首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

We investigated the applicability of linear quadratic Gaussian (LQG) methodology to the subcutaneous blood glucose regulation problem. We designed an LQG-based feedback control algorithm using linearization of a previously published metabolic model of type 1 diabetes. A key feature of the controller is a Kalman filter used to estimate metabolic states of the patient based on continuous glucose monitoring. Insulin infusion is computed from linear quadratic regulator feedback gains applied to these estimates, generally seeking to minimize squared deviations from a target glucose concentration and basal insulin rate. We evaluated in silico subject-specific LQG control and compared it to preexisting proportional-integral-derivative control.  相似文献   

2.

Background

Algorithms for closed-loop insulin delivery can be designed and tuned empirically; however, a metabolic model that is predictive of clinical study results can potentially accelerate the process.

Methods

Using data from a previously conducted closed-loop insulin delivery study, existing models of meal carbohydrate appearance, insulin pharmacokinetics, and the effect on glucose metabolism were identified for each of the 10 subjects studied. Insulin''s effects to increase glucose uptake and decrease endogenous glucose production were described by the Bergman minimal model, and compartmental models were used to describe the pharmacokinetics of subcutaneous insulin absorption and glucose appearance following meals. The composite model, comprised of only five equations and eight parameters, was identified with and without intraday variance in insulin sensitivity (SI), glucose effectiveness at zero insulin (GEZI), and endogenous glucose production (EGP) at zero insulin.

Results

Substantial intraday variation in SI, GEZI and EGP was observed in 7 of 10 subjects (root mean square error in model fit greater than 25 mg/dl with fixed parameters and nadir and/or peak glucose levels differing more than 25 mg/dl from model predictions). With intraday variation in these three parameters, plasma glucose and insulin were well fit by the model (R2 = 0.933 ± 0.00971 [mean ± standard error of the mean] ranging from 0.879–0.974 for glucose; R2 = 0.879 ± 0.0151, range 0.819–0.972 for insulin). Once subject parameters were identified, the original study could be reconstructed using only the initial glucose value and basal insulin rate at the time closed loop was initiated together with meal carbohydrate information (glucose, R2 = 0.900 ± 0.015; insulin delivery, R2 = 0.640 ± 0.034; and insulin concentration, R2 = 0.717 ± 0.041).

Conclusion

Metabolic models used in developing and comparing closed-loop insulin delivery algorithms will need to explicitly describe intraday variation in metabolic parameters, but the model itself need not be comprised by a large number of compartments or differential equations.  相似文献   

3.

Background

The development of artificial pancreas has received a new impulse from recent technological advancements in subcutaneous continuous glucose monitoring and subcutaneous insulin pump delivery systems. However, the availability of innovative sensors and actuators, although essential, does not guarantee optimal glycemic regulation. Closed-loop control of blood glucose levels still poses technological challenges to the automatic control expert, most notable of which are the inevitable time delays between glucose sensing and insulin actuation.

Methods

A new in silico model is exploited for both design and validation of a linear model predictive control (MPC) glucose control system. The starting point is a recently developed meal glucose–insulin model in health, which is modified to describe the metabolic dynamics of a person with type 1 diabetes mellitus. The population distribution of the model parameters originally obtained in healthy 204 patients is modified to describe diabetic patients. Individual models of virtual patients are extracted from this distribution. A discrete-time MPC is designed for all the virtual patients from a unique input–output-linearized approximation of the full model based on the average population values of the parameters. The in silico trial simulates 4 consecutive days, during which the patient receives breakfast, lunch, and dinner each day.

Results

Provided that the regulator undergoes some individual tuning, satisfactory results are obtained even if the control design relies solely on the average patient model. Only the weight on the glucose concentration error needs to be tuned in a quite straightforward and intuitive way. The ability of the MPC to take advantage of meal announcement information is demonstrated. Imperfect knowledge of the amount of ingested glucose causes only marginal deterioration of performance. In general, MPC results in better regulation than proportional integral derivative, limiting significantly the oscillation of glucose levels.

Conclusions

The proposed in silico trial shows the potential of MPC for artificial pancreas design. The main features are a capability to consider meal announcement information, delay compensation, and simplicity of tuning and implementation.  相似文献   

4.

