首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Xue L  Firestone GL  Bjeldanes LF 《Oncogene》2005,24(14):2343-2353
3,3'-Diindolylmethane (DIM) is a promising anticancer agent derived from Brassica vegetables, but the mechanisms of DIM action are largely unknown. We have shown that DIM can upregulate the expression and stimulate the secretion of interferon-gamma (IFNgamma) in the human MCF-7 breast cancer cell line. This novel effect may provide important clues to explain the anticancer effects of DIM because it is well known that IFNgamma plays an important role in preventing the development of primary and transplanted tumors. Utilizing promoter deletions, we show here that the region between -108 and -36 bp in the IFNgamma promoter, which contains two conserved and essential regulatory elements, is required for DIM-induced IFNgamma expression. DIM activates both JNK and p38 pathways, induces the phosphorylation of c-Jun and ATF-2, and increases the binding of the homodimer or heterodimer of c-Jun/ATF-2 to the proximal AP-1.CREB-ATF-binding element. Moreover, studies with specific enzyme inhibitors showed that up-stream Ca2+-dependent kinase(s) is required for the inducing effects of DIM in MCF-7 cells. These results establish that DIM-induced IFNgamma expression in human breast tumor cells is mediated by activation of both JNK and p38 pathways, which is ultimately dependent on intracellular calcium signaling.  相似文献   

2.
Breast cancer is the most common neoplasm in women and is the leading cause of cancer-related death for women. Therefore, new agents targeting prevention and treatment of breast cancer are urgently needed. The present study first investigates that a novel triterpenoid Methyl 25-Hydroxy-3-oxoolean-12-en-28-oate (AMR-Me) derived from 25-Hydroxy-3-oxoolean-12-en-28-oic acid (AMR) is a potent inhibitor of cell growth by inducing human breast cancer MCF-7 cells to undergo apoptosis. AMR-Me induced DNA fragmentation and PARP degradation which were preceded by changing Bax/Bcl-2 ratios, cytochrome c release, and subsequent induction of pro-caspase-9 and -7 processing in breast carcinoma MCF-7 cells, but it did not act on Fas/Fas ligand pathways and the activation of caspase-8, suggesting AMR-Me triggered the mitochondrial apoptotic pathway. The general caspase blocking peptide VAD partially blocked AMR-Me induced apoptosis. AMR-Me stimulated p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase (JNK), but not extracellular signal-regulated kinase activation during apoptosis. SP600125, a specific inhibitor for JNK and SB203580, a p38 MAPK-specific inhibitor suppressed AMR-Me induced apoptosis indicating that activation of JNK and p38 MAPKs involved in the mitochondrial activation-mediated cell death pathway. Our results suggest that AMR-Me can utilize two different MAPK signaling pathways for amplifying the apoptosis cascade, is critical for both our understanding of cell death events and development of cancer preventive/therapeutic agents.  相似文献   

3.
PURPOSE: There is an urgent need for new therapeutic strategies in Ewing's sarcoma family of tumors (ESFT). In this study, we have evaluated the effect of fenretinide [N-(4-hydroxyphenyl)retinamide] in ESFT models. EXPERIMENTAL DESIGN: The effect of fenretinide on viable cell number and apoptosis of ESFT cell lines and spheroids and growth of s.c. ESFT in nu/nu mice was investigated. The role of the stress-activated kinases p38(MAPK) and c-Jun NH(2)-terminal kinase in fenretinide-induced death was investigated by Western blot and inhibitor experiments. Accumulation of reactive oxygen species (ROS) and changes in mitochondrial transmembrane potential were investigated by flow cytometry. RESULTS: Fenretinide induced cell death in all ESFT cell lines examined in a dose- and time-dependent manner. ESFT cells were more sensitive to fenretinide than the neuroblastoma cell lines examined. Furthermore, fenretinide induced cell death in ESFT spheroids and delayed s.c. ESFT growth in mice. p38(MAPK) was activated within 15 minutes of fenretinide treatment and was dependent on ROS accumulation. Inhibition of p38(MAPK) activity partially rescued fenretinide-mediated cell death in ESFT but not in SH-SY5Y neuroblastoma cells. c-Jun NH(2)-terminal kinase was activated after 4 hours and was dependent on ROS accumulation but not on activation of p38(MAPK). After 8 hours, fenretinide induced mitochondrial depolarization (Deltapsi(m)) and release of cytochrome c into the cytoplasm in a ROS- and p38(MAPK)-dependent manner. CONCLUSIONS: These data show that the high sensitivity of ESFT cells to fenretinide is dependent in part on the rapid and sustained activation of p38(MAPK). The efficacy of fenretinide in preclinical models demands the evaluation of fenretinide as a potential therapeutic agent in ESFT.  相似文献   

