首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pathophysiology of irritable bowel syndrome(IBS) is not completely understood. However, several factors are known to play a role in pathophysiology of IBS such as genetics, diet, gut microbiota, gut endocrine cells,stress and low-grade inflammation. Understanding the pathophysiology of IBS may open the way for new treatment approaches. Low density of intestinal stem cells and low differentiation toward enteroendocrine cells has been reported recently in patients with IBS. These abnormalities are believed to be the cause of the low density of enteroendocrine cells seen in patients with IBS.Enteroendocrine cells regulate gastrointestinal motility, secretion, absorption and visceral sensitivity. Gastrointestinal dysmotility, abnormal absorption/secretion and visceral hypersensitivity are all seen in patients with IBS and haven been attributed to the low density the intestinal enteroendocrine cells in these patients.The present review conducted a literature search in Medline(Pub Med) covering the last ten years until November 2019, where articles in English were included.Articles about the intestinal stem cells and their possible role in the pathophysiology of IBS are discussed in the present review. The present review discusses the assumption that intestinal stem cells play a central role in the pathophysiology of IBS and that the other factors known to contribute to the pathophysiology of IBS such as genetics, diet gut microbiota, stress, and lowgrade inflammation exert their effects through affecting the intestinal stem cells.It reports further the data that support this assumption on genetics, diet, gut microbiota, stress with depletion of glutamine, and inflammation.  相似文献   

2.
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder in which recurrent abdominal pain is associated with defecation or a change in bowel habits (constipation, diarrhea, or both), and it is often accompanied by symptoms of abdominal bloating and distension. IBS is an important health care issue because it negatively affects the quality of life of patients and places a considerable financial burden on health care systems. Despite extensive research, the etiology and underlying pathophysiology of IBS remain incompletely understood. Proposed mechanisms involved in its pathogenesis include increased intestinal permeability, changes in the immune system, visceral hypersensitivity, impaired gut motility, and emotional disorders. Recently, accumulating evidence has highlighted the important role of the gut microbiota in the development of IBS. Microbial dysbiosis within the gut is thought to contribute to all aspects of its multifactorial pathogenesis. The last few decades have also seen an increasing interest in the impact of antibiotics on the gut microbiota. Moreover, antibiotics have been suggested to play a role in the development of IBS. Extensive research has established that antibacterial therapy induces remarkable shifts in the bacterial community composition that are quite similar to those observed in IBS. This suggestion is further supported by data from cohort and case-control studies, indicating that antibiotic treatment is associated with an increased risk of IBS. This paper summarizes the main findings on this issue and contributes to a deeper understanding of the link between antibiotic use and the development of IBS.  相似文献   

3.
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that poses a significant health concern. Although its etiology remains unknown, there is growing evidence that gut dysbiosis is involved in the development and exacerbation of IBS. Previous studies have reported altered microbial diversity, abundance, and composition in IBS patients when compared to controls. However, whether dysbiosis or aberrant changes in the intestinal microbiota can be used as a hallmark of IBS remains inconclusive. We reviewed the literatures on changes in and roles of intestinal microbiota in relation to IBS and discussed various gut microbiota manipulation strategies. Gut microbiota may affect IBS development by regulating the mucosal immune system, brain–gut–microbiome interaction, and intestinal barrier function. The advent of high-throughput multi-omics provides important insights into the pathogenesis of IBS and promotes the development of individualized treatment for IBS. Despite advances in currently available microbiota-directed therapies, large-scale, well-organized, and long-term randomized controlled trials are highly warranted to assess their clinical effects. Overall, gut microbiota alterations play a critical role in the pathophysiology of IBS, and modulation of microbiota has a significant therapeutic potential that requires to be further verified.  相似文献   

