首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many research and commercial applications use a synthetic substrate which is seeded with cells in a serum-containing medium. The surface properties of the material influence the composition of the adsorbed protein layer, which subsequently regulates a variety of cell behaviors such as attachment, spreading, proliferation, migration, and differentiation. In this study, we examined the relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for MC3T3-E1 osteoblasts on glass surfaces modified with -SO(x), -NH(2), -N(+)(CH(3))(3), -SH, and -CH(3) terminal silanes. We also studied the relationship between cell spread area and migration rate for a variety of anchorage-dependent cell types on a model polymeric biomaterial, poly(acrylonitrile-vinylchloride). Our results indicated that MC3T3-E1 osteoblast behavior was surface chemistry dependent, and varied with individual functional groups rather than general surface properties such as wettability. In addition, cell migration rate was inversely related to cell spread area for MC3T3-E1 osteoblasts on a variety of silane-modified surfaces as well as for different anchorage-dependent cell types on a model polymeric biomaterial. Furthermore, the data revealed significant differences in migration rate among different cell types on a common polymeric substrate, suggesting that cell type-specific differences must be considered when using, selecting, or designing a substrate for research and therapeutic applications.  相似文献   

2.
张谊  李世荣  曹川  郑红 《免疫学杂志》2008,24(2):243-246
基质细胞衍生因子是一种干细胞趋化因子,它可以通过与其受体CXCR4结合,调控干细胞定向迁移,发挥特定的生物学效应.SDF-1/CXCR4轴在调控骨髓造血干细胞归巢、调节干/前体细胞定向迁移至靶器官促进受损组织器官再生的病理生理过程中发挥着重要的作用.本文就SDF-1/CXCR4轴在成体干细胞迁移中的作用作简要综述.  相似文献   

3.
Suboptimal nutrition during prenatal and early postnatal development is associated with increased risk for type 2 diabetes during adult life. A hallmark of such diabetes risk is altered body composition, including reduced lean mass and increased adiposity. Since stem cell number and activity are important determinants of muscle mass, modulation of perinatal nutrition could alter stem cell number/function, potentially mediating developmentally programmed reductions in muscle mass. Skeletal muscle precursors (SMP) were purified from muscle of mice subjected to prenatal undernutrition and/or early postnatal high-fat diet (HFD)--experimental models that are both associated with obesity and diabetes risk. SMP number was determined by flow cytometry, proliferative capacity measured in vitro, and regenerative capacity of these cells determined in vivo after muscle freeze injury. Prenatally undernutrition (UN) mice showed significantly reduced SMP frequencies [Control (C) 4.8% ± 0.3% (% live cells) vs. UN 3.2% ± 0.4%, P=0.015] at 6 weeks; proliferative capacity was unaltered. Reduced SMP in UN was associated with 32% decrease in regeneration after injury (C 16% ± 3% of injured area vs. UN 11% ± 2%; P<0.0001). SMP frequency was also reduced in HFD-fed mice (chow 6.4% ± 0.6% vs. HFD 4.7% ± 0.4%, P=0.03), and associated with 44% decreased regeneration (chow 16% ± 2.7% vs. HFD 9% ± 2.2%; P<0.0001). Prenatal undernutrition was additive with postnatal HFD. Thus, both prenatal undernutrition and postnatal overnutrition reduce myogenic stem cell frequency and function, indicating that developmentally established differences in muscle-resident stem cell populations may provoke reductions in muscle mass and repair and contribute to diabetes risk.  相似文献   

