首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oral availability of many drugs is poor because of the pH of the stomach, the presence of enzymes, and extensive first-pass metabolism. Traditionally, these drugs have been administered as parenteral drug delivery systems, which invariably leads to poor patient compliance. This has made the pharmaceutical industry look for alternative routes of drug delivery. One possible route is via the oral cavity. This review compares the many different and novel drug delivery systems that have been developed for absorption through the oral cavity as well as those that undergo quick disintegration or dissolution in the oral cavity. Systems for oral delivery include mucoadhesive patches, films and tablets, as well as quick-disintegrating wafers, tablets and films. There are many examples of drugs that have been formulated into intraoral absorptive drug delivery systems as well as quick-disintegrating drug delivery systems. The fact that most of the research being conducted on intraoral drug delivery systems is driven by pharmaceutical manufacturers demonstrates the need for such drug delivery systems. As we begin to discover more about oral mucosal drug delivery, and develop much more sophisticated drug delivery systems, many more drugs will be formulated as intraoral systems. There is no doubt that the need for these systems is real, and many classes of drugs could benefit from this noninvasive type of drug delivery. The challenge now is to synthesize drug moieties that exhibit increased absorption across the oral mucosa and are more potent in their action. Intraoral drug delivery systems are possibly one of the very few drug delivery systems that seem to be ahead of the development of new drug compounds that are effectively absorbed across tissue membranes.  相似文献   

2.
Microbially triggered drug delivery to the colon.   总被引:20,自引:0,他引:20  
Increasing acceptance of protein- and peptide-based drugs necessitates an investigation into the suitability of various sites for their administration. Colon is being investigated for delivery of such molecules. Colon-specific drug delivery is designed to target drug molecules specifically to this area. Development of site-specific delivery systems may exploit a specific property of the target site for drug activation/release. The gastrointestinal tract is inhabited by over 400 bacterial species, each having a specific niche in the tract. Colon, the distal part of the intestine is inhabited by a large variety of gram negative microflora. This flora produces a vast number of enzymes which are being exploited for formulation of colon-specific drug delivery systems. A number of microbially activated systems for colon-specific drug delivery are being evaluated. These include prodrugs and synthetic or natural polymer-based delivery systems. This article aims at reviewing the various microbially activated drug delivery systems for colon-specific drug delivery with specific reference to the microflora of the various segments of the gastrointestinal tract and their role in targeting drug delivery to the colon.  相似文献   

3.
脉冲释药系统的新进展   总被引:1,自引:0,他引:1  
杨亚萍  王柏 《药学进展》2009,33(6):260-266
综述近年来脉冲释药系统的新进展。脉冲释药系统是一种按照生理节律设计、定时定量脉冲式释放有效治疗量药物的剂型。根据剂型设计原理和药物释药机制,将脉冲释药系统分为预设药物传递系统、闭环反馈型传递系统和开环传递系统三大类。  相似文献   

4.
Colon-specific drug delivery systems have recently gained enormous importance for the delivery of a variety of therapeutic compounds. To deliver a drug molecule intact to the colon, the delivery system must pass through the upper part of the gastrointestinal tract without being degraded. Researchers have attempted various approaches in the formulation of colon-specific drug delivery systems. Among them, the most promising are the microbially and/or enzymatically driven drug delivery systems, consisting of biodegradable polymers (polysaccharides) and prodrugs. The major advantage of the microbially and/or enzymatically driven colon-specific drug delivery systems is that they can sense the arrival of the formulation in the colon and release the drug upon activation. This review familiarizes readers with the recent advancements in microbially and/or enzymatically driven colon-specific drug delivery systems, along with their in vitro and in vivo evaluation.  相似文献   

5.
New ophthalmic drug delivery systems are curently receiving increased attention, in part because of the expected emergence of new drugs with short biological half-lives whose usefulness may depend on a more continuous drug supply than eyedrops can provide, but also because of the potential of some delivery systems to reduce the side effects of the more potent drugs recently introduced or presently under investigation. Some ophthalmic delivery systems extend the duration of drug action by enhancement of corneal absorption; these systems include soluble gels and emulsions, hydrophilic ocular inserts, ion-pair associations, prodrugs, and liposomes. Since these systems enhance the “pulse entry” of the drug, they are limited to use with drugs whose dose-related side effects are not serious. Other delivery systems provide for a controlled release of drugs and therefore minimize the pulse entry with which side effects are associated. They can be based on any of several different mechanisms and include both erodible and nonerodible matrices. The various delivery systems that have recently been developed and those that are currently known to be under investigation are described in this paper, along with some observations regarding the future outlook of ophthalmic drug delivery systems.  相似文献   

