首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress may play a key role in Alzheimer's disease (AD) neuropathology. Here, the effects of the antioxidant, alpha-lipoic acid (ALA) were tested on the Tg2576 mouse, a transgenic model of cerebral amyloidosis associated with AD. Ten-month old Tg2576 and wild type mice were fed an ALA-containing diet (0.1%) or control diet for 6 months and then assessed for the influence of diet on memory and neuropathology. ALA-treated Tg2576 mice exhibited significantly improved learning, and memory retention in the Morris water maze task compared to untreated Tg2576 mice. Twenty-four hours after contextual fear conditioning, untreated Tg2576 mice exhibited significantly impaired context-dependent freezing. ALA-treated Tg2576 mice exhibited significantly more context freezing than the untreated Tg2576 mice. Assessment of brain soluble and insoluble beta-amyloid levels revealed no differences between ALA-treated and untreated Tg2576 mice. Brain levels of nitrotyrosine, a marker of nitrative stress, were elevated in Tg2576 mice, while F2 isoprostanes and neuroprostanes, oxidative stress markers, were not elevated in the Tg2576 mice relative to wild type. These data indicate that chronic dietary ALA can reduce hippocampal-dependent memory deficits of Tg2576 mice without affecting beta-amyloid levels or plaque deposition.  相似文献   

2.
This study was designed to test the hypothesis that Alzheimer's disease (AD) is associated with endothelial dysfunction and that chronic endothelin-1 antagonism preserves endothelial function in mice overexpressing the AD amyloid precursor protein (APP). Three groups of mice were studied: C57BL/6 (normal control, n = 6), transgenic mice overexpressing APP (Tg2576, n = 5), and Tg2576 mice fed Bosentan (100 mg/(kg day)(-1)), a combined endothelin A and B receptor antagonist, for 4 months (Tg2576+Bosentan, n = 5). Mice were sacrificed at the age of 7 months. In vitro, the endothelium-dependent aortic vasorelaxation was significantly attenuated in Tg2576 mice as compared to C57BL/6 and Tg2576+Bosentan mice. In contrast, Tg2576+Bosentan and C57BL/6 mice showed similar endothelium-dependent aortic vasorelaxation. Similarly, endothelium-dependent carotid vasorelaxation was significantly attenuated in Tg2576 mice compared to C57BL/6 and Tg2576+Bosentan mice. There was no difference between the three groups in the response to nitroprusside. The current study demonstrates the presence of endothelial dysfunction in both carotid and aortic arteries in mice overexpressing APP and suggests a pathophysiological role for the endogenous endothelin system in AD.  相似文献   

3.
Occurrence of amyloid beta (Abeta) dense-core plaques in the brain is one of the chief hallmarks of Alzheimer's disease (AD). It is not yet clear what factors are responsible for the aggregation of Abeta in the formation of these plaques. Using Tg2576 and PSAPP mouse models that exhibit age-related development of amyloid plaques similar to that observed in AD, we showed that approximately 95% of dense plaques in Tg2576 and approximately 85% in PSAPP mice are centered on vessel walls or in the immediate perivascular regions. Stereoscopy and simulation studies focusing on smaller plaques suggested that vascular associations for both Tg2576 and PSAPP mice were dramatically higher than those encountered by chance alone. We further identified ultrastructural microvascular abnormalities occurring in association with dense plaques. Although occurrence of gross cerebral hemorrhage was infrequent, we identified considerable infiltration of the serum proteins immunoglobulin and albumin in association with dense plaques. Together with earlier evidence of vascular clearance of Abeta, our data suggest that perturbed vascular transport and/or perivascular enrichment of Abeta leads to the formation of vasocentric dense plaques in Tg2576 and PSAPP mouse models of AD.  相似文献   

4.
Cao D  Fukuchi K  Wan H  Kim H  Li L 《Neurobiology of aging》2006,27(11):1632-1643
Emerging evidence indicates that cholesterol metabolism affects the pathogenesis of Alzheimer's disease (AD). The LDL receptor (LDLR) is obligatory in maintaining cholesterol homeostasis in the periphery. To investigate the role of LDLR in the development of AD-like behavior and pathology, Tg2576 mice, a well-characterized transgenic mouse model of AD, with different genotypes of LDLR were generated. Here we show that LDLR-deficient Tg2576 mice developed hypercholesterolemia and age-dependent cerebral beta-amyloidosis. Before the manifestation of amyloid-beta (Abeta) deposition, these mice displayed hyperactivity, reduced anxiety, and impaired spatial learning regardless of LDLR genotypes. After the manifestation of Abeta deposition, LDLR-deficient Tg2576 mice showed more spatial learning deficits than LDLR-intact Tg2576 mice. Although LDLR genotypes did not affect the expression level of the amyloid-beta precursor protein transgene, there was a significant increase in Abeta deposition accompanied with an increase of apoE expression in LDLR-deficient Tg2576 mice. Our results suggest that the LDLR plays a role in the development of Alzheimer-type learning impairment and amyloidosis and can be a novel therapeutic target for AD.  相似文献   