4.
Irritable bowel syndrome(IBS) is a common gastrointestinal disorder, the pathophysiology of which is not completely known, although it has been shown that genetic/social learning factors, diet, intestinal microbiota, intestinal low-grade inflammation, and abnormal gastrointestinal endocrine cells play a major role. Studies of familial aggregation and on twins have confirmed the heritability of IBS. However, the proposed IBS risk genes are thus far nonvalidated hits rather than true predisposing factors. There is no convincing evidence that IBS patients suffer from food allergy/intolerance, with the effect exerted by diet seemingly caused by intake of poorly absorbed carbohydrates and fiber. Obesity is a possible comorbidity of IBS. Differences in the microbiota between IBS patients and healthy controls have been reported, but the association between IBS symptoms and specific bacterial species is uncertain. Low-grade inflammation appears to play a role in the pathophysiology of a major subset of IBS, namely postinfectious IBS. The density of intestinal endocrine cells is reduced in patients with IBS, possibly as a result of genetic factors, diet, intestinal microbiota, and low-grade inflammation interfering with the regulatory signals controlling the intestinal stem-cell clonogenic and differentiation activities. Furthermore, there is speculation that this decreased number of endocrine cells is responsible for the visceral hypersensitivity, disturbed gastrointestinal motility, and abnormal gut secretion seen in IBS patients.  相似文献   

5.
Abstract

The gastrointestinal tract is a natural reservoir of microbiota. The gut is germ-free at birth, but rapidly becomes host to various bacteria establishing a progressively mutual relationship. The composition of gut microbiota is individual-specific and depends on the genotype of the host and environmental factors. Novel techniques have been used to characterize gastrointestinal microbiota, including genomic approaches. The bacterial profile shows that dominant and minor phyla are present in the gastrointestinal tract. From the proximal to the distal segments of the gut the bacterial density gradually increases, reaching an estimated 1011 to 1012 bacteria per gram of colonic content. Dynamic interactions between gut and microbiota play a physiological role in metabolic, protective and structural functions, while dysbiosis contributes to several diseases. Microbiota appear to play a role in IBS, where qualitative and quantitative changes of bacteriaoccur in IBS subtypes. Initial therapeutic approaches in IBS have focused on microbiota. The relationship between perturbations of the microbiota, mucosal inflammation and IBS remains to be further investigated.  相似文献   

6.
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that predominantly affects women and accounts for up to 40% of the gastroenterology unit outpatient visits. The pathophysiology is complex and multifactorial. In the present review we will focus on the role of intestinal dysbiosis in its pathogenesis and treatment. Post-infectious IBS (PI-IBS) can put light on the mechanisms underlying IBS. Modified commensal gut flora may lead to mucosal inflammation. Several changes such as an increase in mucosal cellularity (enterochromaffin cells, lamina propria T lymphocytes and mast cells), modified pro-inflammatory/anti-inflammatory cytokine balance and disordered neurotransmission have been observed. The normal microbiota is an essential factor in health. A modification of the flora, such as small intestinal bacterial overgrowth (SIBO) is thought to play a pathogenic role in IBS. Changes in the composition of the luminal and mucosal colonic flora have been linked to IBS. It is not clear however, whether these changes are a cause or a consequence of the syndrome. The comprehension of the interaction between the dysbiotic microbiota and the host will probably lead to the development of focused therapies. Based on these assumptions, treatments modulating the microbiota have been investigated. On the one hand several probiotics have shown a reduction in IBS symptoms by an immunomodulatory and analgesic effects. On the other hand antibiotic treatment has proven efficacy in treating IBS with or without associated SIBO. Due to its complex pathophysiology, treating IBS nowadays implies multiple approaches, one of which may be modulation of the intestinal flora.  相似文献   

7.
Irritable bowel syndrome (IBS) is an important health care concern. Alterations in the microbiota of the gut-brain axis may be linked to the pathophysiology of IBS. Some dietary intake could contribute to produce various metabolites including D-amino acids by the fermentation by the gut microbiota. D-amino acids are the enantiomeric counterparts of L-amino acids, in general, which could play key roles in cellular physiological processes against various oxidative stresses. Therefore, the presence of D-amino acids has been shown to be linked to the protection of several organs in the body. In particular, the gut microbiota could play significant roles in the stability of emotion via the action of D-amino acids. Here, we would like to shed light on the roles of D-amino acids, which could be used for the treatment of IBS.  相似文献   

