首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Local anesthetics that produce analgesia of long duration with minimal impairment of autonomic functions are highly desirable for pain management in the clinic. Prenylamine is a known calcium channel blocker, but its local anesthetic blocking effects on voltage-gated sodium channels have not been studied thus far. METHODS: The authors characterized the tonic and use-dependent prenylamine block of native Na(+) channels in cultured rat neuronal GH3 cells during whole cell voltage clamp conditions and the local anesthetic effect of prenylamine by neurologic evaluation of sensory and motor functions of sciatic nerve during neural block in rats. RESULTS: Prenylamine elicits both use-dependent block of Na(+) channels during repetitive pulses (3 microm prenylamine produced 50% block at 5 Hz) and tonic block for both resting and inactivated Na(+) channels. The 50% inhibitory concentration for prenylamine was 27.6 +/- 1.3 microm for resting channels and 0.75 +/- 0.02 microm for inactivated channels. Furthermore, in vivo data show that 10 mm prenylamine produced a complete sciatic nerve block of motor function, proprioceptive responses, and nociceptive responses that lasted approximately 27, 34, and 24 h, respectively. Rats injected with 15.4 mm bupivacaine, a known local anesthetic currently used for pain management, had a significantly shorter duration of blockade (< 2 h) compared with rats injected with prenylamine. CONCLUSIONS: The data presented here demonstrate that prenylamine possesses local anesthetic properties in vitro and elicits prolonged local anesthesia in vivo.  相似文献   

2.
Background: Amitriptyline, a tricyclic antidepressant, is frequently used orally for the management of chronic pain. To date there is no report of amitriptyline producing peripheral nerve blockade. The authors therefore investigated the local anesthetic properties of amitriptyline in rats and in vitro.

Methods: Sciatic nerve blockade was performed with 0.2 ml amitriptyline or bupivacaine at selected concentrations, and the motor, proprioceptive, and nociceptive blockade was evaluated. Cultured rat GH3 cells were externally perfused with amitriptyline or bupivacaine, and the drug affinity toward inactivated and resting Na+ channels was assessed under whole-cell voltage clamp conditions. In addition, use-dependent blockade of these drugs at 5 Hz was evaluated.

Results: Complete sciatic nerve blockade for nociception was obtained with amitriptyline for 217 +/- 19 min (5 mm, n = 8, mean +/- SEM) and for 454 +/- 38 min (10 mm, n = 7) versus bupivacaine for 90 +/- 13 min (15.4 mm, n = 6). The time to full recovery of nociception for amitriptyline was 353 +/- 12 min (5 mm) and 656 +/- 27 min (10 mm) versus 155 +/- 9 min for bupivacaine (15.4 mm). Amitriptyline was approximately 4.7-10.6 times more potent than bupivacaine in binding to the resting channels (50% inhibitory concentration [IC50] of 39.8 +/- 2.7 vs. 189.6 +/- 22.3 [mu]m) at -150 mV, and to the inactivated Na+ channels (IC50 of 0.9 +/- 0.1 vs. 9.6 +/- 0.9 [mu]m) at -60 mV. High-frequency stimulation at 3 [mu]m caused an additional approximately 14% blockade for bupivacaine, but approximately 50% for amitriptyline.  相似文献   


3.
Background: The antidepressant amitriptyline is commonly used orally for the treatment of chronic pain, particularly neuropathic pain, which is thought to be caused by high-frequency ectopic discharge. Among its many properties, amitriptyline is a potent Na+ channel blocker in vitro, has local anesthetic properties in vivo, and confers additional blockade at high stimulus-discharge rates (use-dependent blockade). As with other drug modifications, adding a phenylethyl group to obtain a permanently charged quaternary ammonium derivative may improve these advantageous properties.

Methods: The electrophysiologic properties of N-phenylethyl amitriptyline were assessed in cultured neuronal GH3 cells with the whole cell mode of the patch clamp technique, and the therapeutic range and toxicity were evaluated in the rat sciatic nerve model.