Background

To improve type 1 diabetes mellitus (T1DM) management, we developed a model predictive control (MPC) algorithm for closed-loop (CL) glucose control based on a linear second-order deterministic-stochastic model. The deterministic part of the model is specified by three patient-specific parameters: insulin sensitivity factor, insulin action time, and basal insulin infusion rate. The stochastic part is identical for all patients but identified from data from a single patient. Results of the first clinical feasibility test of the algorithm are presented.

Methods

We conducted two randomized crossover studies. Study 1 compared CL with open-loop (OL) control. Study 2 compared glucose control after CL initiation in the euglycemic (CL-Eu) and hyperglycemic (CL-Hyper) ranges, respectively. Patients were studied from 22:00–07:00 on two separate nights.

Results

Each study included six T1DM patients (hemoglobin A1c 7.2% ± 0.4%). In study 1, hypoglycemic events (plasma glucose < 54 mg/dl) occurred on two OL and one CL nights. Average glucose from 22:00–07:00 was 90 mg/dl [74–146 mg/dl; median (interquartile range)] during OL and 108 mg/dl (101–128 mg/dl) during CL (determined by continuous glucose monitoring). However, median time spent in the range 70–144 mg/dl was 67.9% (3.0–73.3%) during OL and 80.8% (70.5–89.7%) during CL. In study 2, there was one episode of hypoglycemia with plasma glucose <54 mg/dl in a CL-Eu night. Mean glucose from 22:00–07:00 and time spent in the range 70–144 mg/dl were 121 mg/dl (117–133 mg/dl) and 69.0% (30.7–77.9%) in CL-Eu and 149 mg/dl (140–193 mg/dl) and 48.2% (34.9–72.5%) in CL-Hyper, respectively.

Conclusions

This study suggests that our novel MPC algorithm can safely and effectively control glucose overnight, also when CL control is initiated during hyperglycemia.  相似文献   

5.
Intensive care unit (ICU) blood glucose control algorithms were reviewed and analyzed in the context of linear systems theory and classical feedback control algorithms. Closed-loop performance was illustrated by applying the algorithms in simulation studies using an in silico model of an ICU patient. Steady-state and dynamic input–output analysis was used to provide insight about controller design and potential closedloop performance. The proportional-integral-derivative, columnar insulin dosing (CID, Glucommander-like), and glucose regulation for intensive care patients (GRIP) algorithms were shown to have similar features and performance. The CID strategy is a time-varying proportional-only controller (no integral action), whereas the GRIP algorithm is a nonlinear controller with integral action. A minor modification to the GRIP algorithm was suggested to improve the closed-loop performance. Recommendations were made to guide control theorists on important ICU control topics worthy of further study.  相似文献   

6.

Background

Recent progress in the development of clinically accurate continuous glucose monitors (CGMs), automated continuous insulin infusion pumps, and control algorithms for calculating insulin doses from CGM data have enabled the development of prototypes of subcutaneous closed-loop systems for controlling blood glucose (BG) levels in type 1 diabetes. The use of a new personalized model predictive control (MPC) algorithm to determine insulin doses to achieve and maintain BG levels between 70 and 140 mg/dl overnight and to control postprandial BG levels is presented.

Methods

Eight adults with type 1 diabetes were studied twice, once using their personal open-loop systems to control BG overnight and for 4 h following a standardized meal and once using a closed-loop system that utilizes the MPC algorithm to control BG overnight and for 4 h following a standardized meal. Average BG levels, percentage of time within BG target of 70–140 mg/dl, number of hypoglycemia episodes, and postprandial BG excursions during both study periods were compared.

Results

With closed-loop control, once BG levels achieved the target range (70–140 mg/dl), they remained within that range throughout the night in seven of the eight subjects. One subject developed a BG level of 65 mg/dl, which was signaled by the CGM trend analysis, and the MPC algorithm directed the discontinuance of the insulin infusion. The number of overnight hypoglycemic events was significantly reduced (p = .011) with closed-loop control. Postprandial BG excursions were similar during closed-loop and open-loop control

Conclusion

Model predictive closed-loop control of BG levels can be achieved overnight and following a standardized breakfast meal. This “artificial pancreas” controls BG levels as effectively as patient-directed open-loop control following a morning meal but is significantly superior to open-loop control in preventing overnight hypoglycemia.  相似文献   

7.