4.
5.
Cryptotanshinone (CPT), a natural compound isolated from the plant Salvia miltiorrhiza Bunge, is a potential anticancer agent. However, the underlying mechanism is not well understood. Here, we show that CPT induced caspase-independent cell death in human tumor cells (Rh30, DU145, and MCF-7). Besides downregulating antiapoptotic protein expression of survivin and Mcl-1, CPT increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase (JNK), and inhibited phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2). Inhibition of p38 with SB202190 or JNK with SP600125 attenuated CPT-induced cell death. Similarly, silencing p38 or c-Jun also in part prevented CPT-induced cell death. In contrast, expression of constitutively active mitogen-activated protein kinase kinase 1 (MKK1) conferred resistance to CPT inhibition of Erk1/2 phosphorylation and induction of cell death. Furthermore, we found that all of these were attributed to CPT induction of reactive oxygen species (ROS). This is evidenced by the findings that CPT induced ROS in a concentration- and time-dependent manner; CPT induction of ROS was inhibited by N-acetyl-L-cysteine (NAC), a ROS scavenger; and NAC attenuated CPT activation of p38/JNK, inhibition of Erk1/2, and induction of cell death. The results suggested that CPT induction of ROS activates p38/JNK and inhibits Erk1/2, leading to caspase-independent cell death in tumor cells.  相似文献   

6.
Betulinic acid, a naturally occurring triterpene found in the bark of the white birch tree, has been demonstrated to induce programmed cell death with melanoma and certain neuroectodermal tumor cells. We demonstrate currently that treatment of cultured UISO-Mel-1 (human melanoma cells) with betulinic acid leads to the activation of p38 and stress activated protein kinase/c-Jun NH(2)-terminal kinase [widely accepted proapoptotic mitogen-activated protein kinases (MAPKs)] with no change in the phosphorylation of extracellular signal-regulated kinases (antiapoptotic MAPK). Moreover, these results support a link between the MAPKs and reactive oxygen species (ROS). As demonstrated previously, cells treated with betulinic acid generate ROS. Preincubation of cells with antioxidants blocks the process of programmed cell death, and prevents the phosphorylation of p38 and stress activated protein kinase/c-Jun NH(2)-terminal kinase. These data suggest that ROS act upstream of the MAPKs in the signaling pathway of betulinic acid. In addition to mediating these responses, treatment of cells with betulinic acid resulted in a gradual depolarization of mitochondrial membrane potential, a phenomenon established to contribute to the induction of programmed cell death. Interestingly, p38 was capable of partially modulating this perturbation, and investigations of mitochondria-associated apoptotic events indicate no involvement of known caspases. These data provide additional insight in regard to the mechanism by which betulinic acid induces programmed cell death in cultured human melanoma cells, and it likely that similar responses contribute to the antitumor effect mediated with human melanoma carried in athymic mice.  相似文献   

7.
Rahman KW  Li Y  Wang Z  Sarkar SH  Sarkar FH 《Cancer research》2006,66(9):4952-4960
The phytochemical indole-3-carbinol (I3C), found in cruciferous vegetables, and its major acid-catalyzed reaction product 3,3'-diindolylmethane (DIM) showed anticancer activity mediated by its pleiotropic effects on cell cycle progression, apoptosis, carcinogen bioactivation, and DNA repair. To further elucidate the molecular mechanism(s) by which 3,3'-diindolylmethane exerts its effects on breast cancer cells, we have used microarray gene expression profiling analysis. We found a total of 1,238 genes altered in 3,3'-diindolylmethane-treated cells, among which 550 genes were down-regulated and 688 genes were up-regulated. Clustering analysis showed significant alterations in some genes that are critically involved in the regulation of cell growth, cell cycle, apoptosis, and signal transduction, including down-regulation of survivin. Previous studies have shown that antiapoptotic protein survivin is overexpressed in many human cancers, including breast cancer. However, very little or no information is available regarding the consequence of down-regulation of survivin for cancer therapy. We, therefore, hypothesized that down-regulation of survivin as observed by 3,3'-diindolylmethane could be an important approach for the treatment of breast cancer. We have tested our hypothesis using multiple molecular approaches and found that 3,3'-diindolylmethane inhibited cell growth and induced apoptosis in MDA-MB-231 breast cancer cells by down-regulating survivin, Bcl-2, and cdc25A expression and also caused up-regulation of p21(WAF1) expression, which could be responsible for cell cycle arrest. Down-regulation of survivin by small interfering RNA before 3,3'-diindolylmethane treatment resulted in enhanced cell growth inhibition and apoptosis, whereas overexpression of survivin by cDNA transfection abrogated 3,3'-diindolylmethane-induced cell growth inhibition and apoptosis. These results suggest that targeting survivin by 3,3'-diindolylmethane could be a new and novel approach for the prevention and/or treatment of breast cancer.  相似文献   