Results: In vitro, N-phenylethyl amitriptyline at 10 [mu]m elicits a greater block of Na+ channels than amitriptyline (resting block of approximately 90%vs. approximately 15%). This derivative also retains the attribute of amitriptyline in evoking high-degree use-dependent blockade during repetitive pulses. In vivo, duration to full recovery of nociception in the sciatic nerve model was 1,932 +/- 72 min for N-phenylethyl amitriptyline at 2.5 mm (n = 7) versus 72 +/- 3 min for lidocaine at 37 mm (n = 4; mean +/- SEM). However, there was evidence of neurotoxicity at 5 mm.  相似文献   


4.
Background: The sympathomimetic drug ephedrine has been used intrathecally as the sole local anesthetic for labor and delivery. Because ephedrine may be a useful adjuvant to local anesthetics, the authors investigated the local anesthetic properties of ephedrine in a rat sciatic nerve block model and the underlying mechanism in cultured cells stably expressing Na+ channels.

Methods: After approval of the animal protocol, the sciatic nerves of anesthetized rats were exposed by lateral incision of the thighs, 0.2 ml ephedrine at 0.25, 1, 2.5, or 5% and/or bupivacaine at 0.125% was injected, and the wound was closed. Motor and sensory/nociceptive functions were evaluated by the force achieved by pushing against a balance and the reaction to pinch, respectively. The whole cell configuration of the patch clamp technique was used to record Na+ currents from human embryonal kidney cells stably transfected with Nav1.4 channels.

Results: The nociception blockade was significantly longer than the motor blockade at test doses of 2.5 and 5% of ephedrine, or when 1% ephedrine was combined with 0.125% bupivacaine (analysis of variance with repeated measures, P < 0.001, n = 8/group). In vitro, the 50% inhibitory concentrations of ephedrine at -150 and -60 mV were 1,043 +/- 70 and 473 +/- 13 [mu]m, respectively. High-frequency stimulation revealed a use-dependent block of 18%, similar to most local anesthetics.  相似文献   


5.
Background: The local anesthetic bupivacaine exists in two stereoisomeric forms, R(+)- and S(-)-bupivacaine. Because of its lower cardiac and central nervous system toxicity, attempts were made recently to introduce S(-)-bupivacaine into clinical anesthesia. We investigated stereoselective actions of R(+)- and S(-)-bupivacaine toward two local anesthetic-sensitive ion channels in peripheral nerve, the Na+ and the flicker K+ channel.

Methods: In patch-clamp experiments on enzymatically demyelinated peripheral amphibian nerve fibers, Na+ and flicker K+ channels were investigated in outside-out patches. Half-maximum inhibiting concentrations (IC50) were determined. For the flicker K+ channel, simultaneous block by R(+)-bupivacaine and S(-)-bupivacaine was analyzed for competition and association (k1) and dissociation rate constants (k-1) were determined.

Results: Both channels were reversibly blocked by R(+)- and S(-)-bupivacaine. The IC50 values (+/-SEM) for tonic Na+ channel block were 29 +/- 3 [mu]M and 44 +/- 3 [mu]M, respectively. IC50 values for flicker K+ channel block were 0.15 +/- 0.02 [mu]M and 11 +/- 1 [mu]M, respectively, resulting in a high stereopotency ratio (+/-) of 73. Simultaneously applied enantiomers competed for a single binding site. Rate constants k1 and k-1 were 0.83 +/- 0.13 x 106 M-1 [middle dot] s-1 and 0.13 +/- 0.03 s-1, respectively, for R(+)-bupivacaine and 1.90 +/- 0.20 x 106 M-1 [middle dot] s-1 and 8.3 +/- 1.0 s-1, respectively, for S(-)-bupivacaine.  相似文献   


6.
Background: The opioid meperidine induces spinal anesthesia and blocks nerve action potentials, suggesting it is a local anesthetic. However, whether it produces effective clinical local anesthesia in peripheral nerves remains unclear. Classification as a local anesthetic requires clinical local anesthesia but also blockade of voltage-dependent Na+ channels with characteristic features (tonic and phasic blockade and a negative shift in the voltage-dependence of steady-state inactivation) involving an intrapore receptor. The authors tested for these molecular pharmacologic features to explore whether meperidine is a local anesthetic.

Methods: The authors studied rat skeletal muscle [mu]1 (RSkM1) voltage-dependent Na+ channels or a mutant form heterologously coexpressed with rat brain Na+ channel accessory [beta]1 subunit in Xenopus oocytes. Polymerase chain reaction was used for mutagenesis, and mutations were confirmed by sequencing. Na+ currents were measured using a two-microelectrode voltage clamp. Meperidine and the commonly used local anesthetic lidocaine were applied to oocytes in saline solution at room temperature.

