using the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay at levels comparable with the activity of unencapsulated extract. These findings demonstrate the potential of oral alginate microcapsules as highly efficient, targeted carriers for colonic delivery of NSE in the treatment of inflammatory bowel disease.  相似文献   

4.
Lysozyme and insulin were encapsulated in alginate gel microspheres using impinging aerosols method. High loadings of around 50% weight/dry microspheres weight were obtained with encapsulation efficiencies of at least 48%. Environmental scanning electron microscopy revealed smooth spherical hydrated microspheres (30–60?µm) in diameter. No lysozyme or insulin release was measured in simulated gastric fluid (HCl, pH 1.2, 37°C). Total insulin release occurred in simulated intestinal fluid (SIF; phosphate buffer saline, pH 7.4, 37°C) in 8?h following 2?h incubation in SGF and was found to retain 75% activity using the ARCHITECT® assay. Lysozyme was released completely in SIF in 10?h following 2?h incubation in SGF and was found to exhibit at least 80% bioactivity using the Micrococcus lysodeikticus assay. The absence of protein release in HCl and the retention of high levels of biological activity demonstrate the potential of alginate gel microspheres, for improving oral delivery of biopharmaceuticals.  相似文献   

5.
Abstract

Methotrexate (MTX) has toxic effect to healthy tissues. Microencapsulation coats particles with a functional coat to optimize storage stability and to modulate release. In the present study, a new MTX encapsulated microcapsules were synthesized for controlling MTX release. Controlled drug release provides releasing of efficient dose and prevent drug side effect to tissues and also protects MTX from oxygen, pH and other interactions. MTX was encapsulated through biocompatible hyaluronic acid (HA) and sodium alginate (SA) with an encapsulation system to reduce its toxicity and for controlled release. The microcapsules prepared by vibrating nozzle were cross-linked with SA, HA and calcium chloride. Nozzle diameter and MTX concentration were changed according to loaded MTX and encapsulation efficiency were determined using HPLC. For the reliability of the data, validation studies of the HPLC method were performed. The precision of the method was demonstrated using intra- and inter-day assay relative standard deviation (RSD) values which are less than 2% in all instances. For the characterization of microcapsules, particle size, drug loading and in vitro drug release studies were performed. Diameters of MTX-loaded microcapsules were acquired approximately 160, 400 and 800?µm. Surface morphology of encapsulated microcapsules were displayed with light microscope. Eighty-nine percent MTX encapsulation efficiencies were achieved. Encapsulated MTX microcapsules showed controlled release when compared to pure MTX. While powder MTX dissolved completely in 10?min in the dissolution medium, MTX release from encapsulated MTX microcapsules became 40?h in 0.1?M PBS pH 7.4, including NaCl. MTX release from MTX-loaded microcapsules was reached to 79%. Moreover, drug efficiency was examined in vitro cell culture tests. Viability of 5RP7 cells were decreased to 88.5% for 96?h. When MTX was given directly to 5RP7 cells, viability of 5RP7 cells was decreased to 49.7% for 96?h. Flow cytometry studies also showed that, MTX microcapsules induced apoptosis. The goal of this study is to provide controlled release of MTX and to reduce the toxic effect of MTX.  相似文献   

6.
Lactobacillus casei ATCC 393-loaded microcapsules based on alginate and gelatin had been prepared by extrusion method and the product could increase the cell numbers of L. casei ATCC 393 to be 107 CFU g?1 in the dry state of microcapsules. The microparticles homogeneously distributed with size of 1.1 ± 0.2 mm. Four kinds of microcapsules (S1, S2, S3 and S4) exhibited swelling in simulated gastric fluid (SGF) while the beads eroded and disintegrated rapidly in simulated intestinal fluid (SIF). Cells of L. casei ATCC 393 could be continuously released from the microcapsules during simulated gastrointestinal tract (GIT) and the release amounts and speeds in SIF were much higher and faster than that in SGF. Encapsulation in alginate–gelatin microcapsules successfully improved the survival of L. casei ATCC 393 and this approach might be useful in delivery of probiotic cultures as a functional food.  相似文献   