Background

A primary challenge for closed-loop glucose control in type 1 diabetes mellitus (T1DM) is the development of a control strategy that will be applicable during all daily activities, including meals, stress, and exercise. A model-based control algorithm requires a mathematical model that has the simplicity for online glucose prediction, yet retains the complexity necessary to cope with variations in insulin sensitivities and carbohydrate ingestion.

Methods

A modified Bergman minimal model was linearized for Kalman filter (KF) state estimation on data from T1DM subjects, and multiple methods of parameter augmentation were developed for online adaptation. In addition, model deterioration for glucose prediction was assessed to determine an appropriate prediction horizon for model predictive control (MPC). Furthermore, MPC strategies were validated using advisory mode simulations.

Results

Twenty days of continuous glucose data, which included 97 meals, were evaluated for three subjects. A constant parameter minimal model was used to predict glucose levels for normal days with meal announcement and with a maximum prediction horizon of approximately 45 minutes. In order to attain this prediction horizon in the absence of meal announcement, parameter adaptation was necessary to capture the glucose disturbance. Evaluation of advisory mode MPC permitted effective tuning for a moderately aggressive controller that responded well to meal disturbances.

Conclusions

Estimation and prediction of glucose were accomplished using a KF based on a modified Bergman model. For a model with no meal announcement, parameter adaptation provided the means for closed-loop implementation. This state estimation and model validation scheme established the necessary framework for advisory mode MPC.  相似文献   

8.

Background

Hypoglycemia and hyperglycemia during closed-loop insulin delivery based on subcutaneous (SC) glucose sensing may arise due to (1) overdosing and underdosing of insulin by control algorithm and (2) difference between plasma glucose (PG) and sensor glucose, which may be transient (kinetics origin and sensor artifacts) or persistent (calibration error [CE]). Using in silico testing, we assessed hypoglycemia and hyperglycemia incidence during over-night closed loop. Additionally, a comparison was made against incidence observed experimentally during open-loop single-night in-clinic studies in young people with type 1 diabetes mellitus (T1DM) treated by continuous SC insulin infusion.

Methods

Simulation environment comprising 18 virtual subjects with T1DM was used to simulate overnight closed-loop study with a model predictive control (MPC) algorithm. A 15 h experiment started at 17:00 and ended at 08:00 the next day. Closed loop commenced at 21:00 and continued for 11 h. At 18:00, protocol included meal (50 g carbo-hydrates) accompanied by prandial insulin. The MPC algorithm advised on insulin infusion every 15 min. Sensor glucose was obtained by combining model-calculated noise-free interstitial glucose with experimentally derived tran-sient and persistent sensor artifacts associated with FreeStyle Navigator® (FSN). Transient artifacts were obtained from FSN sensor pairs worn by 58 subjects with T1DM over 194 nighttime periods. Persistent difference due to FSN CE was quantified from 585 FSN sensor insertions, yielding 1421 calibration sessions from 248 subjects with diabetes.

Results

Episodes of severe (PG ≤ 36 mg/dl) and significant (PG ≤ 45 mg/dl) hypoglycemia and significant hy-perglycemia (PG ≥ 300 mg/dl) were extracted from 18,000 simulated closed-loop nights. Severe hypoglycemia was not observed when FSN CE was less than 45%. Hypoglycemia and hyperglycemia incidence during open loop was assessed from 21 overnight studies in 17 young subjects with T1DM (8 males; 13.5 ± 3.6 years of age; body mass index 21.0 ± 4.0 kg/m2; duration diabetes 6.4 ± 4.1 years; hemoglobin A1c 8.5% ± 1.8%; mean ± standard deviation) participating in the Artificial Pancreas Project at Cambridge. Severe and significant hypoglycemia during simulated closed loop occurred 0.75 and 17.11 times per 100 person years compared to 1739 and 3479 times per 100 person years during experimental open loop, respectively. Signifi-cant hyperglycemia during closed loop and open loop occurred 75 and 15,654 times per 100 person years, respec-tively.