Results: Meperidine and lidocaine produced tonic current inhibition with comparable concentration dependence. Meperidine caused phasic current inhibition in which the concentration-response relationship was shifted to fivefold greater concentration relative to lidocaine. Meperidine and lidocaine negatively shifted the voltage dependence of steady-state inactivation. Mutation of a putative local anesthetic receptor reduced phasic inhibition by meperidine and lidocaine and tonic inhibition by lidocaine, but not meperidine tonic inhibition.  相似文献   


7.
Background: S(-)-bupivacaine reportedly exhibits lower cardiotoxicity but similar local anesthetic potency compared with R (+)-bupivacaine. The bupivacaine binding site in human heart (hH1) Na+ channels has not been studied to date. The authors investigated the interaction of bupivacaine enantiomers with hH1 Na+ channels, assessed the contribution of putatively relevant residues to binding, and compared the intrinsic affinities to another isoform, the rat skeletal muscle ([mu]1) Na+ channel.

Methods: Human heart and [mu]1 Na+ channel [alpha] subunits were transiently expressed in HEK293t cells and investigated during whole cell voltage-clamp conditions. Using site-directed mutagenesis, the authors created point mutations at positions hH1-F1760, hH1-N1765, hH1-Y1767, and hH1-N406 by introducing the positively charged lysine (K) or the negatively charged aspartic acid (D) and studied their influence on state-dependent block by bupivacaine enantiomers.

Results: Inactivated hH1 Na+ channels displayed a weak stereoselectivity with a stereopotency ratio (+/-) of 1.5. In mutations hH1-F1760K and hH1-N1765K, bupivacaine affinity of inactivated channels was reduced by ~ 20- to 40-fold, in mutation hH1-N406K by ~ sevenfold, and in mutations hH1-Y1767K and hH1-Y1767D by ~ twofold to threefold. Changes in recovery of inactivated mutant channels from block paralleled those of inactivated channel affinity. Inactivated hH1 Na+ channels exhibited a slightly higher intrinsic affinity than [mu]1 Na+ channels.  相似文献   


8.
Background: Neurolytic agents such as phenol (5% to 10%) and absolute alcohol have long been used clinically to destroy the pathogenic nerve regions that manifest pain. Both phenol and alcohol are highly destructive to nerve fibers. However, these agents exert only weak local anesthetic effects and therefore are difficult to administer to alert patients without pain. This report describes a tetracaine derivative that displays both local anesthetic and neurolytic properties. Studies with such a compound may lead to the design of neurolytic agents that are more effective and more easily administered than phenol and alcohol.

Methods: A tetracaine derivative, N-butyl tetracaine quaternary ammonium bromide, was synthesized, and its ability to elicit sciatic nerve block of sensory and motor functions in vivo was tested in rats. A single dose of 0.1 ml N-butyl tetracaine at 37 mM was injected into the sciatic notch. Transverse sections of treated sciatic nerves were subsequently examined to determine the neurolytic effect of this drug. Finally, the local anesthetic properties of N-butyl tetracaine were studied in vitro; both tonic inhibition and use-dependent inhibition of Sodium sup + currents in neuronal GH3 cells were characterized under whole-cell voltage-clamp conditions.

Results: N-butyl tetracaine at 37 mM (equivalent to 1.11% tetracaine-hydrochloric acid concentration) elicited prolonged sciatic nerve block of the withdrawal response to noxious pinch in rats for more than 2 weeks. The withdrawal response was fully restored after 9 weeks. Parallel to sensory block, motor functions of the hind legs were similarly blocked by this drug. Morphologic examinations 3 and 5 weeks after a single injection of drug revealed degeneration of many sciatic nerve fibers, consistent with the results of functional tests. Finally, N-butyl tetracaine was found to be a potent Sodium sup + channel blocker in vitro. It produced strong tonic and use-dependent inhibition of Sodium sup + currents with a potency comparable to that of tetracaine.  相似文献   