4.
Tissue engineering is being explored as a new approach to treat damaged cartilage. As the biomaterial used may influence tissue formation, the effects of substrate geometry on chondrocyte behavior in vitro were examined. Articular chondrocytes were isolated and cultured on the surface of smooth, rough, porous-coated, and fully porous Ti-6Al-4V substrates. The percentage of chondrocytes that attached to each substrate at 24 h was determined. After 24 and 72 h, chondrocytes were visualized by scanning electron microscopy and cell areas were measured. Collagen and proteoglycan accumulation within the first 24 h was determined by incorporation with [3H]-proline and [35S]-SO4, respectively. Chondrocyte attachment as well as matrix accumulation was enhanced as substrate surface area increased. Cell areas on the fully porous substrate were over four times greater than on any other substrate by 72 h in culture. After 8 weeks in culture, a continuous layer of cartilaginous tissue formed only on the surface of the fully porous substrate. This suggests that fully porous Ti-6Al-4V substrates provide the conditions that favor cartilage tissue formation by influencing cell attachment and extent of cell spreading. Understanding how substrate porosity influences chondrocyte behavior may help identify methods to further enhance cartilage tissue formation in vitro.  相似文献   

5.
The fabrication of biodegradable 3‐D scaffolds enriched with multipotent stem cells seems to be a promising strategy for the repair of irreversibly injured tissues. The fine mechanisms of the interaction of rat mesenchymal stem cells (rMSCs) with a hyaluronan‐based scaffold, i.e. HYAFF®11, were investigated to evaluate the potential clinical application of this kind of engineered construct. rMSCs were seeded (2 × 106 cells cm?2) on the scaffold, cultured up to 21 days and analysed using appropriate techniques. Light (LM), scanning (SEM) and transmission (TEM) electron microscopy of untreated scaffold samples showed that scaffolds have a highly porous structure and are composed of 15‐µm‐thick microfibres having a rough surface. As detected by trypan blue stain, cell adhesion was high at day 1. rMSCs were viable up to 14 days as shown by CFDA assay and proliferated steadily on the scaffold as revealed by MTT assay. LM showed rMSCs in the innermost portions of the scaffold at day 3. SEM revealed a subconfluent cell monolayer covering 40 ± 10% of the scaffold surface at day 21. TEM of early culture showed rMSCs wrapping individual fibres with regularly spaced focal contacts, whereas confocal microscopy showed polarized expression of CD44 hyaluronan receptor; TEM of 14‐day cultures evidenced fibronexus formation. Immunohistochemistry of 21‐day cultures showed that fibronectin was the main matrix protein secreted in the extracellular space; decorin and versican were seen in the cell cytoplasm only and type IV collagen was minimally expressed. The expression of CD90, a marker of mesenchymal stemness, was found unaffected at the end of cell culture. Our results show that HYAFF®11 scaffolds support the adhesion, migration and proliferation of rMSCs, as well as the synthesis and delivery of extracellular matrix components under static culture conditions without any chemical induction. The high retention rate and viability of the seeded cells as well as their fine modality of interaction with the substrate suggest that such scaffolds could be potentially useful when wide tissue defects are to be repaired as in the case of cartilage repair, wound healing and large vessel replacement.  相似文献   

6.
Improving the osteoconductive potential of titanium implants has been of continuing interest in the fields of dentistry and orthopedic surgery. This study determined the bioactivity of ultraviolet (UV) light-treated titanium. Human mesenchymal stem cells (MSCs) were cultured on acid-etched microtopographical titanium surfaces with and without 48 h pretreatment with UVA (peak wavelength of 360 nm) or UVC (peak wavelength of 250 nm). The number of cells that migrated to the UVC-treated surface during the first 3 h of incubation was eight times higher than those that migrated to the untreated surface. After 24 h of incubation, the number of cells attached to the UVC-treated surface was over three times more than those attached to the untreated surface. On the UVC-treated surface, the cellular spread was expedited with an extensive and intensive expression of the focal adhesion protein vinculin. The cells on the UVC-treated surface exhibited a threefold higher bromodeoxyuridine incorporation, a doubling of the alkaline phosphatase-positive area and the up-regulated expression of bone-related genes, indicating the accelerated proliferation and differentiation. The UVC-treated surface did not adversely affect the viability of the cells. These biological effects were not seen after UVA treatment, despite the generation of superhydrophilicity. Thus, we discovered a novel photofunctionalization of titanium dioxide that substantially enhances its bioactivity in human MSCs. Further studies are required to investigate the universal effectiveness of this surface modification for different titanium-containing materials, with varying chemistries and textures, as well as to understand its significance in enhancing in vivo osteoconductivity.  相似文献   