Conclusions

The incidence of severe and significant hypoglycemia reduced 2300- and 200-fold, respectively, during simu-lated overnight closed loop with MPC compared to that observed during open-loop overnight clinical studies in young subjects with T1DM. Hyperglycemia was 200 times less likely. Overnight closed loop with the FSN and the MPC algorithm is expected to reduce substantially the risk of hypoglycemia and hyperglycemia.  相似文献   

9.
Closed-loop insulin delivery continues to be one of most promising strategies for achieving near-normal control of blood glucose levels in individuals with diabetes. Of the many components that need to work well for the artificial pancreas to be advanced into routine use, the algorithm used to calculate insulin delivery has received a substantial amount of attention. Most of that attention has focused on the relative merits of proportional-integral-derivative versus model-predictive control. A meta-analysis of the clinical data obtained in studies performed to date with these approaches is conducted here, with the objective of determining if there is a trend for one approach to be performing better than the other approach. Challenges associated with implementing each approach are reviewed with the objective of determining how these approaches might be improved. Results of the meta-analysis, which focused predominantly on the breakfast meal response, suggest that to date, the two approaches have performed similarly. However, uncontrolled variables among the various studies, and the possibility that future improvements could still be effected in either approach, limit the validity of this conclusion. It is suggested that a more detailed examination of the challenges associated with implementing each approach be conducted.  相似文献   

10.
11.

Purpose of Review

To provide a current review of closed-loop insulin delivery or artificial pancreas (AP) as therapy for people with type 1 diabetes mellitus (T1D)

Recent Findings

The Medtronic Minimed 670G AP system has been in use in clinical practice since March 2017. Currently, Medtronic is conducting a large randomized clinical trial to evaluate its efficacy further in T1D. Simultaneously, the NIH has funded four research consortia to accelerate progress to approval of other AP and decision support systems. Several research groups are currently developing next-generation AP systems, with a number of companies moving toward releasing closed-loop systems in the future. AP systems are also being tested in select populations such as hypoglycemia-unaware T1D and pregnant T1D.

Summary

AP research is rapidly advancing. The clinical range of AP will be expanded in the next decade.
  相似文献   

12.
The relative merits of model predictive control (MPC) and proportional-integral-derivative (PID) control are discussed, with the end goal of a closed-loop artificial pancreas (AP). It is stressed that neither MPC nor PID are single algorithms, but rather are approaches or strategies that may be implemented very differently by different engineers. The primary advantages to MPC are that (i) constraints on the insulin delivery rate (and/or insulin on board) can be explicitly included in the control calculation; (ii) it is a general framework that makes it relatively easy to include the effect of meals, exercise, and other events that are a function of the time of day; and (iii) it is flexible enough to include many different objectives, from set-point tracking (target) to zone (control to range). In the end, however, it is recognized that the control algorithm, while important, represents only a portion of the effort required to develop a closed-loop AP. Thus, any number of algorithms/approaches can be successful—the engineers involved in the design must have experience with the particular technique, including the important experience of implementing the algorithm in human studies and not simply through simulation studies.  相似文献   

13.
Drinking ethanol is widely believed to predispose to hypoglycaemia in patients with Type 1 diabetes, the suggested mechanism being suppression of hepatic gluconeogenesis. The hypoglycaemic effect of ethanol was investigated by measuring steady-state glucose infusion rate during a hypoinsulinaemic (mean plasma insulin 14 ± 1.3 (SEM) mU I-1), euglycaemic (blood glucose 5 mmol I-1) clamp. Nine patients with Type 1 diabetes fasted overnight and then had, in single-blind fashion, ethanol 0.5 g kg-1 by intravenous bolus followed by 0.25 g kg-1 h-1 or matched volumes of saline. After 1 h of ethanol or saline, all infusions were stopped and blood glucose monitored for a further 90 min. A 60-min ethanol infusion leading to a steady-state blood concentration of 26.2 ± 1.4 mmol I-1 (120.7 mg %) did not alter the glucose infusion rate needed to maintain euglycaemia (1.22 ± 0.12 mg kg-1 min-1 before and 1.23 ± 0.12 during ethanol infusion), the initial rate of fall of blood glucose (ethanol 0.039 mmol I-1 min-1 vs control (0.033), the lowest blood glucose (4.43 mmol I-1 vs 4.31), or the rate of blood glucose recovery (ethanol 0.050 mmol I-1 min-1 vs control 0.054). We conclude that a moderate amount of ethanol, administered intravenously under controlled conditions, does not lead to hypoglycaemia in patients with Type 1 diabetes who have fasted overnight.  相似文献   