8.
Irritable bowel syndrome(IBS)is common gastrointestinal problems.It is characterized by abdominal pain or discomfort,and is associated with changes in stool frequency and/or consistency.The etiopathogenesis of IBS may be multifactorial,as is the pathophysiology,which is attributed to alterations in gastrointestinal motility,visceral hypersensitivity,intestinal microbiota,gut epithelium and immune function,dysfunction of the brain-gut axis or certain psychosocial factors.Current therapeutic strategies are often unsatisfactory.There is now increasing evidence linking alterations in the gastrointestinal microbiota and IBS.Probiotics are living organisms which,when ingested in certain numbers,exert health benefits beyond inherent basic nutrition.Probiotics have numerous positive effects in the gastrointestinal tract.Recently,many studies have suggested that probiotics are effective in the treatment of IBS.The mechanisms of probiotics in IBS are very complex.The purpose of this review is to summarize the evidence and mechanisms for the use of probiotics in the treatment of IBS.  相似文献   

9.
人体肠道内的菌群参与了许多生理功能的维持和疾病的发生。作为大脑和胃肠道功能相互调节的重要桥梁,脑-肠轴功能的正常发挥是肠道菌群维持稳定的条件。脑-肠轴紊乱可激活肠黏膜免疫,对肠道菌群产生影响,使菌群结构发生改变。反之,肠道菌群结构改变亦会影响神经系统发育,导致脑-肠轴功能紊乱,其中迷走神经和血清代谢物质在脑-肠轴功能的调节中发挥重要作用。本文就肠道菌群与脑-肠轴功能相互影响的研究进展作一综述。  相似文献   

10.
Irritable bowel syndrome (IBS) is a symptom complex characterized by recurrent abdominal pain or discomfort, and accompanied by abnormal bowel habits, in the absence of any discernible organic abnormality. Its origin remains unclear, partly because multiple pathophysiologic mechanisms are likely to be involved. A significant proportion of patients develop IBS symptoms after an episode of gastrointestinal infection. In addition to gastrointestinal pathogens, recent evidence suggests that patients with IBS have abnormal composition and higher temporal instability of their intestinal microbiota. Because the intestinal microbiota is an important determinant of normal gut function and immunity, this instability may constitute an additional mechanism that leads to symptom generation and IBS. More importantly, a role for altered microbiota composition in IBS raises the possibility of therapeutic interventions through selective antibiotic or probiotic administration. The new concept of functional bowel diseases incorporates the bidirectional communication between the gut and the central nervous system (gut-brain axis), which may explain the multiple facets of IBS by linking emotional and cognitive centers of the brain with peripheral functioning of the gastrointestinal tract and vice versa.  相似文献   

11.
12.
The gastrointestinal tract is responsible for a multitude of digestive and immune functions which depend upon the balanced interaction of the intestinal microbiota, diet, gut barrier function, and mucosal immune response. Disruptions in one or more of these factors can lead to intestinal disorders or enteropathies which are characterized by intestinal inflammation, increased gut permeability, and reduced capacity to absorb nutrients. Enteropathy is frequently associated with human immunodeficiency virus (HIV) infection, inflammatory bowel disease, autoimmune enteropathy, radiation enteritis, and irritable bowel syndrome (IBS), where pathologic changes in the intestinal tract lead to abdominal discomfort, bloating, abnormal bowel function (e.g., diarrhea, urgency, constipation and malabsorption). Unfortunately, effective therapies for the management of enteropathy and restoring intestinal health are still not available. An accumulating body of preclinical studies has demonstrated that oral administration of plasma- or serum-derived protein concentrates containing high levels of immunoglobulins can improve weight, normalize gut barrier function, and reduce the severity of enteropathy in animal models. Recent studies in humans, using serum-derived bovine immunoglobulin/protein isolate, demonstrate that such protein preparations are safe and improve symptoms, nutritional status, and various biomarkers associated with enteropathy. Benefits have been shown in patients with HIV infection or diarrhea-predominant IBS. This review summarizes preclinical and clinical studies with plasma/serum protein concentrates and describes the effects on host nutrition, intestinal function, and markers of intestinal inflammation. It supports the concept that immunoglobulin-containing protein preparations may offer a new strategy for restoring functional homeostasis in the intestinal tract of patients with enteropathy.  相似文献   