9.
The ability of local anesthetics to reduce the amplitude of compound action potentials (CAP) of frog sciatic nerve was examined in the absence and presence of agents that selectively block K+ channels. In the presence of lidocaine concentrations that inhibit the CAP by about 20% at low frequencies of stimulation (1 per min, "tonic inhibition"), the addition of the K(+)-channel blocker tetraethylammonium ion (TEA, 12 mM) increased this inhibition by another 15%. Furthermore, the use-dependent inhibition induced by lidocaine at higher stimulation frequencies (5-20 Hz, "phasic inhibition") was markedly enhanced by TEA: at 20 Hz it increased from 35% with lidocaine alone to 63% with lidocaine plus TEA. A comparable potentiation was rendered by 3,4-diaminopyridine (1 mM), a different K(+)-channel blocker. Similarly, phasic inhibition by bupivacaine also was enhanced by TEA. The K(+)-channel blockers alone slightly depolarized the resting membrane, broadened and elevated the CAP, produced no phasic inhibition, and, during repetitive stimulation, resulted in a less negative steady-state repolarization potential than at rest. Both the broadening of CAP and the depolarizing actions of K(+)-channel blockers increased the presence of open and inactivated states of the neuronal Na+ channels, and thereby enhanced the binding of local anesthetic. The inhibitory actions of saxitoxin, a Na(+)-channel blocker that binds equally well to all channel states, were not potentiated by TEA.  相似文献   

10.
Amitriptyline versus bupivacaine in rat sciatic nerve blockade   总被引:9,自引:0,他引:9  
BACKGROUND: Amitriptyline, a tricyclic antidepressant, is frequently used orally for the management of chronic pain. To date there is no report of amitriptyline producing peripheral nerve blockade. The authors therefore investigated the local anesthetic properties of amitriptyline in rats and in vitro. METHODS: Sciatic nerve blockade was performed with 0.2 ml amitriptyline or bupivacaine at selected concentrations, and the motor, proprioceptive, and nociceptive blockade was evaluated. Cultured rat GH3 cells were externally perfused with amitriptyline or bupivacaine, and the drug affinity toward inactivated and resting Na+ channels was assessed under whole-cell voltage clamp conditions. In addition, use-dependent blockade of these drugs at 5 Hz was evaluated. RESULTS: Complete sciatic nerve blockade for nociception was obtained with amitriptyline for 217 +/- 19 min (5 mM, n = 8, mean +/- SEM) and for 454 +/- 38 min (10 mM, n = 7) versus bupivacaine for 90 +/- 13 min (15.4 mM, n = 6). The time to full recovery of nociception for amitriptyline was 353 +/- 12 min (5 mM) and 656 +/- 27 min (10 mM) versus 155 +/- 9 min for bupivacaine (15.4 mM). Amitriptyline was approximately 4.7-10.6 times more potent than bupivacaine in binding to the resting channels (50% inhibitory concentration [IC50] of 39.8 +/- 2.7 vs. 189.6 +/- 22.3 microM) at - 150 mV, and to the inactivated Na+ channels (IC50 of 0.9 +/- 0.1 vs. 9.6 +/- 0.9 microM) at -60 mV. High-frequency stimulation at 3 microM caused an additional approximately 14% blockade for bupivacaine, but approximately 50% for amitriptyline. CONCLUSION: Amitriptyline is a more potent blocker of neuronal Na+ channels than bupivacaine in vivo and in vitro. These findings suggest that amitriptyline could extend its clinical usefulness for peripheral nerve blockade.  相似文献   

11.
Background: Among opioids, meperidine (pethidine) also shows local anesthetic activity when applied locally to peripheral nerve fibers and has been used for this effect in the clinical setting for regional anesthesia. This study investigated the blocking effects of meperidine on different ion channels in peripheral nerves.

Methods: Experiments were conducted using the outside-out configuration of the patch-clamp method applied to enzymatically prepared peripheral nerve fibers of Xenopus laevis. Half-maximal inhibiting concentrations were determined for Na+ channels and different K+ channels by nonlinear least-squares fitting of concentration-inhibition curves, assuming a one-to-one reaction.