14.
New effort has been made to develop closed-loop glucose control, using subcutaneous (SC) glucose sensing and continuous subcutaneous insulin infusion (CSII) from a pump, and a control algorithm. An approach based on a model predictive control (MPC) algorithm has been utilized during closed-loop control in type 1 diabetes patients. Here we describe the preliminary clinical experience with this approach.Six type 1 diabetes patients (three in each of two clinical investigation centers in Padova and Montpellier), using CSII, aged 36 ± 8 and 48 ± 6 years, duration of diabetes 12 ± 8 and 29 ± 4 years, hemoglobin A1c 7.4% ± 0.1% and 7.3% ± 0.3%, body mass index 23.2 ± 0.3 and 28.4 ± 2.2 kg/m2, respectively, were studied on two occasions during 22 h overnight hospital admissions 2–4 weeks apart. A Freestyle Navigator® continuous glucose monitor and an OmniPod® insulin pump were applied in each trial. Admission 1 used open-loop control, while admission 2 employed closed-loop control using our MPC algorithm.In Padova, two out of three subjects showed better performance with the closed-loop system compared to open loop. Altogether, mean overnight plasma glucose (PG) levels were 134 versus 111 mg/dl during open loop versus closed loop, respectively. The percentage of time spent at PG > 140 mg/dl was 45% versus 12%, while postbreakfast mean PG was 165 versus 156 mg/dl during open loop versus closed loop, respectively. Also, in Montpellier, two patients out of three showed a better glucose control during closed-loop trials. Avoidance of nocturnal hypoglycemic excursions was a clear benefit during algorithm-guided insulin delivery in all cases.This preliminary set of studies demonstrates that closed-loop control based entirely on SC glucose sensing and insulin delivery is feasible and can be applied to improve glucose control in patients with type 1 diabetes, although the algorithm needs to be further improved to achieve better glycemic control.  相似文献   

15.
This pilot study evaluated the difference in accuracy between the Bayer Contour® Next (CN) and HemoCue® (HC) glucose monitoring systems in children with type 1 diabetes participating in overnight closed-loop studies. Subjects aged 10-18 years old were admitted to a clinical research center and glucose values were obtained every 30 minutes overnight. Glucose values were measured using whole blood samples for CN and HC readings and results were compared to Yellow Springs Instrument (YSI) reference values obtained with plasma from the same sample. System accuracy was compared using mean absolute relative difference (MARD) and International Organization for Standardization (ISO) accuracy standards. A total of 28 subjects were enrolled in the study. Glucose measurements were evaluated at 457 time points. CN performed better than HC with an average MARD of 3.13% compared to 10.73% for HC (P < .001). With a limited sample size, CN met ISO criteria (2003 and 2013) at all glucose ranges while HC did not. CN performed very well, and would make an excellent meter for future closed-loop studies outside of a research center.  相似文献   

16.
Maintaining euglycemia for people with type 1 diabetes is highly challenging, and variations in glucose absorption rates with meal composition require meal type specific insulin delivery profiles for optimal blood glucose control. Traditional basal/bolus therapy is not fully optimized for meals of varied fat contents. Thus, regimens for low- and high-fat meals were developed to improve current insulin pump therapy. Simulations of meals with varied fat content demonstrably replicated published data. Subsequently, an insulin profile library with optimized delivery regimens under open and closed loop for various meal compositions was constructed using particle swarm optimization. Calculations showed that the optimal basal bolus insulin profiles for low-fat meals comprise a normal bolus or a short wave. The preferred delivery for high-fat meals is typically biphasic, but can extend to multiple phases depending on meal characteristics. Results also revealed that patients that are highly sensitive to insulin could benefit from biphasic deliveries. Preliminary investigations of the optimal closed-loop regimens also display bi- or multiphasic patterns for high-fat meals. The novel insulin delivery profiles present new waveforms that provide better control of postprandial glucose excursions than existing schemes. Furthermore, the proposed novel regimens are also more or similarly robust to uncertainties in meal parameter estimates, with the closed-loop schemes demonstrating superior performance and robustness.  相似文献   

17.

Background:

The Bio-inspired Artificial Pancreas (BiAP) is a closed-loop insulin delivery system based on a mathematical model of beta-cell physiology and implemented in a microchip within a low-powered handheld device. We aimed to evaluate the safety and efficacy of the BiAP over 24 hours, followed by a substudy assessing the safety of the algorithm without and with partial meal announcement. Changes in lactate and 3-hydroxybutyrate concentrations were investigated for the first time during closed-loop.