5.
Eyeblink conditioning has been used for assessing cognitive performance in cases of human neurodegenerative diseases including Alzheimer's disease (AD). Here, we tested and compared the delay and long-trace interval (TI = 500 ms) eyeblink conditionings in a Tg2576 mouse model of AD, at the age of 3, 6, and 12 months. Tg2576 mice exhibited significant impairment in trace conditioning at 6 months of age. In contrast, delay conditioning was not impaired in Tg2576 mice even at 12 months. These findings indicate that the long-TI eyeblink conditioning is more susceptible to age-related cognitive deterioration than delay conditioning in Tg2576 mice. The long-trace eyeblink conditioning could be a potential tool for detecting early cognitive deficits in AD mouse model.  相似文献   

6.
7.
Relatively few cases of myocardial infarction associated with coronary artery atherosclerosis have been described previously in macaques. In this study the authors report the prevalence and characteristics of coronary artery atherosclerosis and myocardial infarction in 10 rhesus (Macaca mulatta) and two cynomolgus (Macaca fascicularis) macaques that were fed atherogenic diets for 16 months or longer. Our findings show clearly that myocardial infarction occurs in macaques with diet-induced atherosclerosis. The frequency seems to be related to the species, composition of the atherogenic diet, and length of time fed the atherogenic diet. The myocardial lesions are remarkably similar to those described in human beings in terms of location and gross and microscopic characteristics. The characteristics of coronary artery atherosclerosis, including the occurrence of thrombosis, severe stenosis, mineralization, atheronecrosis, and sterol clefts, especially in animals fed the atherogenic diets for longer periods of time, also closely resemble those of the arterial lesions found in human beings. The greatest prevalence of myocardial infarcts was found in rhesus monkeys fed a cholesterol-containing diet with 40% of calories supplied by peanut oil and in cynomolgus macaques from Malaya that were fed the same amount of cholesterol with 40% of calories from lard. Electrocardiographic abnormalities as well as the occurrence of unexpected and relatively sudden death in several of these nonhuman primates are also consistent with signs frequently observed in human beings.  相似文献   

8.
Transthyretin (TTR) binds amyloid-β (Aβ) and prevents Aβ fibril formation in vitro . It was reported that the lack of neurodegeneration in a transgenic mouse model of Alzheimer's disease (AD) (Tg2576 mouse) was associated with increased TTR level in the hippocampus, and that chronic infusion of anti-TTR antibody into the hippocampus of Tg2576 mice led to increased local Aβ deposits, tau hyperphosphorylation and apoptosis. TTR is, therefore, speculated to prevent Aβ pathology in AD. However, a role for TTR in Aβ deposition is not yet known. To investigate the relationship between TTR and Aβ deposition, we generated a mouse line carrying a null mutation at the endogenous TTR locus and the human mutant amyloid precursor protein cDNA responsible for familial AD (Tg2576 /TTR −/− mouse) by crossing Tg2576 mice with TTR-deficient mice. We asked whether Aβ deposition was accelerated in Tg2576/ TTR −/− mice relative to the heterozygous mutant Tg2576 (Tg2576/ TTR +/−) mice. Contrary to our expectations, the degree of total and vascular Aβ burdens in the aged Tg2576/ TTR −/− mice was significantly reduced relative to the age-matched Tg2576/ TTR +/− mice. Our experiments present, for the first time, compelling evidence that TTR does not suppress but rather accelerates vascular Aβ deposition in the mouse model of AD.  相似文献   