Results: Externally applied meperidine reversibly blocked all investigated channels in a concentration-dependent manner, i.e., voltage-activated Na+ channel (half-maximal inhibiting concentration, 164 [mu]M), delayed rectifier K+ channels (half-maximal inhibiting concentration, 194 [mu]M), the calcium-activated K+ channel (half-maximal inhibiting concentration, 161 [mu]M), and the voltage-independent flicker K+ channel (half-maximal inhibiting concentration, 139 [mu]M). Maximal block in high concentrations of meperidine reached 83% for delayed rectifier K+ channels and 100% for all other channels. Meperidine blocks the Na+ channel in the same concentration range as the local anesthetic agent lidocaine (half-maximal inhibiting concentration, 172 [mu]M) but did not compete for the same binding site as evaluated by competition experiments. Low concentrations of meperidine (1 nM to 1 [mu]M) showed no effects on Na+ channels. The blockade of Na+ and delayed rectifier K+ channels could not be antagonized by the addition of naloxone.  相似文献   


12.
The objective of this study was to determine if the "tonic," resting inhibition of Na+ channels by local anesthetics results from binding at a site different from that for "phasic," use-dependent inhibition. Stereoselective actions of four local anesthetics were examined in isolated frog peripheral nerve and single Na+ channels. Using the sucrose-gap method on desheathed nerves, four actions of local anesthetics were assayed: 1) tonic depression of compound action potentials at low stimulation frequency (one per minute); 2) phasic depression of the compound action potential during trains of stimulation at 5, 10, and 20 Hz; 3) competitive antagonism of the reversible Na+ channel activator veratridine assayed through the depolarization of the compound resting membrane potential; and 4) depression of the depolarization of the compound resting membrane potential initially induced by the irreversible channel activator batrachotoxin. For assays 1, 2, and 3, all local anesthetics showed a stereoselectivity, where rectus, or (+), enantiomers were more potent than sinister, or (-), enantiomers. In contrast, for the noncompetitive antagonism of veratridine's action and the depression of batrachotoxin-induced depolarization, also a noncompetitive interaction between anesthetic and activator, the (-) enantiomer was more potent than the corresponding (+) enantiomer. Blockade of single Na+ channels activated by batrachotoxin in planar lipid bilayers was also stereoselective for the (-) enantiomer. These findings, along with previously reported voltage-clamp results, can be applied to infer properties of a local anesthetic binding site in activator-free channels. Local anesthetic molecules with more sharply angled shapes have stronger stereoselectivities than less angled, more planar drugs. The inversion of the stereopotency induced by the activators can be explained by either of two mechanisms. There may be two binding sites for local anesthetics, one of high and one of low affinity and of opposite stereoselectivity; activators may change the conformation at the high affinity site, reducing its local anesthetic affinity below that of the usual low affinity site and thereby revealing the pharmacology of the weaker site. Alternatively, only a single binding site may exist and be conformationally altered by activators such that both anesthetic affinity and stereopotency are modified. In activator-free channels, however, a single, high-affinity binding site with a constant stereoselectivity can account for both tonic and phasic inhibition by local anesthetics.  相似文献   

13.
BACKGROUND: Chiral local anesthetics, such as ropivacaine and levobupivacaine, have the potential advantage over racemic mixtures in showing reduced toxic side effects. However, these S-(levo, or "-")isomers also have reportedly lower potency than their optical antipode, possibly resulting in no advantage in therapeutic index. Potency for local anesthetics inhibiting Na+ channels or action potentials depends on the pattern of membrane potential and so also does the stereopotency ratio. Here the authors have quantitated the stereopotencies of R-, S-, and racemic bupivacaine, comparing several in vitro assays of neuronal Na+ channels with those from in vivo functional nerve block, to establish relative potencies and to understand better the role of different modes of channel inhibition in overall functional anesthesia. METHODS: The binding of bupivacaine to Na+ channels was assessed indirectly by its antagonism of [3H]-batrachotoxin binding to rat brain synaptosomes. Inhibition of Na+ currents by bupivacaine was directly assayed in voltage-clamped GH-3 neuroendocrine cells. Neurobehavioral functions were disrupted by bupivacaine percutaneously injected (0.1 ml; 0.0625-1.0%) at the rat sciatic nerve and semiquantitatively assayed. Concentration-dependent actions of R-, S-, and racemic bupivacaine were compared for their magnitude and duration of action. RESULTS: Competitive batrachotoxin displacement has a stereopotency ratio of R:S = 3:1. Inhibition of Na+ currents with different prepulse potentials shows that S > R potency when the membrane is hyperpolarized, and R > S potency when it is depolarized from normal resting values. Functional deficits assayed in vivo usually demonstrate no consistent enantioselectivity and only a modest stereopotency (R:S = 1.2-1.3) for peak analgesia achieved at the lowest doses. Other functions display no significant stereopotency in either the degree, the duration, or their product (area under the curve) at any dose. CONCLUSION: Although the in vitro actions of bupivacaine showed stereoselectivity ratios of 1.3-3:1 (R:S), in vivo nerve block at clinically used concentrations showed much smaller ratios for peak effect and no significant enantioselectivity for duration. A primary role for the blockade of resting rather than open or inactivated Na+ channels may explain the modest stereoselectivity in vivo, although stereoselective factors controlling local disposition cannot be ruled out. Levo-(S-)bupivacaine is effectively equipotent to R- or racemic bupivacaine in vivo for rat sciatic nerve block.  相似文献   