Methods:

This is a prospective randomized controlled open-label crossover study. Participants were randomly assigned to attend either a 24-hour closed-loop visit connected to the BiAP system or a 24-hour open-loop visit (standard insulin pump therapy). The primary outcome was percentage time spent in target range (3.9-10 mmol/l) measured by sensor glucose. Secondary outcomes included percentage time in hypoglycemia (<3.9 mmol/l) and hyperglycemia (>10 mmol/l). Participants were invited to attend for an additional visit to assess the BiAP without and with partial meal announcements.

Results:

A total of 12 adults with type 1 diabetes completed the study (58% female, mean [SD] age 45 [10] years, BMI 25 [4] kg/m2, duration of diabetes 22 [12] years and HbA1c 7.4 [0.7]% [58 (8) mmol/mol]). The median (IQR) percentage time in target did not differ between closed-loop and open-loop (71% vs 66.9%, P = .9). Closed-loop reduced time spent in hypoglycemia from 17.9% to 3.0% (P < .01), but increased time was spent in hyperglycemia (10% vs 28.9%, P = .01). The percentage time in target was higher when all meals were announced during closed-loop compared to no or partial meal announcement (65.7% [53.6-80.5] vs 45.5% [38.2-68.3], P = .12).

Conclusions:

The BiAP is safe and achieved equivalent time in target as measured by sensor glucose, with improvement in hypoglycemia, when compared to standard pump therapy.  相似文献   

18.

Background

The technological advancements in subcutaneous continuous glucose monitoring and insulin pump delivery systems have paved the way to clinical testing of artificial pancreas devices. The experience derived by clinical trials poses technological challenges to the automatic control expert, the most notable being the large interpatient and intrapatient variability and the inherent uncertainty of patient information.

Methods

A new model predictive control (MPC) glucose control system is proposed. The starting point is an MPC algorithm applied in 20 type 1 diabetes mellitus (T1DM) subjects. Three main changes are introduced: individualization of the ARX model used for prediction; synthesis of the MPC law on top of the open-loop basal/bolus therapy; and a run-to-run approach for implementing day-by-day tuning of the algorithm. In order to individualize the ARX model, a sufficiently exciting insulin profile is imposed by splitting the premeal bolus into two smaller boluses (40% and 60%) injected 30 min before and 30 min after the meal.

Results

The proposed algorithm was tested on 100 virtual subjects extracted from an in silico T1DM population. The trial simulates 44 consecutive days, during which the patient receives breakfast, lunch, and dinner each day. For 10 days, meals are multiplied by a random variable uniformly distributed in [0.5, 1.5], while insulin delivery is based on nominal meals. Moreover, for 10 days, either a linear increase or decrease of insulin sensitivity (±25% of nominal value) is introduced.

Conclusions

The ARX model identification procedure offers an automatic tool for patient model individualization. The run-to-run approach is an effective way to auto-tune the aggressiveness of the closed-loop control law, is robust to meal variation, and is also capable of adapting the regulator to slow parameter variations, e.g., on insulin sensitivity.  相似文献   

19.
Summary: Control of blood glucose in diabetics using an artificial pancreas. Studies have been performed using an on-line computer system programmed for blood glucose control of insulin and dextrose infusion (artificial pancreas). The aim of these studies was to test performance of the artificial pancreas and to suggest directions for future optimisation. Blood glucose stabilisation studies of diabetic volunteers were extended throughout the day and included three main meals and light exercise periods. Monitoring of blood glucose profiles of the same diabetics after depot insulin were performed on a separate occasion for comparison. The presence of insulin antibodies did not impair operation of the artificial pancreas. Most of the insulin infused by the artificial pancreas was to initially correct hyperglycaemia with relatively little required to subsequently maintain euglycaemia. The afternoon intra-meal average infusion rate was 0–9 U/hr. It is suggested that correction of fasting hyperglycaemia and maintenance of euglycaemia in diabetics be treated as separate control problems for the artificial pancreas. The overall ability of the artificial pancreas to control blood glucose to a degree not attainable by conventional insulin therapy is confirmed, in this case under conditions which include patient activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号