首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by progressive and catastrophic heterotopic ossification (HO) of skeletal muscle and associated soft tissues. FOP is caused by dominantly acting mutations in the gene encoding the bone morphogenetic protein (BMP) type I receptor, ACVR1 (ALK2), the most prevalent of which results in an arginine to histidine substitution at position 206 (ACVR1[R206H]). The fundamental pathological consequence of FOP-causing ACVR1 receptor mutations is to enable activin A to initiate canonical BMP signaling in fibro-adipogenic progenitors (FAPs), which drives HO. We developed a monoclonal blocking antibody (JAB0505) against the extracellular domain of ACVR1 and tested its effect on HO in 2 independent FOP mouse models. Although JAB0505 inhibited BMP-dependent gene expression in wild-type and ACVR1(R206H)-overexpressing cell lines, JAB0505 treatment profoundly exacerbated injury-induced HO. JAB0505-treated mice exhibited multiple, distinct foci of heterotopic lesions, suggesting an atypically broad anatomical domain of FAP recruitment to endochondral ossification. This was accompanied by dysregulated FAP population growth and an abnormally sustained immunological reaction following muscle injury. JAB0505 drove injury-induced HO in the absence of activin A, indicating that JAB0505 has receptor agonist activity. These data raise serious safety and efficacy concerns for the use of bivalent anti-ACVR1 antibodies to treat patients with FOP.  相似文献   

2.
Kaplan J  Kaplan FS  Shore EM 《Gene therapy》2012,19(7):786-790
Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder of progressive heterotopic ossification for which there is presently no cure. FOP is caused by a recurrent heterozygous activating mutation (c.617G>A; R206H) of Activin receptor type IA/Activin-like kinase-2 (ACVR1/ALK2), a bone morphogenetic protein (BMP) type I receptor that occurs in all classically affected individuals. The FOP mutation dysregulates BMP signaling and initiates the formation of a disabling second skeleton of heterotopic bone. We generated allele-specific siRNA (ASP-RNAi) duplexes capable of specifically suppressing the expression of the mutant c.617A allele in mesenchymal progenitor cells from FOP patients and showed that this ASP-RNAi approach decreased the elevated BMP signaling that is characteristic of patient cells to levels similar to control cells and restored enhanced osteogenic differentiation to control levels. Our results provide proof-of-principle that ASP-RNAi has potential therapeutic efficacy for the treatment of FOP.  相似文献   

3.
4.
We have used alanine scanning mutagenesis to identify residues in transmembrane domain 5 of the histamine H3 receptor that are important for agonist binding. All of the mutants generated were functionally expressed as demonstrated by their ability to bind [(125)I]iodoproxyfan with comparable affinity to the wild-type receptor and their ability to inhibit forskolin-stimulated cAMP formation when activated by histamine. Many mutations produced small changes in the potency of histamine, but the most pronounced reduction in potency and affinity of the agonists, histamine, R-alpha-methylhistamine, imetit, and impentamine, was seen with mutation of glutamate 206. Our modeling suggests that this residue plays a key role in ligand binding by interacting with the imidazole ring of histamine. Interestingly, L199A greatly reduced agonist potency in functional assays but had only minor effects on agonist affinity, implicating a role for this residue in the mechanism of receptor activation. We also studied the functional effects of the mutations by linking the receptor to calcium signaling using a chimeric G protein. A comparison of the two functional assays demonstrated contrasting effects on agonist activity. Histamine, imetit, and impentamine were full agonists in the cAMP assay, but imetit exhibited only partial agonist activity through the chimeric G protein. Furthermore, impentamine, another potent agonist in the cAMP assay, was only able to activate the E206A mutant in the calcium assay despite being inactive at the wild-type receptor. These observations suggest that the agonist receptor complexes formed by these three different H3 agonists are not conformationally equivalent.  相似文献   