14.
N-phenylethyl amitriptyline in rat sciatic nerve blockade   总被引:3,自引:0,他引:3  
BACKGROUND: The antidepressant amitriptyline is commonly used orally for the treatment of chronic pain, particularly neuropathic pain, which is thought to be caused by high-frequency ectopic discharge. Among its many properties, amitriptyline is a potent Na(+) channel blocker in vitro, has local anesthetic properties in vivo, and confers additional blockade at high stimulus-discharge rates (use-dependent blockade). As with other drug modifications, adding a phenylethyl group to obtain a permanently charged quaternary ammonium derivative may improve these advantageous properties. METHODS: The electrophysiologic properties of N-phenylethyl amitriptyline were assessed in cultured neuronal GH(3) cells with the whole cell mode of the patch clamp technique, and the therapeutic range and toxicity were evaluated in the rat sciatic nerve model. RESULTS: In vitro, N-phenylethyl amitriptyline at 10 microm elicits a greater block of Na(+) channels than amitriptyline (resting block of approximately 90% vs. approximately 15%). This derivative also retains the attribute of amitriptyline in evoking high-degree use-dependent blockade during repetitive pulses. In vivo, duration to full recovery of nociception in the sciatic nerve model was 1,932 +/- 72 min for N-phenylethyl amitriptyline at 2.5 mm (n = 7) versus 72 +/- 3 min for lidocaine at 37 mm (n = 4; mean +/- SEM). However, there was evidence of neurotoxicity at 5 mm. CONCLUSION: N-phenylethyl amitriptyline appears to have a narrow therapeutic range but is much more potent than lidocaine, providing a block duration several times longer than any clinically used local anesthetic. Further work in animal models of neuropathic pain will assess the potential use of this drug.  相似文献   

15.
Background: Bulleyaconitine A (BLA) is an active ingredient of Aconitum bulleyanum plants. BLA has been approved for the treatment of chronic pain and rheumatoid arthritis in China, but its underlying mechanism remains unclear.

Methods: The authors examined (1) the effects of BLA on neuronal voltage-gated Na+ channels in vitro under the whole cell patch clamp configuration and (2) the sensory and motor functions of rat sciatic nerve after single BLA injections in vivo.

Results: BLA at 10 [mu]m did not affect neuronal Na+ currents in clonal GH3 cells when stimulated infrequently to +50 mV. When stimulated at 2 Hz for 1,000 pulses (+50 mV for 4 ms), BLA reduced the peak Na+ currents by more than 90%. This use-dependent reduction of Na+ currents by BLA reversed little after washing. Single injections of BLA (0.2 ml at 0.375 mm) into the rat sciatic notch not only blocked sensory and motor functions of the sciatic nerve but also induced hyperexcitability, followed by sedation, arrhythmia, and respiratory distress. When BLA at 0.375 mm was coinjected with 2% lidocaine (approximately 80 mm) or epinephrine (1:100,000) to reduce drug absorption by the bloodstream, the sensory and motor functions of the sciatic nerve remained fully blocked for approximately 4 h and regressed completely after approximately 7 h, with minimal systemic effects.  相似文献   