7.
Abstract

In this research, pullulan was incorporated in protein-based encapsulation matrix in order to assess its cryoprotective effect on the viability of freeze-dried (FD) probiotic Lactobacillus acidophilus NRRL-B 4495. This study demonstrated that pullulan in encapsulation matrix resulted in a 90.4% survival rate as compared to 88.1% for whey protein (WPI) encapsulated cells. The protective effects of pullulan on the survival of FD-encapsulated cells in gastrointestinal conditions were compared. FD WPI-pullulan capsules retained higher survived cell numbers (7.10?log CFU/g) than those of FD WPI capsules (6.03?log CFU/g) after simulated gastric juice exposure. Additionally, use of pullulan resulted in an increased viability after bile exposure. FD-free bacteria exhibited 2.18?log CFU/g reduction, while FD WPI and FD WPI-pullulan encapsulated bacteria showed 0.95 and 0.49?log CFU/g reduction after 24?h exposure to bile solution, respectively. Morphology of the FD microcapsules was visualized by scanning electron microscopy.  相似文献   

8.
Abstract

Ketoprofen powder was encapsulated with Eudragit RL/RS polymer solutions in isopropanol-acetone 1:1, using a simple and rapid method. Microcapsules were prepared using Eudragit solutions with different RL/RS ratios. The encapsulation process produces free-flowing microcapsules with good drug content and marked decrease in dissolution rate. The retardation in release profile of ketoprofen from microcapsules was a function of the polymer ratio employed in the encapsulation process. In vitro release of ketoprofen from microcapsules either filled in gelatin capsules or compressed into tablets, using calcium sulphate as diluent, confirmed the efficiency of the encapsulation process for preparing prolonged release medication. A capsule formulation with optimum sustained-release profile was suggested.  相似文献   

9.
The combination of protein-coated graphene oxide (GO) and microencapsulation technology has moved a step forward in the challenge of improving long-term alginate encapsulated cell survival and sustainable therapeutic protein release, bringing closer its translation from bench to the clinic. Although this new approach in cell microencapsulation represents a great promise for long-term drug delivery, previous studies have been performed only with encapsulated murine C2C12 myoblasts genetically engineered to secrete murine erythropoietin (C2C12-EPO) within 160?µm diameter hybrid alginate protein-coated GO microcapsules implanted into syngeneic mice. Here, we show that encapsulated C2C12-EPO myoblasts survive longer and release more therapeutic protein by doubling the micron diameter of hybrid alginate-protein-coated GO microcapsules to 380?µm range. Encapsulated mesenchymal stem cells (MSC) genetically modified to secrete erythropoietin (D1-MSCs-EPO) within 380?µm-diameter hybrid alginate-protein-coated GO microcapsules confirmed this improvement in survival and sustained protein release in vitro. This improved behavior is reflected in the hematocrit increase of allogeneic mice implanted with both encapsulated cell types within 380?µm diameter hybrid alginate-protein-coated GO microcapsules, showing lower immune response with encapsulated MSCs. These results provide a new relevant step for the future clinical application of protein-coated GO on cell microencapsulation.  相似文献   

10.
Cytosine deaminase (CD) catalyses the enzymatic conversion of the non-toxic prodrug 5-fluorocytosine (5-FC) to the potent chemotherapeutic form, 5-fluorouracil (5-FU). Intratumoral delivery of CD localises chemotherapy dose while reducing systemic toxicity. Encapsulation in biocompatible microcapsules immunoisolates CD and protects it from degradation. We report on the effect of alginate encapsulation on the catalytic and functional activity of isolated CD and recombinant E. coli engineered to express CD (E. coliCD). Alginate microcapsules containing either CD or Escherichia coliCD were prepared using ionotropic gelation. Conversion of 5-FC to 5-FU was quantitated in unencapsulated and encapsulated CD/E. coliCD using spectrophotometry, with a slower rate of conversion observed following encapsulation. Both encapsulated CD/5-FC and E. coliCD/5-FC resulted in cell kill and reduced proliferation of 9?L rat glioma cells, which was comparable to direct 5-FU treatment. Our results show that encapsulation preserves the therapeutic potential of CD and E. coliCD is equally effective for enzyme-prodrug therapy.  相似文献   

11.
This work focused on the development of mucoadhesive and floating chitosan-coated alginate beads as a gastroretensive delivery vehicle for amoxicillin, towards the effective eradication of Helicobacter pylori, a major causative agent of peptic ulcers. Alginate was used as the core bead core polymer and chitosan as the mucoadhesive polymer coating. Amoxicillin-loaded alginate beads coated with 0.5% (w/v) chitosan (ALG/0.5%CHI) exhibited excellent floating ability, high encapsulation efficiency, high drug loading capacity, and a strong in vitro mucoadhesion to the gastric mucosal layer. In vitro, amoxicillin was released faster in simulated gastric fluid (pH 1.2, HCl) than in simulated intestinal fluid (phosphate buffer, pH 7.4). ALG/0.5%CHI could be prepared with a > 90% drug encapsulation efficiency and exhibited more than 90% muco-adhesiveness, 100% floating ability, and achieved sustained release of amoxicillin for over six hours in SGF.  相似文献   