7.
8.
Sawyer AA  Hennessy KM  Bellis SL 《Biomaterials》2005,26(13):1467-1475
The successful development of biomaterials must take into consideration how those surfaces will interact with in vivo processes such as adsorption of endogenous proteins. In this study, we examined whether modifying highly adsorbent materials like hydroxyapatite (HA) with RGD peptides would improve mesenchymal stem cell (MSC) adhesion. We found that RGD, alone, was not sufficient to promote full cell spreading. However, given that RGD-modified HA will likely adsorb osteogenic serum proteins in vivo, we evaluated MSC behavior on HA pre-coated with RGD, then over-coated with serum (RGD/FBS). Interestingly, RGD/FBS coatings additively stimulated MSC attachment and spreading compared to either coating alone, but only at low RGD coating concentrations. High RGD concentrations inhibited cell attachment, and completely eliminated cell spreading on RGD/FBS surfaces. To better understand the mechanism by which RGD and adsorbed serum proteins interactively regulate cell behavior, we monitored the deposition of fibronectin (FN) from serum onto HA pre-coated with increasing RGD concentrations. These studies showed that high RGD concentrations did not inhibit FN adsorption, therefore cell spreading is attenuated by mechanisms other than lack of FN availability. Collectively, our results suggest a potential therapeutic benefit for functionalizing HA with RGD, however such a benefit will likely depend upon the RGD density.  相似文献   

9.
Human mesenchymal stem cells (hMSC) are adult stem cells with multipotent capacities. The ability of mesenchymal stem cells to differentiate into many cell types, as well as their high ex vivo expansion potential, makes these cells an attractive therapeutic tool for cell transplantation and tissue engineering. hMSC are thought to contribute to tissue regeneration, but the signals governing their mobilization, diapedesis into the bloodstream, and migration into the target tissue are largely unknown. Here we report that hepatocyte growth factor (HGF) and the cognate receptor HGFR/c-met are expressed in hMSC, on both the RNA and the protein levels. The expression of HGF was downregulated by transforming growth factor beta. HGF stimulated chemotactic migration but not proliferation of hMSC. Therefore the HGF/c-met signaling system may have an important role in hMSC recruitment sites of tissue regeneration. The controlled regulation of HGF/c-met expression may be beneficial in tissue engineering and cell therapy employing hMSC.  相似文献   

10.
Biomaterials are used in tissue engineering with the aim to repair or reconstruct tissues and organs. Frequently, the identification and development of biomaterials is an iterative process with biomaterials being designed and then individually tested for their properties in combination with one specific cell type. However, recent efforts have been devoted to systematic, combinatorial and parallel approaches to identify biomaterials, suitable for specific applications. Embryonic and adult stem cells represent an ideal cell source for tissue engineering. Since stem cells can be readily isolated, expanded and transplanted, their application in cell-based therapies has become a major focus of research. Biomaterials can potentially influence e.g. stem cell proliferation and differentiation in both, positive or negative ways and biomaterial characteristics have been applied to repel or attract stem cells in a niche-like microenvironment. Our consortium has now established a grid-based platform to investigate stem cell/biomaterial interactions. So far, we have assessed 140 combinations of seven different stem cell types and 19 different polymers performing systematic screening assays to analyse parameters such as morphology, vitality, cytotoxicity, apoptosis, and proliferation. We thus can suggest and advise for and against special combinations for stem cell-based tissue engineering.  相似文献   