9.
The Tg2576 mouse model of Alzheimer's disease (AD) exhibits age-dependent amyloid beta (Abeta) deposition in the brain. We studied electroencephalographically defined sleep and the circadian regulation of waking activities in Tg2576 mice to determine whether these animals exhibit sleep abnormalities akin to those in AD. In Tg2576 mice at all ages studied, the circadian period of wheel running rhythms in constant darkness was significantly longer than that of wild type mice. In addition, the increase in electroencephalographic delta (1-4 Hz) power that occurs during non-rapid eye movement sleep after sleep deprivation was blunted in Tg2576 mice relative to controls at all ages studied. Electroencephalographic power during non-rapid eye movement sleep was shifted to higher frequencies in plaque-bearing mice relative to controls. The wake-promoting efficacy of the acetylcholinesterase inhibitor donepezil was lower in plaque-bearing Tg2576 mice than in controls. Sleep abnormalities in Tg2576 mice may be due in part to a cholinergic deficit in these mice. At 22 months of age, two additional deficits emerged in female Tg2576 mice: time of day-dependent modulation of sleep was blunted relative to controls and rapid eye movement sleep as a percentage of time was lower in Tg2576 than in wild type controls. The rapid eye movement sleep deficit in 22 month-old female Tg2576 mice was abolished by brief passive immunization with an N-terminal antibody to Abeta. The Tg2576 model provides a uniquely powerful tool for studies on the pathophysiology of and treatments for sleep deficits and associated cholinergic abnormalities in AD.  相似文献   

10.
We focused on the effect of mild hyperhomocysteinemia (HHcy) on the development of atherosclerosis, using apolipoprotein E-deficient (apoE−/−) and normal mice. Mice received diets enriched in methionine with low or high levels of folate, B12 and B6 (diets B and C, respectively), and diet only with low levels of folate, B12 and B6 (diets D), to induce mild HHcy. Normal mice fed on diets B, C and D presented mild HHcy, but they did not develop atherosclerotic lesions after 24 weeks of diet. In addition, increased endoplasmic reticulum stress was present in normal mice fed on diet B, compared to others groups. ApoE−/− mice fed on diet B for 20 weeks presented the greatest atherosclerotic lesion area at the aortic sinus than other groups. These results suggest that the methionine may have a toxic effect on endothelium, and the B-vitamins addition on diet may have a protective effect in the long term, despite the increase on homocysteine levels. Mild HHcy accelerated the development of atherosclerosis in apoE−/− mice, and supplementation with B-vitamins is important for prevention of vascular disease, principally in the long term.  相似文献   

11.
With 90% of neuroscience clinical trials failing to see efficacy, there is a clear need for the development of disease biomarkers that can improve the ability to predict human Alzheimer's disease (AD) trial outcomes from animal studies. Several lines of evidence, including genetic susceptibility and disease studies, suggest the utility of fluorodeoxyglucose positron emission tomography (FDG-PET) as a potential biomarker with congruency between humans and animal models. For example, early in AD, patients present with decreased glucose metabolism in the entorhinal cortex and several regions of the brain associated with disease pathology and cognitive decline. While several of the commonly used AD mouse models fail to show all the hallmarks of the disease or the limbic to cortical trajectory, there has not been a systematic evaluation of imaging-derived biomarkers across animal models of AD, contrary to what has been achieved in recent years in the Alzheimer's Disease Neuroimaging Initiative (ADNI) (Miller, 2009). If animal AD models were found to mimic endpoints that correlate with the disease onset, progression, and relapse, then the identification of such markers in animal models could afford the field a translational tool to help bridge the preclinical-clinical gap. Using a combination of FDG-PET and functional magnetic resonance imaging (fMRI), we examined the Tg2576 mouse for global and regional measures of brain glucose metabolism at 7 and 19 months of age. In experiment 1 we observed that at younger ages, when some plaque burden and cognitive deficits have been reported, Tg2576 mice showed hypermetabolism as assessed with FDG-PET. This hypermetabolism decreased with age to levels similar to wild type (WT) counterparts such that the 19-month-old transgenic (Tg) mice did not differ from age matched WTs. In experiment 2, using cerebral blood volume (CBV) fMRI, we demonstrated that the hypermetabolism observed in Tg mice at 7 months could not be explained by changes in hemodynamic parameters as no differences were observed when compared with WTs. Taken together, these data identify brain hypermetabolism in Tg2576 mice which cannot be accounted for by changes in vascular compliance. Instead, the hypermetabolism may reflect a neuronal compensatory mechanism. Our data are discussed in the context of disease biomarker identification and target validation, suggesting little or no utility for translational based studies using Tg2576 mice.  相似文献   