16.
BACKGROUND: The sympathomimetic drug ephedrine has been used intrathecally as the sole local anesthetic for labor and delivery. Because ephedrine may be a useful adjuvant to local anesthetics, the authors investigated the local anesthetic properties of ephedrine in a rat sciatic nerve block model and the underlying mechanism in cultured cells stably expressing Na channels. METHODS: After approval of the animal protocol, the sciatic nerves of anesthetized rats were exposed by lateral incision of the thighs, 0.2 ml ephedrine at 0.25, 1, 2.5, or 5% and/or bupivacaine at 0.125% was injected, and the wound was closed. Motor and sensory/nociceptive functions were evaluated by the force achieved by pushing against a balance and the reaction to pinch, respectively. The whole cell configuration of the patch clamp technique was used to record Na currents from human embryonal kidney cells stably transfected with Nav1.4 channels. RESULTS: The nociception blockade was significantly longer than the motor blockade at test doses of 2.5 and 5% of ephedrine, or when 1% ephedrine was combined with 0.125% bupivacaine (analysis of variance with repeated measures, P < 0.001, n = 8/group). In vitro, the 50% inhibitory concentrations of ephedrine at -150 and -60 mV were 1,043 +/- 70 and 473 +/- 13 mum, respectively. High-frequency stimulation revealed a use-dependent block of 18%, similar to most local anesthetics. CONCLUSIONS: Because ephedrine's properties are at least partly due to Na channel blockade, detailed histopathologic investigations are justified to determine the potential of ephedrine as an adjuvant to clinically used local anesthetics.  相似文献   

17.
Background : Controversy still surrounds the differential susceptibility of nerve fibers to local anesthetics and its relation to selective functional deficits. In the current study we report features of conduction blockade in different classes of rat sciatic nerve fibers after injection of lidocaine by a percutaneous procedure that closely resembles clinical applications.

Methods : In 30 adult male Sprague-Dawley rats (weight, 300-400 g) during general anesthesia, impulses were recorded in different classes of sensory axons (large, A[alpha] and [beta] fibers; small, A[delta] myelinated fibers and unmyelinated C fibers) and motor axons (large, A[alpha] fibers; small, A[gamma] myelinated fibers) classified by conduction velocity. The sciatic nerve was stimulated distally, and impulses were recorded from small filaments teased from L4-L5 dorsal (sensory) and ventral (motor) roots sectioned acutely from the spinal cord. Lidocaine at concentration of 0.05-1% was injected percutaneously in 0.1-ml solutions at the sciatic notch. Both tonic (stimulated at 0.5 Hz) and use-dependent (stimulated at 40 Hz for A[delta] and A[gamma] fibers and at 5 Hz for C fibers) impulse inhibitions by lidocaine were assayed.

Results : Minimal effective (threshold) lidocaine concentrations (i.e., to block conduction in 10% of fibers) were, for sensory, 0.03% for A[delta], 0.07% for A[alpha][beta], and 0.09-0.1% for C fibers, and for motor, 0.03% for A[gamma] and 0.05% for A[alpha] fibers. The order of fiber susceptibility, ranked by concentrations that gave peak tonic fiber blockade of 50% (IC50s), was A[gamma] > A[delta] = A[alpha] > A[alpha][beta] > C. Faster-conducting C fibers (conduction velocity > 1 m/s) were more susceptible (IC50 = 0.13%) than slower ones (conduction velocity < 1 m/s; IC50 = 0.30%). At 1% lidocaine, all fibers were tonically blocked. Use-dependent effects accounted for only a modest potentiation of block (at a lidocaine concentration of 0.25%) in A[delta] and A[gamma] fibers, and in C fibers phasic stimulation had even smaller effects and sometimes relieved tonic block.  相似文献   


18.
Haeseler G  Tetzlaff D  Bufler J  Dengler R  Münte S  Hecker H  Leuwer M 《Anesthesia and analgesia》2003,96(4):1019-26, table of contents
Besides its general anesthetic effect, ketamine has local anesthetic-like actions. We studied the voltage- and use-dependent interaction of S(+)- and R(-)-ketamine with two different isoforms of voltage-operated sodium channels, with a special emphasis on the difference in affinity between resting and inactivated channel states. Rat brain IIa and human skeletal muscle sodium channels were heterologously expressed in human embryonic kidney 293 cells. S(+)- and R(-)-ketamine reversibly suppressed whole-cell sodium inward currents; the 50% inhibitory concentration values at -70 mV holding potential were 240 +/- 60 microM and 333 +/- 93 microM for the neuronal isoform and 59 +/- 10 microM and 181 +/- 49 microM for the skeletal muscle isoform. S(+)-ketamine was significantly more potent than R(-)-ketamine in the skeletal muscle isoform only. Ketamine had a higher affinity to inactivated than to resting channels. However, the estimated difference in affinity between inactivated and resting channels was only 8- to 10-fold, and the time course of drug equilibration between inactivated and resting channels was too fast to cause use-dependent block at 10 Hz up to a concentration of 300 microM. These results suggest that ketamine is less effective than lidocaine-like local anesthetics in stabilizing the inactivated channel state. IMPLICATIONS: Blockade of sodium channels by ketamine shows voltage dependency, an important feature of local anesthetic action. However, ketamine is less effective than lidocaine-like local anesthetics in stabilizing the inactivated state. Because it does not elicit phasic blockade at small concentrations, its ability to reduce the firing frequency of action potentials may be small.  相似文献   