11.
Skeletal muscle undergoes a progressive age-related loss in mass and function. Preservation of muscle mass depends in part on satellite cells, the resident stem cells of skeletal muscle. Reduced satellite cell function may contribute to the age-associated decrease in muscle mass. Here, we focused on characterizing the effect of age on satellite cell migration. We report that aged satellite cells migrate at less than half the speed of young cells. In addition, aged cells show abnormal membrane extension and retraction characteristics required for amoeboid-based cell migration. Aged satellite cells displayed low levels of integrin expression. By deploying a mathematical model approach to investigate mechanism of migration, we have found that young satellite cells move in a random "memoryless" manner, whereas old cells demonstrate superdiffusive tendencies. Most importantly, we show that nitric oxide, a key regulator of cell migration, reversed the loss in migration speed and reinstated the unbiased mechanism of movement in aged satellite cells. Finally, we found that although hepatocyte growth factor increased the rate of aged satellite cell movement, it did not restore the memoryless migration characteristics displayed in young cells. Our study shows that satellite cell migration, a key component of skeletal muscle regeneration, is compromised during aging. However, we propose clinically approved drugs could be used to overcome these detrimental changes.  相似文献   

12.
13.
Cloned human embryonic stem cells for tissue repair and transplantation   总被引:1,自引:0,他引:1  
One approach to overcome transplant rejection of human embryonic stem (ES) cells is to derive ES cells from nuclear transfer of the patient’s own cells. Because an efficient protocol for human somatic cell nuclear transfer (SCNT) has not been reported, several critical factors need to be determined and optimized. Our experience with domestic animals indicate that reprogramming time (the period of time between cell fusion and oocyte activation), activation method and in vitro culture conditions each play a critical role in chromatin remodeling and the developmental competence of SCNT embryos. In this review, we describe the optimization of human SCNT and derivation of human cloned ES cells. In our study, about approx 25% of human reconstructed embryos developed into blastocysts when we allowed 2 h for reprogramming to support proper embryonic development. Since sperm-mediated activation is absent in SCNT, an artificial stimulus is needed to initiate embryo development. Incubation with 10 μM calcium ionophore for 5 min followed by incubation with 2.0 μM 6-dimethyl amino purine was found to be the most efficient chemical activation protocol for SCNT using human oocytes. In order to overcome inefficiencies in embryo culture, we prepared human modified synthetic oviductal fluid with amino acids (hmSOFaa) by supplementing mSOFaa with human serum albumin and fructose instead of bovine serum albumin and glucose, respectively. Culturing human SCNT-derived embryos in G1.2 medium for the first 48 h followed by hmSOFaa medium produced more blastocysts than culturing in G1.2 medium for the first 48 h followed by culture in G2.2 medium or culturing continuously in hmSOFaa medium. The protocol described here produced cloned blastocysts at rates of 19–29%, which is comparable with the rates in cattle (approx 25%) and pigs (approx 26%) using established SCNT methods. A total of 30 SCNT-derived blastocysts were cultured, 20 inner cell masses (ICMs) were isolated by immunosurgical removal of the trophoblast, and one human cloned ES cell line (SCNT-hES1) with typical ES cell morphology and pluripotency was derived. Our approach opens the door for the use of autologous cells derived from nuclear transfer ES (ntES)-derived cells in transplantation medicine.  相似文献   

14.
In post-mitotic tissues, damaged cells are not replaced by new cells and hence effective local tissue repair mechanisms are required. In skeletal muscle, which is a syncytium, additional nuclei are obtained from muscle satellite (stem) cells that multiply and then fuse with the damaged fibres. Although insulin-like growth factor-I (IGF-l) had been previously implicated, it is now clear that muscle expresses at least two splice variants of the IGF-I gene: a mechanosensitive, autocrine, growth factor (MGF) and one that is similar to the liver type (IGF-IEa). To investigate this activation mechanism, local damage was induced by stretch combined with electrical stimulation or injection of bupivacaine in the rat anterior tibialis muscle and the time course of regeneration followed morphologically. Satellite cell activation was studied by the distribution and levels of expression of M-cadherin (M-cad) and related to the expression of the two forms of IGF-I. It was found that the following local damage MGF expression preceded that of M-cad whereas IGF-IEa peaked later than M-cad. The evidence suggests therefore that an initial pulse of MGF expression following damage is what activates the satellite cells and that this is followed by the later expression of IGF-IEa to maintain protein synthesis to complete the repair.  相似文献   