12.
Lysozyme and insulin were encapsulated in alginate gel microspheres using impinging aerosols method. High loadings of around 50% weight/dry microspheres weight were obtained with encapsulation efficiencies of at least 48%. Environmental scanning electron microscopy revealed smooth spherical hydrated microspheres (30-60 μm) in diameter. No lysozyme or insulin release was measured in simulated gastric fluid (HCl, pH 1.2, 37°C). Total insulin release occurred in simulated intestinal fluid (SIF; phosphate buffer saline, pH 7.4, 37°C) in 8 h following 2 h incubation in SGF and was found to retain 75% activity using the ARCHITECT? assay. Lysozyme was released completely in SIF in 10 h following 2 h incubation in SGF and was found to exhibit at least 80% bioactivity using the Micrococcus lysodeikticus assay. The absence of protein release in HCl and the retention of high levels of biological activity demonstrate the potential of alginate gel microspheres, for improving oral delivery of biopharmaceuticals.  相似文献   

13.
Persistent pain remains a major health issue: common treatments relying on either repeated local injections or systemic drug administration are prone to concomitant side-effects. It is thought that an alternative could be a multifunctional cargo system to deliver medicine to the target site and release it over a prolonged time window. We nano-engineered microcapsules equipped with adjustable cargo release properties and encapsulated the sodium-channel blocker QX-314 using the layer-by-layer (LbL) technology. First, we employed single-cell electrophysiology to establish in vitro that microcapsule application can dampen neuronal excitability in a controlled fashion. Secondly, we used two-photon excitation imaging to monitor and adjust long-lasting release of encapsulated cargo in target tissue in situ. Finally, we explored an established peripheral inflammation model in rodents to find that a single local injection of QX-314-containing microcapsules could provide robust pain relief lasting for over a week. This was accompanied by a recovery of the locomotive deficit and the amelioration of anxiety in animals with persistent inflammation. Post hoc immunohistology confirmed biodegradation of microcapsules over a period of several weeks. The overall remedial effect lasted 10–20 times longer than that of a single focal drug injection. It depended on the QX-314 encapsulation levels, involved TRPV1-channel-dependent cell permeability of QX-314, and showed no detectable side-effects. Our data suggest that nano-engineered encapsulation provides local drug delivery suitable for prolonged pain relief, which could be highly advantageous compared to existing treatments.  相似文献   

14.
Short microwave heating of granular potato, waxy corn and tapioca starches with such lipids as cis-9-octadecenoic acid (oleic acid), cis,cis-9,12-octadecadienoic acid (linoleic acid), octadecanoic acid (stearic acid), ethyl cis-9-octadecenoate, ethyl cis,cis-9,12-octadecadienoate and methyl octadecanoate provided microcapsules in which encapsulated guest molecules did not interact with starch microcapsules. On the formation of microcapsules, the lipid guest molecules did not react to starches. The encapsulation yield varied between almost 11–94%.  相似文献   

15.
Multivesicular liposomes containing naltrexone hydrochloride (DepoNTX) was prepared by using the traditional DepoFoam technology and the key formulation factors on encapsulation efficiency and particle size were investigated. A morphological characterization and in vitro/in vivo release assay was also carried out. NTX was successfully encapsulated in DepoNTX with good yield and showing the spherical, smooth and multivesicular characteristics of particle by a light microscope. The in vitro studies in human plasma and sodium chloride showed that 80–85% of NTX encapsulated in MVLs released slowly from particles over 5 days. In vivo study, after a single dose of 2.0?mg/kg of DepoNTX formulation administered subcutaneously in rats, plasma NTX levels were maintained at a relatively constant level above 10?ng/mL for approximately 120?h, while after administered NTX solution, NTX level was quickly decreased below 10?ng/mL within 20?h. The results of the study demonstrated that DepoNTX was very promising candidate for sustained release delivery of naltrexone hydrochloride.  相似文献   