8.
Much work has been done in the 20 years since the discovery of the first metastasis suppressor gene to investigate the diverse biochemical functions of the proteins these genes encode. The function of metastasis suppressors cannot be solely predicted from correlative clinical data or in vitro studies. Instead, careful design of in vivo experiments to test broader hypotheses is necessary to pinpoint the mechanism of action of these novel proteins. Our laboratory identified c-Jun NH2-terminal kinase activating kinase 1 (JNKK1)/Mitogen-activated protein kinase (MAPK) kinase 4 (JNKK1/MKK4) as a metastasis suppressor in prostate and ovarian cancer. JNKK1/MKK4 is a stress activated protein kinase (SAPK) involved in a variety of signaling events, ranging from the regulation of hepatoblast survival during mammalian development to metastasis suppression in adult ovarian and prostate cancers. JNKK1/MKK4 function has typically been associated with the c-Jun NH2-terminal kinase (JNK) signaling pathway, particularly in the immune system where JNK plays a role in inflammatory signaling and apoptosis. However, evidence continues to accumulate that JNKK1/MKK4 is also a physiologic activator of p38 under certain conditions, and that activation of p38 arrests cell cycle progression. This review will provide a historical perspective on the role of JNKK1/MKK4 in SAPK signaling, including some recent findings from our own laboratory that shed light on the complicated role for JNKK1/MKK4 in metastatic colonization.  相似文献   

9.
Regulation of the balance between survival, proliferation, and apoptosis on carcinogenic polycyclic aromatic hydrocarbon (PAH) exposure is still poorly understood and more particularly the role of physiologic variables, including intracellular pH (pH(i)). Although the involvement of the ubiquitous pH(i) regulator Na(+)/H(+) exchanger isoform 1 (NHE1) in tumorigenesis is well documented, less is known about its role and regulation during apoptosis. Our previous works have shown the primordial role of NHE1 in carcinogenic PAH-induced apoptosis. This alkalinizing transporter was activated by an early CYP1-dependent H(2)O(2) production, subsequently promoting mitochondrial dysfunction leading to apoptosis. The aim of this study was to further elucidate how NHE1 was activated by benzo(a)pyrene (BaP) and what the downstream events were in the context of apoptosis. Our results indicate that the mitogen-activated protein kinase kinase 4/c-Jun NH(2)-terminal kinase (MKK4/JNK) pathway was a link between BaP-induced H(2)O(2) production and NHE1 activation. This activation, in combination with BaP-induced phosphorylated p53, promoted mitochondrial superoxide anion production, supporting the existence of a common target for NHE1 and p53. Furthermore, we showed that the mitochondrial expression of glycolytic enzyme hexokinase II (HKII) was decreased following a combined action of NHE1 and p53 pathways, thereby enhancing the BaP-induced apoptosis. Taken together, our findings suggest that, on BaP exposure, MKK4/JNK targets NHE1 with consequences on HKII protein, which might thus be a key protein during carcinogenic PAH apoptosis.  相似文献   

10.
Sodium butyrate (NaBu) is known to exhibit anti-cancer effects via the differentiation and apoptosis of various carcinoma cells. However, the mechanism by which NaBu induces apoptosis and the involvement of protein kinases during apoptosis is not completely understood. To investigate the underlying pathways, we performed cell culture experiments in androgen-independent human prostate cancer (DU145 cells) focusing on various protein kinases. NaBu causes concentration-dependent cell detachment and growth inhibition. Exposure of DU145 cells to NaBu for 24 h caused a strong apoptotic effect with 26% nuclear fragmentation and condensation. In addition, NaBu induced caspase-3 and poly-ADP ribose polymerase cleavage and up-regulation of bax, suggesting that mitochondrial damage is involved in NaBu-induced caspase-dependent apoptosis. Interestingly, NaBu stimulated p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) activation, but not extracellular signal-regulated kinase 1/2 activation during apoptosis. Furthermore, NaBu up-regulated total protein levels and phospho forms of MAPK kinase 3 (MKK3) and MAPK kinase 4 (MKK4) as the upstream kinases of p38 MAPK and JNK independently of oxidative stress. Taken together, it is suggested that NaBu can be a promising chemopreventive agent for prostate cancer and the p38 MAPK and JNK pathways have critical roles in NaBu-induced apoptosis in DU145 cells.  相似文献   