15.
The purpose of this study was to prepare a monolayer of neural stem/precursor cells (NSPCs) for neural tissue engineering applications. Two components present in serum, fibronectin and epidermal growth factor (EGF) were added into DMEM/F12 medium (termed medium B) to examine the effect of the migration-, proliferation- and differentiation-promoting potential on the cultured NSPCs, isolated from embryonic rat cerebral cortex. Compared with the serum effect, medium B also permitted neurosphere attachment onto the substrate surface and cell migration out of neurospheres extensively, but enhanced more extensive cell division and slowed down NSPC differentiation to generate a confluent NSPC monolayer. It was found the medium B-treated NSPCs possessed the capability to form typical neurospheres or to undergo differentiation into neuron-related cell types on various biomaterial surfaces. Therefore, we proposed a two-stage process for wound healing or nerve conduit preparation. Extensive NSPC division and MAP2-positive neuron differentiation were manipulated in NSPCs cultured in the medium B followed by the neuronal differentiation-favorable medium. These results should be useful for controlling the proliferation and differentiation of NSPCs on various biomaterials and conduits in neuroscience research.  相似文献   

16.
Ayala R  Zhang C  Yang D  Hwang Y  Aung A  Shroff SS  Arce FT  Lal R  Arya G  Varghese S 《Biomaterials》2011,32(15):3700-3711
The effective utilization of stem cells in regenerative medicine critically relies upon our understanding of the intricate interactions between cells and their extracellular environment. While bulk mechanical and chemical properties of the matrix have been shown to influence various cellular functions, the role of matrix interfacial properties on stem cell behavior is unclear. Here, we report the striking effect of matrix interfacial hydrophobicity on stem cell adhesion, motility, cytoskeletal organization, and differentiation. This is achieved through the development of tunable, synthetic matrices with control over their hydrophobicity without altering the chemical and mechanical properties of the matrix. The observed cellular responses are explained in terms of hydrophobicity-driven conformational changes of the pendant side chains at the interface leading to differential binding of proteins. These results demonstrate that the hydrophobicity of the extracellular matrix could play a considerably larger role in dictating cellular behaviors than previously anticipated. Additionally, these tunable matrices, which introduce a new control feature for regulating various cellular functions offer a platform for studying proliferation and differentiation of stem cells in a controlled manner and would have applications in regenerative medicine.  相似文献   

17.
Plasticity of adult cells has been identified in several post-natal tissues in the past few years and has attracted special attention in regenerative medicine. Skin is the biggest organ in the body. Adult skin consists of epidermis, dermis and appendages such as hairs and glands which are linked to the epidermis but project deep into the dermal layer. Skin stem cell biology has been a focus of increasing interest in current life science. Committed stem cells with limited differentiation potential for regeneration and repair of epidermis have been known for decades. Recent studies further report that adult skin tissues contain cell populations with pluripotent characteristics. Multipotent stem cells from hair follicle and non-follicular skin, both in epidermal and dermal tissues, are found to have the differentiation capacity to generate multiple cell lineages. Basing on the present data, our hypothesis is that skin may serve as a local reservoir of various adult stem cell populations, including committed stem cell populations and pluripotent stem cell populations both in epidermal and dermal tissues. Given its easy accessibility, stem cells in skin will not only provide an experimental model for skin biology, but also may provide an experimental model for studying the epithelial-mesenchymal interactions of several other organs outside of skin. The stem cell populations in skin tissues may also have extensive therapeutic implications in the replacement of skin and may serve as an alternative source of stem cells for several other organs outside of skin. The in situ activation and mobilization of stem cell populations in the skin is an ideal way to renew and repair epidermis and dermis, even appendages.  相似文献   