16.
Type I diabetes mellitus is characterised by the destruction of the insulin producing beta cells within the pancreas by the immune system. After the success of Edmonton protocol, islet transplantation has shown to be a promising therapy, but with the Achilles´ heel of the need of using immunosuppressive drugs. Currently, cell encapsulation technology represents a real alternative to protect transplanted islets from the host´s immune attack. Although preliminary in vitro studies with encapsulated cells have been traditionally performed under static conditions in terms of viability and efficiency, these static cultures do not represent a close approach to in vivo environments. We have developed and characterised different alginate-poly-l-lysine-alginate (APA) microcapsules loaded with the insulin producing 1.1B4 cell line. Static in vitro studies confirmed a constant insulin secretion and a boost of the secretion when the medium was enriched with glucose. Nevertheless, these results were not completely reproduced in a dynamic system by APA liquefied microcapsules containing 1.1B4 cells. The dynamic culture setting created by a microfluidic device, allowed the determination of the glucose response in APA liquefied microcapsules, showing that dynamic conditions can mimic better physiological in vivo environments.  相似文献   

17.
The evaluation of encapsulated insulin intestinal absorption enhancement was investigated by in vitro methods. Insulin-loaded microparticles (INS-MP) made of whey protein (WP) and alginate (ALG) were prepared by a cold gelation technique. Effect of INS encapsulation toward trypsin and chymotrypsin degradation was performed. Permeability studies using in vitro (Caco-2 cells) experiments were conducted. INS was partially protected by encapsulation toward enzymatic degradation. Moreover INS transport experiments showed that WP and, in lesser extent, ALG were able to enhance INS absorption both as MP and as polymeric solutions by opening the tight junctions. These experiments reinforced the interest of encapsulation in WP/ALG hydrogel combination.  相似文献   

18.
Linseed and okra mucilages, the fungal exopolysaccharide botryosphaeran, and commercial fructo-oligosaccharides (FOS) were used to microencapsulate Lactobacillus casei LC-01 and L. casei BGP 93 in sodium alginate microspheres by the extrusion technique in calcium chloride. The addition of carbohydrate biopolymers from linseed, okra and the fungal exocellular (1 → 3)(1 → 6)-β-D-glucan, named botryosphaeran provided higher encapsulation efficiency (EE) (>93% and >86%) for L. casei LC 01 and L. casei BGP 93, respectively. The use of linseed, okra and botryosphaeran improved the stability of probiotics encapsulated in the microspheres during the storage period over 15 d at 5?°C when compared to microspheres formulated with sodium alginate alone as the main encapsulating agent (p?≤?0.05). In in vitro gastrointestinal simulation tests, the use of FOS combined with linseed mucilage was shown to be more effective in protecting L. casei cells LC-01 and L. casei BGP 93.  相似文献   

19.
Abstract

The objective of this study is to develop a new technique for producing a phase change material (PCM) loaded biopolymer capsule for thermo-regulating textiles. Electro-coextrusion process fabricated a series of microencapsulated phase change material (MEPCM) based on n-nonadecane core and alginate shell. The influence of the flow rate ratio of the shell/core on the formation, encapsulation efficiency and thermal behaviour of a microencapsulated PCM has been investigated. The MEPCM was characterised using optical microscopy and differential scanning calorimetry (DCS). The size and the encapsulation efficiency of a capsule decreased as the flow rate ratio of the shell/core increased. The PCM microcapsules contained 56–84% n-nonadecane and the size range from 200 to 400?µm, as evaluated by DSC and optical microscopy, respectively. The experimental results show that the electro-coextrusion method has a potential technology for the encapsulation of PCMs for thermal storage.  相似文献   

20.
The Bifidobacterium bifidum susceptibility in gastrointestinal conditions and storage stability limit its use as potential probiotics. The current study was design to encapsulate B. bifidum using sodium alginate (SA, 1.4% w/v) and different concentration of zein as coating material, that is, Z1 (1% w/v), Z2 (3% w/v), Z3 (5% w/v), Z4 (7% w/v), Z5 (9% w/v). The resultant microbeads were further investigated for encapsulation efficiency, survival in gastrointestinal conditions, release profile in intestinal fluid, storage stability and morphological characteristics. The highest encapsulation efficiency (94.56%) and viable count (>107 log CFU/g) was observed in Z4 (7% w/v). Viable cell count of B. bifidum was >106 log CFU/g in all the zein-coated microbeads as compare to free cells (103 log CFU/g) and SA (105 log CFU/g) at 4 °C after 32 days of storage. Therefore, B. bifidum encapsulated in zein-coated alginate microbeads present improved survival during gastric transit and storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号