13.
The hypothesis of an important role of gut microbiota in the maintenance of physiological state into the gastrointestinal (GI) system is supported by several studies that have shown a qualitative and quantitative alteration of the intestinal flora in a number of gastrointestinal and extra-gastrointestinal diseases. In the last few years, the importance of gut microbiota impairment in the etiopathogenesis of pathology such as autism, dementia and mood disorder, has been raised. The evidence of the inflammatory state alteration, highlighted in disorders such as schizophrenia, major depressive disorder and bipolar disorder, strongly recalls the microbiota alteration, highly suggesting an important role of the alteration of GI system also in neuropsychiatric disorders. Up to now, available evidences display that the impairment of gut microbiota plays a key role in the development of autism and mood disorders. The application of therapeutic modulators of gut microbiota to autism and mood disorders has been experienced only in experimental settings to date, with few but promising results. A deeper assessment of the role of gut microbiota in the development of autism spectrum disorder (ASD), as well as the advancement of the therapeutic armamentarium for the modulation of gut microbiota is warranted for a better management of ASD and mood disorders.  相似文献   

14.
Metabolomics has increasingly been applied in addition to other “omic” approaches in the study of the pathophysiology of different gastrointestinal diseases. Metabolites represent molecular readouts of the cell status reflecting a physiological phenotype. In addition, changes in metabolite concentrations induced by exogenous factors such as environmental and dietary factors which do not affect the genome, are taken into account. Metabolic reactions initiated by the host or gut microbiota can lead to “marker” metabolites present in different biological fluids that allow differentiation between health and disease. Several lines of evidence implicated the involvement of intestinal microbiota in the pathogenesis of inflammatory bowel disease (IBD). Also in irritable bowel syndrome (IBS), a role of an abnormal microbiota composition, so-called dysbiosis, is supported by experimental data. These compositional alterations could play a role in the aetiology of both diseases by altering the metabolic activities of the gut bacteria. Several studies have applied a metabolomic approach to identify these metabolite signatures. However, before translating a potential metabolite biomarker into clinical use, additional validation studies are required. This review summarizes contributions that metabolomics has made in IBD and IBS and presents potential future directions within the field.  相似文献   

15.
Irritable bowel syndrome(IBS)is a common clinical label for medically unexplained gastrointestinal symptoms,recently described as a disturbance of the microbiota-gut-brain axis.Despite decades of research,the pathophysiology of this highly heterogeneous disorder remains elusive.However,a dramatic change in the understanding of the underlying pathophysiological mechanisms surfaced when the importance of gut microbiota protruded the scientific picture.Are we getting any closer to understanding IBS’etiology,or are we drowning in unspecific,conflicting data because we possess limited tools to unravel the cluster of secrets our gut microbiota is concealing?In this comprehensive review we are discussing some of the major important features of IBS and their interaction with gut microbiota,clinical microbiota-altering treatment such as the low FODMAP diet and fecal microbiota transplantation,neuroimaging and methods in microbiota analyses,and current and future challenges with big data analysis in IBS.  相似文献   

16.
Gut microbiota is a community of microorganisms that reside in the gastrointestinal tract. An increasing number of studies has demonstrated that the gut-liver axis plays a critical role in liver homeostasis. Dysbiosis of gut microbiota can cause liver diseases, including nonalcoholic fatty liver disease and alcoholic liver disease. Preclinical and clinical investigations have substantiated that the metabolites and other molecules derived from gut microbiota and diet interaction function as mediators to cause liver fibrosis, cirrhosis, and final cancer. This effect has been demonstrated to be associated with dysregulation of intrahepatic immunity and liver metabolism. Targeting these findings have led to the development of novel preventive and therapeutic strategies. Here, we review the cellular and molecular mechanisms underlying gut microbiota-mediated impact on liver disease. We also summarize the advancement of gut microbiota-based therapeutic strategies in the control of liver diseases.  相似文献   