5.
Here we describe 2 mutations in growth and differentiation factor 5 (GDF5) that alter receptor-binding affinities. They cause brachydactyly type A2 (L441P) and symphalangism (R438L), conditions previously associated with mutations in the GDF5 receptor bone morphogenetic protein receptor type 1b (BMPR1B) and the BMP antagonist NOGGIN, respectively. We expressed the mutant proteins in limb bud micromass culture and treated ATDC5 and C2C12 cells with recombinant GDF5. Our results indicated that the L441P mutant is almost inactive. The R438L mutant, in contrast, showed increased biological activity when compared with WT GDF5. Biosensor interaction analyses revealed loss of binding to BMPR1A and BMPR1B ectodomains for the L441P mutant, whereas the R438L mutant showed normal binding to BMPR1B but increased binding to BMPR1A, the receptor normally activated by BMP2. The binding to NOGGIN was normal for both mutants. Thus, the brachydactyly type A2 phenotype (L441P) is caused by inhibition of the ligand-receptor interaction, whereas the symphalangism phenotype (R438L) is caused by a loss of receptor-binding specificity, resulting in a gain of function by the acquisition of BMP2-like properties. The presented experiments have identified some of the main determinants of GDF5 receptor-binding specificity in vivo and open new prospects for generating antagonists and superagonists of GDF5.  相似文献   

6.
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder whose most debilitating pathology is progressive and cumulative heterotopic ossification (HO) of skeletal muscles, ligaments, tendons, and fascia. FOP is caused by mutations in the type I BMP receptor gene ACVR1, which enable ACVR1 to utilize its natural antagonist, activin A, as an agonistic ligand. The physiological relevance of this property is underscored by the fact that HO in FOP is exquisitely dependent on activation of FOP-mutant ACVR1 by activin A, an effect countered by inhibition of anti–activin A via monoclonal antibody treatment. Hence, we surmised that anti-ACVR1 antibodies that block activation of ACVR1 by ligands should also inhibit HO in FOP and provide an additional therapeutic option for this condition. Therefore, we generated anti-ACVR1 monoclonal antibodies that block ACVR1’s activation by its ligands. Surprisingly, in vivo, these anti-ACVR1 antibodies stimulated HO and activated signaling of FOP-mutant ACVR1. This property was restricted to FOP-mutant ACVR1 and resulted from anti-ACVR1 antibody–mediated dimerization of ACVR1. Conversely, wild-type ACVR1 was inhibited by anti-ACVR1 antibodies. These results uncover an additional property of FOP-mutant ACVR1 and indicate that anti-ACVR1 antibodies should not be considered as therapeutics for FOP.  相似文献   

7.
In humans, loss-of-function mutations in the gene encoding Wnt1 inducible signaling pathway protein 3 (WISP3) cause the autosomal-recessive skeletal disorder progressive pseudorheumatoid dysplasia (PPD). However, in mice there is no apparent phenotype caused by Wisp3 deficiency or overexpression. Consequently, the in vivo activities of Wisp3 have remained elusive. We cloned the zebrafish ortholog of Wisp3 and investigated its biologic activity in vivo using gain-of-function and loss-of-function approaches. Overexpression of zebrafish Wisp3 protein inhibited bone morphogenetic protein (BMP) and Wnt signaling in developing zebrafish. Conditioned medium-containing zebrafish and human Wisp3 also inhibited BMP and Wnt signaling in mammalian cells by binding to BMP ligand and to the Wnt coreceptors low-density lipoprotein receptor-related protein 6 (LRP6) and Frizzled, respectively. Wisp3 proteins containing disease-causing amino acid substitutions found in patients with PPD had reduced activity in these assays. Morpholino-mediated inhibition of zebrafish Wisp3 protein expression in developing zebrafish affected pharyngeal cartilage size and shape. These data provide a biologic assay for Wisp3, reveal a role for Wisp3 during zebrafish cartilage development, and suggest that dysregulation of BMP and/or Wnt signaling contributes to cartilage failure in humans with PPD.  相似文献   

8.
B cells from patients with common variable immunodeficiency (CVID) who are heterozygous for transmembrane activator and CAML interactor (TACI) mutation C104R, which abolishes ligand binding, fail to produce Igs in response to TACI ligand. It is not known whether this is due to haploinsufficiency or dominant interference. Using in vitro transfection assays, here we demonstrate that C104R and the corresponding murine TACI mutant, C76R, which also does not bind ligand, dominantly interfere with TACI signaling. This effect was dependent on preassociation of the mutants with WT TACI in the absence of ligand. The mutants did not interfere with ligand binding by WT TACI, suggesting that they may act by disrupting ligand-induced receptor rearrangement and signaling. This work demonstrates that TACI preassembles as an oligomeric complex prior to ligand binding and provides a mechanistic insight into how the heterozygous C104R TACI mutation can potentially lead to CVID.  相似文献   