12.
Alzheimer's disease (AD) is a progressive neurodegenerativedisease characterized by the impairment of cognitive functionsand by beta amyloid (Aß) plaques in the cerebral cortexand the hippocampus. Our objective was to determine genes thatare critical for cellular changes in AD progression, with particularemphasis on changes early in disease progression. We investigatedan established amyloid precursor protein (APP) transgenic mousemodel (the Tg2576 mouse model) for gene expression profilesat three stages of disease progression: long before (2 monthsof age), immediately before (5 months) and after (18 months)the appearance of Aß plaques. Using cDNA microarraytechniques, we measured mRNA levels in 11 283 cDNA clonesfrom the cerebral cortex of Tg2576 mice and age-matched wild-type(WT) mice at each of the three time points. This gene expressionanalysis revealed that the genes related to mitochondrial energymetabolism and apoptosis were up-regulated in 2-month-old Tg2576mice and that the same genes were up-regulated at 5 and 18 monthsof age. These microarray results were confirmed using northernblot analysis. Results from in situ hybridization of mitochondrialgenes—ATPase-6, heat-shock protein 86 and programmed celldeath gene 8—suggest that the granule cells of the hippocampaldentate gyrus and the pyramidal neurons in the hippocampus andthe cerebral cortex are up-regulated in Tg2576 mice comparedwith WT mice. Results from double-labeling in situ hybridizationsuggest that in Tg2576 mice only selective, over-expressed neuronswith the mitochondrial gene ATPase-6 undergo oxidative damage.These results, therefore, suggest that mitochondrial energymetabolism is impaired by the expression of mutant APP and/orAß, and that the up-regulation of mitochondrial genesis a compensatory response. These findings have important implicationsfor understanding the mechanism of Aß toxicity inAD and for developing therapeutic strategies for AD. * To whom correspondence should be addressed at: Neurogenetics Laboratory, Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA. Tel: +1 5034182625; Fax: +1 5034182501; Email: reddyh{at}ohsu.edu  相似文献   

13.
Human lecithin:cholesterol acyltransferase (LCAT) is a key enzyme in the metabolism of cholesterol. We have used homozygous transgenic mice overexpressing the human LCAT transgene to study the effect of a "Western-type" atherogenic diet (30% fat, 5% cholesterol and 2% cholic acid) on their LCAT expression, activity, lipoprotein profile and tendency to develop atherosclerosis. The LCAT activity was 35-fold higher in serum of the homozygous transgenic mice than in murine control serum, and decreased 11-20% in the transgenic mice when fed the atherogenic diet. The total cholesterol and high-density lipoprotein cholesterol (HDL-C) concentrations were approximately doubled in the transgenic mice compared with the controls when both groups were fed a regular chow diet. In mice on the atherogenic diet, the triglyceride concentration decreased about 50% to the same level in transgenic and control mice. Total cholesterol and HDL-C concentrations increased and were 60-80% higher in the transgenic mice. The expression of LCAT mRNA in the liver was decreased by 49-60% in the transgenic mice when fed the atherogenic diet. The development of atherosclerosis was similar in transgenic and control mice. Thus, the 14- to 27-fold higher LCAT activity and the higher HDL-C concentrations in the homozygous LCAT transgenic mice had no significant protective influence on the development of diet-induced atherosclerosis.  相似文献   

14.
To understand the relationship between amyloid-beta and cognitive decline in Alzheimer's disease, we evaluated cortical and hippocampal function in a transgenic mouse model of amyloid over-expression in Alzheimer's disease, the Tg2576 mouse. Tg2576 mice and their non-transgenic littermates were assessed at both 6 and 14 months of age in a battery of cognitive tests: attentional set-shifting, water maze spatial reference memory and T-maze working memory. Spatial reference memory was not affected by Tg status at either age. Working memory was only affected by age, with 6-month-old mice performing better than 14-month-old ones. Older mice were also significantly impaired on reversal learning and on the intra- and extra-dimensional shift in attentional set-shifting. A significant transgene effect was apparent in reversal learning, with Tg2576 mice requiring more trials to reach criterion at 6 months old. These data indicate that the effects of normal aging in C57B6xSJL F1 mice are most pronounced on putative frontal cortex-dependent tasks and that increasing Abeta load only affects discrimination reversal learning in our study.  相似文献   