17.
Antimicrobial peptides (AMP) are highly diverse and dynamic molecules that are expressed by specific intestinal epithelial cells, Paneth cells, as well as immune cells in the gastrointestinal (GI) tract. They play critical roles in maintaining tolerance to gut microbiota and protecting against enteric infections. Given that disruptions in tolerance to commensal microbiota and loss of barrier function play major roles in the pathogenesis of inflammatory bowel disease (IBD) and converge on the function of AMP, the significance of AMP as potential biomarkers and novel therapeutic targets in IBD have been increasingly recognized in recent years. In this frontier article, we discuss the function and mechanisms of AMP in the GI tract, examine the interaction of AMP with the gut microbiome, explore the role of AMP in the pathogenesis of IBD, and review translational applications of AMP in patients with IBD.  相似文献   

18.
Irritable bowel syndrome (IBS) is one of the most common gastrointestinal disorders in Western countries. Despite the high prevalence of this disorders, the therapeutic management of these patients is often unsatisfactory. A number of factors have been suggested to be involved in the pathogenesis of IBS, including impaired motility and sensitivity, increased permeability, changes in the gut microbiome and alterations in the brain-gut axis. Also food seems to play a critical role: the most of IBS patients report the onset or the exacerbation of their symptoms after the meals. Recently, an increasing attention has been paid to the role of food in IBS. In this review we summarize the most recent evidences about the role of diet on IBS symptoms. A diet restricted in fermentable, poorly absorbed carbohydrates and sugar alcohols has beneficial effects on IBS symptoms. More studies are needed to improve our knowledge about the relationship between food and IBS. However, in the foreseeable future, dietary strategies will represent one of the key tools in the therapeutic management of patients with IBS.  相似文献   

19.
Microbes colonize the gastrointestinal tract are considered as highest complex ecosystem because of having diverse bacterial species and 150 times more genes as compared to the human genome. Imbalance or dysbiosis in gut bacteria can cause dysregulation in gut homeostasis that subsequently activates the immune system, which leads to the development of inflammatory bowel disease(IBD). Neuromediators, including both neurotransmitters and neuropeptides, may contribute to the development of aberrant immune response. They are emerging as a regulator of inflammatory processes and play a key role in various autoimmune and inflammatory diseases. Neuromediators may influence immune cell's function via the receptors present on these cells. The cytokines secreted by the immune cells, in turn, regulate the neuronal functions by binding with their receptors present on sensory neurons. This bidirectional communication of the enteric nervous system and the enteric immune system is involved in regulating the magnitude of inflammatory pathways. Alterations in gut bacteria influence the level of neuromediators in the colon, which may affect the gastrointestinal inflammation in a disease condition. Changed neuromediators concentration via dysbiosis in gut microbiota is one of the novel approaches to understand the pathogenesis of IBD. In this article, we reviewed the existing knowledge on the role of neuromediators governing the pathogenesis of IBD, focusing on the reciprocal relationship among the gut microbiota, neuromediators, and host immunity. Understanding the neuromediators and host-microbiota interactions would give a better insight in to the disease pathophysiology and help in developing the new therapeutic approaches for the disease.  相似文献   

20.
Interactions between host and gut microbiota in domestic pigs: a review   总被引:1,自引:0,他引:1  
ABSTRACT

It is well established that pig gut microbiota plays a critical role in maintaining metabolic homeostasis as well as in a myriad of physiological, neurological and immunological functions; including protection from pathogens and digestion of food materials – some of which would be otherwise indigestible by the pig. A rich and diverse gut microbial ecosystem (balanced microbiota) is the hallmark of good health; while qualitative and quantitative perturbations in the microbial composition can lead to development of various diseases. Alternatively, diseases caused by stressors or other factors have been shown to negatively impact the microbiota. This review focuses primarily on how commensal microorganisms in the gastrointestinal tract of pigs influence biochemical, physiological, immunological, and metabolic processes within the host animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号