9.
Joint ankylosis is a major cause of disability in the human spondyloarthropathies. Here we report that this process partially recapitulates embryonic endochondral bone formation in a spontaneous model of arthritis in DBA/1 mice. Bone morphogenetic protein (BMP) signaling appears to be a key molecular pathway involved in this pathological cascade. Systemic gene transfer of noggin, a BMP antagonist, is effective both as a preventive and a therapeutic strategy in the mouse model, mechanistically interfering with enthesial progenitor cell proliferation in early stages of the disease process. Immunohistochemical staining for phosphorylated smad1/5 in enthesial biopsies of patients with spondyloarthropathy reveals active BMP signaling in similar target cells. Our data suggest that BMP signaling is an attractive therapeutic target for interfering with structural changes in spondyloarthropathy either as an alternative or complementary approach to current antiinflammatory treatments.  相似文献   

10.
Thyroid hormone (T3) resistance is inherited in most cases in an autosomal dominant manner. The disorder is characterized by elevated free thyroid hormone levels and partial resistance to thyroid hormone at the cellular level. Distinct single amino acid substitutions in the ligand binding domain of the beta form of the thyroid hormone receptor have been described in two kindreds with this disorder. We used transient expression assays to characterize the functional properties of these receptor mutants, one containing a Gly to Arg change at amino acid 340 (G340R) and the other a Pro to His change at amino acid 448 (P448H). A nine amino acid carboxy terminal deletion (delta 448-456), analogous to an alteration that occurs in v-erbA, was also studied for comparison with the mutations that occur in the T3 resistance syndrome. None of the receptor mutants were able to mediate thyroid hormone dependent activation (TreTKCAT) or repression (TSH alpha CAT) of reporter genes when compared with the wild type receptor. In addition, the mutants inhibited the activity of normal alpha and beta receptor isoforms when examined in coexpression assays. This activity, referred to as dominant negative inhibition, was manifest with respect to both the positively and negatively regulated reporter genes. Although mutant receptor binding to DNA was unaffected, ligand binding studies showed that the G340R and delta 448-456 mutants failed to bind T3, whereas the P448H mutant bound hormone with reduced affinity (approximately 10% of normal) compared to the wild type receptor. Consistent with this finding, the P448H mutant receptor was partially active at higher T3 concentrations. Furthermore, the dominant negative inhibition elicited by the P448H receptor mutant at higher T3 concentrations was reversed in the presence of high doses of T3. These findings indicate that mutant beta receptors in patients with thyroid hormone resistance have reduced affinity for T3 and are functionally deficient, but impair the activity of normal receptors, thereby providing a mechanism for the dominant mode of inheritance in this disorder.  相似文献   

11.
Maximally tolerated doses of N6-[(R)-1-methyl-2-phenylethyl] adenosine (0.50 nmol/hr/2 wk), 5'-N-ethylcarboxamide adenosine (NECA, 0.04 nmol/hr/2 wk) or deoxycoformycin (5 nmol/hr/1 wk) were administered i.c.v. to rats using mini-osmotic pumps. Adenosine receptor function was subsequently assayed using both ligand binding and adenylate cyclase assays. Binding to A1 receptors was quantitated using [3H]N6-[(R)-1-methyl-2-phenylethyl]adenosine, a selective agonist ligand at A1 receptors. Differences in the binding of this ligand and that of [3H]NECA, which binds to A1 and A2 receptors with similar affinities, were used to quantitate A2 receptors. None of the treatments affected A1 receptor function as assessed by both ligand binding and adenylate cyclase assays. A2 receptor binding and A2 receptor-mediated stimulation of adenylate cyclase were blunted in striatal membranes from NECA- and deoxycoformycin-treated rats but unaffected in striatal membranes from N6-[(R]-1-methyl-2-phenylethyl]adenosine-treated rats. All three pretreatments attenuated D1 dopamine receptor-mediated stimulation of adenylate cyclase in striatal membranes. These results suggest that 1) the A2 adenosine receptor system is susceptible to desensitization and 2) different mechanisms are involved in the NECA- and deoxycoformycin-induced desensitization of A2 adenosine receptor and D1 dopamine receptor systems. It is suggested that the D1 dopamine receptor desensitization is, in fact, due to the tonic stimulation of adenosine A1 receptors.  相似文献   