15.
Tg2576 transgenic mice (mice overexpressing the "Swedish" mutation in the human amyloid precursor protein 695) demonstrated a decreased capacity for cell proliferation in the dentate gyrus of the hippocampus compared with non-transgenic littermates at 3 months, 6 months and 9 months of age. Isolation stress induced by individually housing each mouse from the time of weaning further decreased hippocampal cell proliferation in Tg2576 mice as well as in non-transgenic littermates at 6 months of age. Decreases in hippocampal cell proliferation in isolated Tg2576 mice were associated with impairments in contextual but not cued memory. Fluoxetine administration increased cell proliferation and improved contextual memory in isolated Tg2576 mice. Further, isolation stress accelerated the age-dependent deposition of beta-amyloid 42 plaques in Tg2576 mice. Numerous beta-amyloid plaques were found in isolated but not non-isolated Tg2576 mice at 6 months of age. These results suggest that Tg2576 mice, a mouse model of Alzheimer disease, have an impaired ability to generate new cells in the dentate gyrus of the hippocampus and that the magnitude of this impairment can be modulated by behavioral interventions and drugs known to have effects on hippocampal neurogenesis in normal rodents. Unexpectedly, isolation stress also appeared to accelerate the underlying process of beta-amyloid plaque deposition in Tg2576 mice. These results suggest that stress may have an impact on the underlying disease process associated with Alzheimer's disease.  相似文献   

16.
Amyloid‐β (Aβ) plaques are pathological hallmarks of Alzheimer disease (AD). In addition, innate inflammatory responses, such as those mediated by microglia, are integral to the pathogenesis of AD. Interestingly, only dense‐core plaques and not diffuse plaques are associated with neuritic and inflammatory pathology in AD patients as well as in mouse AD models. However, the precise neuropathological changes that occur in the brain in response to amyloid deposition are largely unknown. To study the molecular mechanism(s) responsible for Aβ‐mediated neuropathology, we performed a gene expression analysis on laser‐microdissected brain tissue of Tg2576 and APPPS1 mice that are characterized by different types of amyloid plaques and genetic backgrounds. Data were validated by image and biochemical analyses on different ages of Tg2576, APPPS1, and Aβ42‐depositing BRI‐Aβ42 mice. Consistent with an important role of inflammatory responses in AD, we identified progranulin (mouse Grn; human GRN) as one of the top ten up‐regulated molecules in Tg2576 (≈8‐fold increased) and APPPS1 (≈2‐fold increased) mice compared to littermate controls, and among the eight significantly up‐regulated molecules common to both mouse models. In addition, Grn levels correlated significantly with amyloid load, especially the dense‐core plaque pathology (p < 0.001). We further showed that Grn is up‐regulated in microglia and neurons and neurites around dense‐core plaques, but not in astrocytes or oligodendrocytes, as has been shown in AD patients. Our data therefore support the ongoing use of these mouse models in drug trials, especially those with anti‐inflammatory compounds. Moreover, the correlation of Grn with increasing disease severity in AD mouse models prompts human studies exploring the viability of GRN as a disease biomarker. Because loss of GRN has recently been shown to cause frontotemporal dementia and serves as a risk factor for AD, the strong GRN reactivity around dense‐core plaques is consistent with an important role of this factor in AD pathogenesis. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

17.
Vaccinations with Abeta1-42 have been shown to reduce amyloid burden in transgenic models of Alzheimer's disease (AD). We have further tested the efficacy of Abeta1-42 immunization in the Tg2576 mouse model of AD by immunizing one group of mice with minimal Abeta deposition, one group of mice with modest Abeta deposition, and one group with significant Abeta deposition. The effects of immunization on Abeta deposition were examined using biochemical and immunohistochemical methods. In Tg2576 mice immunized prior to significant amyloid deposition, Abeta1-42 immunization was highly effective. Biochemically extracted Abeta40 and Abeta42 levels were significantly reduced and immunohistochemical plaque load was also reduced. Immunization of mice with modest amounts of pre-existing Abeta deposits selectively reduced Abeta42 without altering Abeta40, although plaque load was reduced. In contrast, in Tg2576 mice with significant pre-existing Abeta loads, Abeta1-42 immunization only minimally decreased Abeta42 levels, whereas no alteration in Abeta40 levels or in plaque load was observed. These results indicate that in Tg2576 mice, Abeta1-42 immunization is more effective at preventing additional Abeta accumulation and does not result in significant clearance of pre-existing Abeta deposits.  相似文献   