18.
Eph receptor tyrosine kinases mediate neurodevelopmental processes such as boundary formation, vasculogenesis, and cell migration. Recently, we found that overexpression of EphB2 in glioma cells results in reduced cell adhesion and increased cell invasion. Since R-Ras has been shown to play a critical role in EphB2 regulation of integrin activity, we explored whether the biological role of EphB2 in glioma invasion is mediated by downstream R-Ras activation. On EphB2 activation, R-Ras associated with the receptor and became highly phosphorylated. Depletion of endogenous R-Ras expression by siRNA abrogated EphB2 effects on glioma cell adhesion, proliferation, and invasion in ex vivo rat brain slices. Anti-proliferative responses to EphB2 activation were consistent with suppressed mitogen-activated protein kinase activity. Moreover, R-Ras was highly phosphorylated in the invading glioma cells. In human brain tumor specimens, R-Ras expression and phosphorylation correlated with increasing grade of gliomas. Laser capture microdissection of invading glioblastoma cells revealed elevated R-Ras mRNA (1.5- to 26-fold) in 100% (eight of eight) of biopsy specimens, and immunohistochemistry revealed high R-Ras localization primarily in glioblastoma cells. The phosphorylation ratio of R-Ras positively correlated with the phosphorylation ratio of EphB2 in glioblastoma tissues. These results demonstrate that R-Ras plays an important role in glioma pathology, further suggesting the EphB2/R-Ras signaling pathway as a potential therapeutic target.  相似文献   

19.
Lei Y  Gojgini S  Lam J  Segura T 《Biomaterials》2011,32(1):39-47
Synthetic hydrogel scaffolds that can be used as culture systems that mimic the natural stem cell niche are of increased importance for stem cell biology and regenerative medicine. These artificial niches can be utilized to control the stem cell fate and will have potential applications for expanding/differentiating stem cells in vitro, delivering stem cells in vivo, as well as making tissue constructs. In this study, we synthesized hyaluronic acid (HA) hydrogels that could be degraded through a combination of cell-released enzymes and used them to culture mouse mesenchymal stem cells (mMSC). To form the hydrogels, HA was modified to contain acrylate groups and crosslinked through Michael addition chemistry using non-degradable, plasmin degradable or matrix metalloproteinase (MMP) degradable crosslinkers. Using this hydrogel we found that mMSC proliferation occurred in the absence of cell spreading, that mMSCs could only spread when both RGD and MMP degradation sites were present in the hydrogel and that mMSCs in hydrogels with high density of RGD (1000 μm) spread and migrated faster and more extensively than in hydrogels with low density of RGD (100 μm).  相似文献   

20.
This study investigated the intergenerational transmission of attachment, utilizing the Adult Attachment Interview (AAI), the Strange Situation Procedure (SSP), and the Maternal Behavioral Q-Set (MBQS). We revisited fundamental questions in attachment theory and research by examining: (1) the level of intergenerational agreement between maternal attachment representations and infant attachment security, and (2) whether maternal sensitivity serves as an intergenerational mediator between adult and infant attachment security. Significant categorical matches between the AAI and the SSP as well as mean differences for MBQS scores between adult attachment secure-insecure groups were found. Consistent with earlier intergenerational research, maternal sensitivity only partially mediated the AAI-SSP link, indicating the transmission gap remains. Consistent with recent mediation studies, using more contemporary analytical techniques, it was confirmed that maternal sensitivity did mediate the direct pathway between AAI security and SSP security. Thus, the transmission gap appears somewhat different depending on the statistical method used to measure mediation. Post hoc analyses considered mothers’ childhood experiences of separation/divorce and this helped make sense of intergenerational mismatches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号