12.
Previously reported pharmacological studies using the imidazole-containing histamine H3 receptor ligands GT-2331 (Cipralisant) and proxyfan resulted in a range of classifications (antagonist, agonist, and protean) for these compounds. We examined the role that the signaling system, with particular emphasis on the type of G protein, had on the pharmacology observed for H3 ligands. Ligands were assessed using assays measuring neurotransmitter release, cAMP, and guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding. Whereas clobenpropit and ciproxifan were consistently antagonists, GT-2331, proxyfan, and imetit exhibited differential activity. Although GT-2331 and proxyfan exhibited little agonist activity in neurotransmitter release assays, both demonstrated full agonism relative to (R)-alpha-methylhistamine in cAMP assays. In [35S]GTPgammaS binding assays, GT-2331 and proxyfan demonstrated partial agonism. Imetit showed full agonism in most assays, but it was slightly less efficacious in a neurotransmitter release assay and in [35S]GTPgammaS binding at the human H3 receptor. To further examine these ligands, we coexpressed G alpha16 or chimeric G alpha q/i5 in human embryonic kidney cells expressing the human H3 receptor and assayed intracellular calcium and cAMP levels. GT-2331, proxyfan, and imetit demonstrated full agonism in all assays of cAMP activity. However, in cells expressing G alpha16, they exhibited minimal agonism in calcium mobilization assays, whereas imetit showed partial agonism. When G alpha q/i5 was used, the activity of both GT-2331 and proxyfan increased, whereas imetit became a full agonist. These results demonstrate that GT-2331 and proxyfan's differential pharmacology at the H3 receptor depends on the type of G protein used and provide indirect evidence for differential ligand-bound active states that mediate signaling by the H3 receptor.  相似文献   

13.
There are species differences between human histamine H(1) receptor (hH(1)R) and guinea pig (gp) histamine H(1) receptor (gpH(1)R) for phenylhistamines and histaprodifens. Several studies showed participation of the second extracellular loop (E2-loop) in ligand binding for some G protein-coupled receptors (GPCRs). Because there are large species differences in the amino acid sequence between hH(1)R and gpH(1)R for the N terminus and E2-loop, we generated chimeric hH(1)Rs with gp E2-loop (h(gpE2)H(1)R) and gp N terminus and gp E2-loop (h(gpNgpE2)H(1)R). hH(1)R, gpH(1)R, and chimeras were expressed in Sf9 insect cells. [(3)H]Mepyramine binding assays and steady-state GTPase assays were performed. In the series hH(1)R > h(gpE2)H(1)R > h(gpNgpE2)H(1)R, we observed a significant decrease in potency of histamine 1 in the GTPase assay. For phenoprodifen 5 and the chiral phenoprodifens 6R and 6S, a significant decrease in affinity and potency was found in the series hH(1)R > h(gpE2)H(1)R > h(gpNgpE2)H(1)R. In addition, we constructed new active-state H(1)R models based on the crystal structure of the human beta(2)-adrenergic receptor (hbeta(2)AR). Compared with the H(1)R active-state models based on the crystal structure of bovine rhodopsin, the E2-loop differs in its contact to the ligand bound in the binding pocket. In the bovine rhodopsin-based model, the backbone carbonyl of Lys187 (gpH(1)R) interacts with large histaprodifens in the binding pocket, but in the hbeta(2)AR-based model, Lys187 (gpH(1)R) is located distantly from the binding pocket. In conclusion, the differences in N terminus and E2-loop between hH(1)R and gpH(1)R exert an influence on affinity and/or potency for histamine and phenoprodifens 5, 6R, and 6S.  相似文献   

14.
Sotatercept (ACE-011), under development by Acceleron Pharma Inc in collaboration with Celgene Corp, is a chimeric protein containing the extracellular domain of the activin receptor 2A (ACVR2A) fused to the Fc domain of human IgG1. Sotatercept contains the binding site of ACVR2A and interferes with downstream signaling cascades, in particular the SMAD pathway, by sequestering activin. The murine counterpart of sotatercept, referred to as RAP-011, has been extensively evaluated in preclinical studies, in particular in models of cancer- and osteoporosis-related bone loss, and the developing companies envisage that sotatercept may also have potential for the treatment of cancer and cancer-related bone loss. In a phase I clinical trial in postmenopausal females, sotatercept increased hematocrit levels, and, in a phase II trial in patients with multiple myeloma, a trend toward improvement in osteolytic lesions as well as antitumor activity was observed. At the time of publication, phase II trials in patients with anemia were ongoing. Future clinical development will rely on an evaluation of the benefits and complications of sotatercept administration, focusing in particular on suppression of ovarian function and increases in hematocrit levels without a consequent risk of hypertension and thrombosis.  相似文献   