18.
Alzheimer's disease (AD) is a complex, neurodegenerative disease characterized by the impairment of cognitive function in elderly individuals. In a recent global gene expression study of APP transgenic mice, we found elevated expression of mitochondrial genes, which we hypothesize represents a compensatory response because of mitochondrial oxidative damage caused by the over-expression of mutant APP and/or amyloid beta (Abeta). We investigated this hypothesis in a series of experiments examining what forms of APP and Abeta localize to the mitochondria, and whether the presence of these species is associated with mitochondrial dysfunction and oxidative damage. Using immunoblotting, digitonin fractionation, immunofluorescence, and electron microscopy techniques, we found a relationship between mutant APP derivatives and mitochondria in brain slices from Tg2576 mice and in mouse neuroblastoma cells expressing mutant human APP. Further, to determine the functional relationship between mutant APP/Abeta and oxidative damage, we quantified Abeta levels, hydrogen peroxide production, cytochrome oxidase activity and carbonyl proteins in Tg2576 mice and age-matched wild-type (WT) littermates. Hydrogen peroxide levels were found to be significantly increased in Tg2576 mice when compared with age-matched WT littermates and directly correlated with levels of soluble Abeta in Tg2576 mice, suggesting that soluble Abeta may be responsible for the production of hydrogen peroxide in AD progression in Tg2576 mice. Cytochrome c oxidase activity was found to be decreased in Tg2576 mice when compared with age-matched WT littermates, suggesting that mutant APP and soluble Abeta impair mitochondrial metabolism in AD development and progression. An increase in hydrogen peroxide and a decrease in cytochrome oxidase activity were found in young Tg2576 mice, prior to the appearance of Abeta plaques. These findings suggest that early mitochondrially targeted therapeutic interventions may be effective in delaying AD progression in elderly individuals and in treating AD patients.  相似文献   

19.
Although a number of epidemiologic studies reported that higher intake of omega-3 fatty acids (largely associated with fish consumption) is protective against Alzheimer's disease (AD), other human studies reported no such effect. Because retrospective human studies are problematic and controlled longitudinal studies over decades are impractical, the present study utilized Alzheimer's transgenic mice (Tg) in a highly controlled study to determine whether a diet high in omega-3 fatty acid, equivalent to the 13% omega-3 fatty acid diet of Greenland Eskimos, can improve cognitive performance or protect against cognitive impairment. Amyloid precursor protein (APP)-sw+PS1 double transgenic mice, as well as nontransgenic (NT) normal littermates, were given a high omega-3 supplemented diet or a standard diet from 2 through 9 months of age, with a comprehensive behavioral test battery administered during the final 6 weeks. For both Tg and NT mice, long-term n-3 supplementation resulted in cognitive performance that was no better than that of mice fed a standard diet. In NT mice, the high omega-3 diet increased cortical levels of omega-3 fatty acids while decreasing omega-6 levels. However, the high omega-3 diet had no effect on cortical fatty acid levels in Tg mice. Irrespective of diet, no correlations existed between brain omega-3 levels and cognitive performance for individual NT or Tg mice. In contrast, brain levels of omega-6 fatty acids were strongly correlated with cognitive impairment for both genotypes. Thus, elevated brain levels of omega-3 fatty acids were not relevant to cognitive function, whereas high brain levels of omega-6 were associated with impaired cognitive function. In Tg mice, the omega-3 supplemental diet did not induce significant changes in soluble/insoluble Abeta within the hippocampus, although strong correlations were evident between hippocampal Abeta(1-40) levels and cognitive impairment. While these studies involved a genetically manipulated mouse model of AD, our results suggest that diets high in omega-3 fatty acids, or use of fish oil supplements (DHA+EPA), will not protect against AD, at least in high-risk individuals. However, normal individuals conceivably could derive cognitive benefits from high omega-3 intake if it corrects an elevation in the brain level of n-6 fatty acids as a result. Alternatively, dietary fish may contain nutrients, other than DHA and EPA, that could provide some protection against AD.  相似文献   

20.
Patients with Mild Cognitive Impairment (MCI), exhibiting both working memory and olfactory deficits are likely to progress to Alzheimer's disease (AD). Targeting this pre-clinical AD population with disease modifying agents or cognitive enhancers represents the best strategy for halting or delaying the impact of this pernicious disease. However, there is a paucity of animal models of MCI with which to assess putative therapeutic strategies.We describe an odour span task which assesses the ability of mice to remember lists of odours, and report subtle cognitive deficits in human amyloid over-expressing (Tg2576) mice, at an age prior to plaque deposition. Four-month-old Tg2576 mice exhibited normal acquisition and performance in the standard 12-span task, but were significantly impaired when memory load was increased to 22 odours. By 8-months, a performance deficit was apparent in the 12-span task and by 1-year mice also exhibited significant acquisition deficits.Thus, by assessing olfactory working memory in Tg2576 mice we can model aspects of MCI in rodents and aid development of future therapeutic strategies for AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号