11.
Rhein (4,5-Dihydroxyanthraquinone-2-carboxylic acid), a constituent enriched in the rhizome of rhubarb (R. palmatum L. or R. tanguticum Maxim), is a traditional Chinese herb used as a laxative and stomachic drug. In the present study, we investigated the anti-carcinogenesis of rhein by using mouse epidermal cell JB6 line, an in vitro model for elucidating the molecular mechanisms of cancer chemopreventive agents. Rhein is shown to inhibit 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell transformation and activator protein-1 (AP-1) activation in a dose-dependent manner. Signal cascade analysis revealed that rhein inhibits the phosphorylation and abundance of c-Jun protein, c-Jun NH2-terminal kinase (JNK) phosphorylation, but does not inhibit the phosphorylation of extracellular signal-regulated protein kinase (ERK) and p38 kinase. Thus, these results provide the first evidence suggesting that rhein inhibits AP-1 activity and cell transformation through the inhibition of a JNK-dependent, ERK- and p38-independent molecular mechanism.  相似文献   

12.
13.
PURPOSE AND EXPERIMENTAL DESIGN: Previously, we observed that the activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal kinase (JNK1) is mediated through the activation of apoptosis signal-regulating kinase 1 (ASK1) as a result of the reactive oxygen species-mediated dissociation of glutaredoxin and thioredoxin from ASK1. In this study, we examined whether p38 MAPK and JNK1 are involved in the accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) during ischemia. Human pancreatic cancer MiaPaCa-2 cells were exposed to low glucose (0.1 mmol/L) with hypoxia (0.1% O(2)). RESULTS AND CONCLUSIONS: During ischemia, p38 MAPK and JNK1 were activated in MiaPaCa-2 pancreatic cancer cells. The activated p38 MAPK, but not JNK1, phosphorylated HIF-1alpha. Data from in vivo binding assay of von Hippel-Lindau tumor suppressor protein with HIF-1alpha suggests that the p38-mediated phosphorylation of HIF-1alpha contributed to the inhibition of HIF-1alpha and von Hippel-Lindau tumor suppressor protein interaction during ischemia. SB203580, a specific inhibitor of p38 MAPK, inhibited HIF-1alpha accumulation during ischemia, probably resulting from the ubiquitination and degradation of HIF-1alpha.  相似文献   

14.
15.
Kuo PL  Chen CY  Hsu YL 《Cancer research》2007,67(15):7406-7420
This study is the first to investigate the anticancer effect of isoobtusilactone A (IOA) in two human breast cancer cell lines, MCF-7 and MDA-MB-231. IOA exhibited effective cell growth inhibition by inducing cancer cells to undergo G(2)-M phase arrest and apoptosis. Further investigation revealed that IOA's inhibition of cell growth was also evident in a nude mice model. Cell cycle blockade was associated with increased levels of p21 and reduced amounts of cyclin B1, cyclin A, cdc2, and cdc25C. IOA also enhanced the levels of inactivated phosphorylated cdc2 and cdc25C. IOA triggered the mitochondrial apoptotic pathway, as indicated by a change in Bax/Bcl-2 ratios, resulting in mitochondrial membrane potential loss, cytochrome c release, and caspase-9 activation. We also found that the generation of reactive oxygen species (ROS) is a critical mediator in IOA-induced cell growth inhibition. Enhancement of ROS by IOA activated apoptosis signal-regulating kinase 1 (ASK1) resulted in the increased activation of c-Jun NH(2)-terminal kinase and p38. Antioxidants EUK8 and N-acetyl cystenine significantly decreased apoptosis by inhibiting the ASK1 dephosphorylation at Ser(967) and subsequently increased the interaction of ASK1 with thioredoxin or 14-3-3 proteins. Moreover, blocking ASK1 by small interfering RNA inhibition completely suppressed IOA-induced apoptosis. Taken together, these results imply a critical role for ROS and ASK1 in IOA's anticancer activity.  相似文献   