15.
There are differences in the pharmacological properties of phenylhistamines and histaprodifens between guinea pig histamine H(1) receptor (gpH(1)R) and human histamine H(1) receptor (hH(1)R). The aim of this study was to analyze species differences in more detail, focusing on histaprodifen derivatives and including the bovine histamine H(1) receptor (bH(1)R) and rat histamine H(1) receptor (rH(1)R). H(1)R species isoforms were coexpressed with the regulator of G protein signaling RGS4 in Sf9 insect cells. We performed [(3)H]mepyramine binding assays and steady-state GTPase assays. For a novel class of histaprodifens, the chiral histaprodifens, unique species differences between hH(1)R, bH(1)R, rH(1)R, and gpH(1)R were observed. The chiral histaprodifens 8R and 8S were both partial agonists at gpH(1)R, but only 8R was a partial agonist at the other H(1)R species isoforms. An additional phenyl group in chiral histaprodifens 10R and 10S, respectively, resulted in a switch from agonism at gpH(1)Rto antagonism at hH(1)R, bH(1)R, and rH(1)R. In general, histaprodifens showed the order of potency hH(1)R < bH(1)R < rH(1)R < gpH(1)R. An active-state model of gpH(1)R was generated with molecular dynamics simulations. Dimeric histaprodifen was docked into the binding pocket of gpH(1)R. Hydrogen bonds and electrostatic interactions were detected between dimeric histaprodifen and Asp-116, Ser-120, Lys-187, Glu-190, and Tyr-432. We conclude the following: 1) chiral histaprodifens interact differentially with H(1)R species isoforms; 2) gpH(1)R and rH(1)R, on one hand, and hH(1)R and bH(1)R, on the other hand, resemble each other structurally and pharmacologically; and 3) histaprodifens interact with H(1)R at multiple sites.  相似文献   

16.
Human high molecular weight-B cell growth factor (HMW-BCGF) (60 kD) stimulates activated normal B cells, B cell precursor acute lymphoblastic leukemia (BCP-ALL) cells, hairy cell leukemia (HCL) cells, prolymphocytic leukemia (PLL) cells, and chronic lymphocytic leukemia (CLL) cells. The expression of human high molecular weight B cell growth factor (HMW-BCGF) receptors (R) on clonal populations of leukemic B cells in CLL was studied by ligand binding assays using 125I-labeled HMW-BCGF as well as by immunofluorescence/flow cytometry and Scatchard analyses using an anti-HMW-BCGF R monoclonal antibody (MAb), designated BA-5. There was a high correlation between HMW-BCGF R expression and responsiveness to HMW-BCGF. 60% of CLL cases constitutively expressed HMW-BCGF R and showed a marked proliferative response to HMW-BCGF in [3H]TdR incorporation assays as well as colony assays. Similarly, HCL cells, PLL cells, and activated normal B cells expressed functional HMW-BCGF R, as determined by ligand binding assays using 125I-HMW-BCGF, [3H]TdR incorporation assays, and reactivity with BA-5 MAb. Scatchard analyses indicated the existence of approximately 3,000 HMW-BCGF R/cell on HMW-BCGF responsive CLL cells with an apparent Ka value of 4.6 X 10(7) M-1. The concentrations of HMW-BCGF required for maximum stimulation of CLL cells were two to three orders of magnitude lower than those needed for half maximal receptor occupancy, indicating that only a small fraction of HMW-BCGF R need to be occupied to stimulate leukemic CLL B cells. Crosslinking of surface bound 125I-HMW-BCGF (60 kD) with the bivalent crosslinker DTSSP to its binding site on fresh CLL cells identified a 150-kD HMW-BCGF/HMW-BCGF R complex, suggesting an apparent molecular weight of 90 kD for the receptor protein. The growth stimulatory effects of HMW-BCGF on clonogenic CLL cells did not depend on accessory cells or costimulant factors. The anti-HMW-BCGF R monoclonal antibody BA-5 disrupted HMW-BCGF/HMW-BCGF R interactions at the level of clonogenic CLL cells and inhibited HMW-BCGF-stimulated CLL colony formation in vitro. To our knowledge, this study represents the first detailed analysis of expression, function, and structure of HMW-BCGF R on B lineage CLL cells.  相似文献   