19.
BACKGROUND: Among opioids, meperidine (pethidine) also shows local anesthetic activity when applied locally to peripheral nerve fibers and has been used for this effect in the clinical setting for regional anesthesia. This study investigated the blocking effects of meperidine on different ion channels in peripheral nerves. METHODS: Experiments were conducted using the outside-out configuration of the patch-clamp method applied to enzymatically prepared peripheral nerve fibers of Xenopus laevis. Half-maximal inhibiting concentrations were determined for Na+ channels and different K+ channels by nonlinear least-squares fitting of concentration-inhibition curves, assuming a one-to-one reaction. RESULTS: Externally applied meperidine reversibly blocked all investigated channels in a concentration-dependent manner, i.e., voltage-activated Na+ channel (half-maximal inhibiting concentration, 164 microM), delayed rectifier K+ channels (half-maximal inhibiting concentration, 194 microM), the calcium-activated K+ channel (half-maximal inhibiting concentration, 161 microM), and the voltage-independent flicker K+ channel (half-maximal inhibiting concentration, 139 microM). Maximal block in high concentrations of meperidine reached 83% for delayed rectifier K+ channels and 100% for all other channels. Meperidine blocks the Na+ channel in the same concentration range as the local anesthetic agent lidocaine (half-maximal inhibiting concentration, 172 microM) but did not compete for the same binding site as evaluated by competition experiments. Low concentrations of meperidine (1 nM to 1 microM) showed no effects on Na+ channels. The blockade of Na+ and delayed rectifier K+ channels could not be antagonized by the addition of naloxone. CONCLUSIONS: It is concluded that meperidine has a nonselective inhibitory action on Na+ and K+ channels of amphibian peripheral nerve. For tonic Na+ channel block, neither an opioid receptor nor the the local anesthetic agent binding site is the target site for meperidine block.  相似文献   

20.
BACKGROUND: The opioid meperidine induces spinal anesthesia and blocks nerve action potentials, suggesting it is a local anesthetic. However, whether it produces effective clinical local anesthesia in peripheral nerves remains unclear. Classification as a local anesthetic requires clinical local anesthesia but also blockade of voltage-dependent Na+ channels with characteristic features (tonic and phasic blockade and a negative shift in the voltage-dependence of steady-state inactivation) involving an intrapore receptor. The authors tested for these molecular pharmacologic features to explore whether meperidine is a local anesthetic. METHODS: The authors studied rat skeletal muscle mu1 (RSkM1) voltage-dependent Na+ channels or a mutant form heterologously coexpressed with rat brain Na+ channel accessory beta1, subunit in Xenopus oocytes. Polymerase chain reaction was used for mutagenesis, and mutations were confirmed by sequencing. Na+ currents were measured using a two-microelectrode voltage clamp. Meperidine and the commonly used local anesthetic lidocaine were applied to oocytes in saline solution at room temperature. RESULTS: Meperidine and lidocaine produced tonic current inhibition with comparable concentration dependence. Meperidine caused phasic current inhibition in which the concentration-response relationship was shifted to fivefold greater concentration relative to lidocaine. Meperidine and lidocaine negatively shifted the voltage dependence of steady-state inactivation. Mutation of a putative local anesthetic receptor reduced phasic inhibition by meperidine and lidocaine and tonic inhibition by lidocaine, but not meperidine tonic inhibition. CONCLUSIONS: Meperidine blocks Na+ channels with molecular pharmacologic features of a local anesthetic. The findings support classification of meperidine as a local anesthetic but with less overall potency than lidocaine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号