16.
Curcumin, the major component of the spice turmeric, is used as a coloring and flavoring additive in many foods and has attracted interest because of its anti-inflammatory and chemopreventive activities. However, this agent also inhibits the generation of reactive oxygen species (ROS) and the c-Jun NH(2)-terminal kinase (JNK) pathway, and because many chemotherapeutic drugs generate ROS and activate JNK in the course of inducing apoptosis, we considered the possibility that curcumin might antagonize their antitumor efficacy. Studies in tissue culture revealed that curcumin inhibited camptothecin-, mechlorethamine-, and doxorubicin-induced apoptosis of MCF-7, MDA-MB-231, and BT-474 human breast cancer cells by up to 70%. Inhibition of programmed cell death was time and concentration dependent, but occurred after relatively brief 3-h exposures, or at curcumin concentrations of 1 microM that have been documented in Phase I chemoprevention trials. Under these conditions, curcumin exhibited antioxidant properties and inhibited both JNK activation and mitochondrial release of cytochrome c in a concentration-dependent manner. Using an in vivo model of human breast cancer, dietary supplementation with curcumin was found to significantly inhibit cyclophosphamide-induced tumor regression. Such dietary supplementation was accompanied by a decrease in the activation of apoptosis by cyclophosphamide, as well as decreased JNK activation. These findings support the hypothesis that dietary curcumin can inhibit chemotherapy-induced apoptosis through inhibition of ROS generation and blockade of JNK function, and suggest that additional studies are needed to determine whether breast cancer patients undergoing chemotherapy should avoid curcumin supplementation, and possibly even limit their exposure to curcumin-containing foods.  相似文献   

17.
PURPOSE: The purpose of this study was to examine interactions between the proteasome inhibitor bortezomib (Velcade) and the histone deacetylase (HDAC) inhibitors sodium butyrate and suberoylanilide hydroxamic acid in human multiple myeloma (MM) cells that are sensitive and resistant to conventional agents. EXPERIMENTAL DESIGN: MM cells were exposed to bortezomib for 6 h before the addition of HDAC inhibitors (total, 26 h), after which reactive oxygen species (ROS), mitochondrial dysfunction, signaling and cell cycle pathways, and apoptosis were monitored. The functional role of ROS generation was assessed using the free radical scavenger N-acetyl-l-cysteine. RESULTS: Preincubation with a subtoxic concentration of bortezomib markedly sensitized U266 and MM.1S cells to sodium butyrate- and suberoylanilide hydroxamic acid-induced mitochondrial dysfunction; caspase 9, 8, and 3 activation; and poly(ADP-ribose) polymerase degradation; resulting in synergistic apoptosis induction. These events were associated with nuclear factor kappaB inactivation, c-Jun NH(2)-terminal kinase activation, p53 induction, and caspase-dependent cleavage of p21(CIP1), p27(KIP1), and Bcl-2, as well as Mcl-1, X-linked inhibitor of apoptosis, and cyclin D1 down-regulation. The bortezomib/HDAC inhibitor regimen markedly induced ROS generation; moreover, apoptosis and c-Jun NH(2)-terminal kinase activation were attenuated by N-acetyl-l-cysteine. Dexamethasone- or doxorubicin-resistant MM cells failed to exhibit cross-resistance to the bortezomib/HDAC inhibitor regimen, nor did exogenous interleukin 6 or insulin-like growth factor I block apoptosis induced by this drug combination. Finally, bortezomib/HDAC inhibitors induced pronounced lethality in primary CD138(+) bone marrow cells from MM patients, but not in the CD138(-) cell population. CONCLUSIONS: Sequential exposure to bortezomib in conjunction with clinically relevant HDAC inhibitors potently induces mitochondrial dysfunction and apoptosis in human MM cells through a ROS-dependent mechanism, suggesting that a strategy combining these agents warrants further investigation in MM.  相似文献   

18.
19.
20.
This study is the first to investigate the anticancer effect of plumbagin in human melanoma A375.S2 cells. Plumbagin exhibited effective cell growth inhibition by inducing cancer cells to undergo S-G2/M phase arrest and apoptosis. Further investigation revealed that plumbagin's inhibition of cell growth was also evident in a nude mice model. Blockade of cell cycle was associated with increased levels of p21, and reduced amounts of cyclin B1, cyclin A, Cdc2, and Cdc25C. Plumbagin also enhanced the levels of inactivated phosphorylated Cdc2 and Cdc25C. Plumbagin triggered the mitochondrial apoptotic pathway indicated by a change in Bax/Bcl-2 ratios, resulting in caspase-9 activation. We also found the generation of ROS is a critical mediator in plumbagin-induced cell growth inhibition. Plumbagin increased the activation of apoptosis signal-regulating kinase 1, JNK and extracellular signal-regulated kinase 1/2 (ERK1/2), but not p38. In addition, antioxidants vitamin C and catalase significantly decreased plumbagin-mediated c-Jun N-terminal kinase (JNK) activation and apoptosis. Moreover, blocking ERK and JNK by specific inhibitors suppressed plumbagin-triggered mitochondrial apoptotic pathway. Taken together, these results imply a critical role for ROS and JNK in the plumbagin's anticancer activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号