17.
The interaction of Fas (CD95), a member of the tumor necrosis factor receptor (TNFR) family, and its ligand (FasL) triggers programmed cell death (apoptosis) and is involved in the regulation of immune responses. Although the Fas–FasL interaction is conserved across species barriers, little is currently known about the molecular details of this interaction. Our aim was to identify residues in Fas that are important for ligand binding. With the aid of a Fas molecular model, candidate amino acid residues were selected in the Fas extracellular domain 2 (D2) and D3 and subjected to serine-scanning mutagenesis to produce mutant Fas molecules in the form of Ig fusion proteins. The effects of these mutations on FasL binding was examined by measuring the ability of these proteins to inhibit FasL-mediated apoptosis of Jurkat cells and bind FasL in ELISA and BIAcore™ assays. Mutation of two amino acids, R86 and R87 (D2), to serine totally abolished the ability of Fas to interact with its ligand, whereas mutants K84S, L90S, E93S (D2), or H126S (D3) showed reduced binding compared with wild-type Fas. Two mutants (K78S and H95S) bound FasL comparably to wild type. Therefore, the binding of FasL involves residues in two domains that correspond to positions critical for ligand binding in other family members (TNFR and CD40) but are conserved between murine and human Fas.  相似文献   

18.
Candida albicans and Cryptococcus neoformans cause both superficial and disseminated infections in humans. Current antifungal therapies for deep-seated infections are limited to amphotericin B, flucytosine, and azoles. A limitation is that commonly used azoles are fungistatic in vitro and in vivo. Our studies address the mechanisms of antifungal activity of the immunosuppressive drug rapamycin (sirolimus) and its analogs with decreased immunosuppressive activity. C. albicans rbp1/rbp1 mutant strains lacking a homolog of the FK506-rapamycin target protein FKBP12 were found to be viable and resistant to rapamycin and its analogs. Rapamycin and analogs promoted FKBP12 binding to the wild-type Tor1 kinase but not to a rapamycin-resistant Tor1 mutant kinase (S1972R). FKBP12 and TOR mutations conferred resistance to rapamycin and its analogs in C. albicans, C. neoformans, and Saccharomyces cerevisiae. Our findings demonstrate the antifungal activity of rapamycin and rapamycin analogs is mediated via conserved complexes with FKBP12 and Tor kinase homologs in divergent yeasts. Taken together with our observations that rapamycin and its analogs are fungicidal and that spontaneous drug resistance occurs at a low rate, these mechanistic findings support continued investigation of rapamycin analogs as novel antifungal agents.  相似文献   

19.
We report the absence of functional parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptors (PTH/PTHrP receptor) in Blomstrand chondrodysplasia, a genetic disorder characterized by advanced endochondral bone maturation. Analysis of PTH/PTHrP receptor genomic DNA from a patient with Blomstrand chondrodysplasia demonstrated that the patient was heterozygous for a point mutation (G--> A substitution at nucleotide 1176) inherited from the mother. Analysis of PTH/PTHrP receptor cDNA demonstrated that: (a) this point mutation caused the deletion of the first 11 amino acids of exon M5 (encoding the fifth transmembrane domain of the receptor), resulting from the use of a novel splice site created by the base substitution; (b) the mutant receptor was well expressed in COS-7 cells, but did not bind PTH or PTHrP, and failed to induce detectable stimulation of either cAMP or inositol phosphate production in response to these ligands; and (c) the paternal allele was not expressed. Thus, only the abnormal and nonfunctional PTH/PTHrP receptors encoded by the maternal allele were expressed by chondrocytes from this patient. In view of the known role played by the PTH/PTHrP receptor in bone and cartilage development, these results strongly support the conclusion that the absence of functional PTH/ PTHrP receptors is responsible for the skeletal abnormalities seen in Blomstrand chondrodysplasia, abnormalities that are the mirror image of those observed in Jansen's chondrodysplasia. These findings emphasize the importance of signaling through this receptor in human fetal skeletal development.  相似文献   

20.
Fibrodysplasia ossificans progressiva (FOP) is an ultrarare, debilitating disease in which heterotopic bone is formed in certain soft tissues. A gain-of-function variant in the cytoplasmic domain of the activin A receptor type I (ACVR1) exists in all patients with FOP. Strikingly, these FOP-causing variants imbue a neofunction to ACVR1 — the ability to recognize activin A as an agonist with bone morphogenic protein–like signaling that leads to heterotopic ossification (HO). These findings are supported by the efficacy of anti–activin A antibodies in preventing HO in FOP mice. This surprising story continues in companion papers in this issue of the JCI. Aykul et al. and Lees-Shepard et al. independently found that antibodies against ACVR1, which were being developed as potential therapeutics for FOP, instead caused HO in FOP mice. While this unexpected finding may be the clinical final act for such antibodies, it provides another twist in the unique and evolving FOP story.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号