6.
The pulmonary route is very attractive for drug delivery by inhalation. In this regard, nanoparticulate drug delivery systems, designed as multifunctional engineered nanoparticles, are very promising since they combine several opportunities like a rather uniform distribution of drug dose among all ventilated alveoli allowing for uniform cellular drug internalization. However, although the field of nanomedicine offers multiple opportunities, it still is in its infancy and the research has to proceed in order to obtain a specific targeting of the drug combined with minimum side effects. If inhaled nanoparticulate drug delivery systems are deposited on the pulmonary surfactant, they come into contact with phospholipids and surfactant proteins. It is highly likely that the interaction of nanoparticulate drug delivery systems with surfactant phospholipids and proteins will be able to mediate/modulate the further fate of this specific drug delivery system. In the present comment, we discuss the potential interactions of nanoparticulate drug delivery systems with pulmonary surfactant as well as the potential consequences of this interaction.  相似文献   

7.
In a typical therapeutic regimen the drug dose and the dosing interval are optimized to maintain drug concentration within the therapeutic window, thus ensuring efficacy while minimizing toxic effects. For many decades treatment of acute disease or a chronic illness has been mostly accomplished by delivery of drugs to patients using various pharmaceutical dosage forms. The immediate release conventional dosage form does not provide the proper plasma concentration of drug for prolonged period. This results in the development of various controlled drug delivery system. Among which the osmotic drug delivery systems (ODDS) are gaining importance as these systems deliver the drug at specific time as per the path physiological need of the disease, resulting in improved patient therapeutic efficacy and compliance. They work on the principle of osmotic pressure for controlling the delivery of the drug. Osmotic drug delivery systems with their versatility and their highly predictable drug release rates offer various biomedical advantages when given parenterally like reduced dose, targeting of site, avoiding gastrointestinal stability, hepatic bypass of drug molecule and follows zero order kinetics. Osmosis is an aristocratic phenomenon that seizes the attention for its exploitation in zero-order drug delivery systems. The release of the drug is independent of pH and physiological factors of the GIT to a large extent. Optimizing semi-permeable membrane characteristics and osmotic agent can modulate delivery of drug from the system. This review highlights the theoretical concept of drug delivery, history, types of oral osmotic drug delivery systems, factors affecting the drug delivery system, advantages and disadvantages of this delivery system, theoretical aspects, applications, and the marketed status.  相似文献   

8.
Dental drug delivery systems have been used for a long time, in particular for the local therapy of diseases affecting the oral cavity. Research today concentrates on the design of formulations to increase their retention time. Even today, however, prosthetic devices incorporating drug delivery are rarely used. Mainly, they are focused on prophylaxis and the release of antibacterial agents. However, as buccal delivery, because of its undeniable advantages, has become popular for systemic drug delivery, and prolonged well-controlled release has been identified as beneficial, especially for chronic diseases, a new class of delivery systems is evolving: highly miniaturized computerized delivery systems, integrated into a dental appliance. Dental delivery systems today are used in two ways: the main application is the local treatment of diseases affecting the oral cavity itself like periodontitis or fungal infections. The second is for systemic drug delivery.  相似文献   

9.
Drug delivery systems 5A. Oral drug delivery   总被引:1,自引:0,他引:1  
The two main advantages of controlled drug delivery systems are: maintenance of therapeutically optimum drug concentrations in the plasma through zero-order release without significant fluctuations; and elimination of the need for frequent single dose administrations. The oral and other therapeutic systems in human use have validated the concept that controlled continuous drug release can minimize the daily dose of a drug required to maintain the required therapeutic effect, while minimizing unwanted pharmacological effects. By minimizing patient intervention, a design feature of therapeutic systems, compliance is automatically enhanced. Oral drug delivery systems, in particular, have required innovation in materials science to provide materials biocompatible during prolonged contact with body tissues, bioengineering to develop drug delivery modules, and clinical pharmacology for elucidation of drug action under conditions of continuous controlled drug administration. Recent work in advanced oral delivery has been primarily focused on liposome technology and the concept that substances that are normally destroyed by the stomach can be protected long enough before they could be absorbed downstream. For cost and patient convenience, oral delivery certainly would be an attractive method. The nature of biologic substances, however, with their unique technical problems, will probably limit greatly those that can be delivered orally. Besides, where delivery rate control is critical, oral delivery, even when possible, would probably be insufficiently precise. Oral delivery would also limit the substance to bloodstream delivery to the disease site. Even so, oral controlled drug delivery systems will likely find primary usefulness in specific carefully controlled therapies and prophylactic situations with due regard for drug interactions. This system represents a potentially very significant therapeutic modality. These delivery systems will find usefulness primarily in certain well-defined and well-controllable areas with due regard for individual patient variations. The purpose of the present article is to review oral controlled-release drug delivery systems, with particular emphasis on the practical aspects of testing and fabricating these systems and the underlying mechanisms by which control over drug release rate is accomplished.  相似文献   

10.
Conventional drug delivery systems have little control over their drug release and almost no control over the effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable controlled drug delivery systems and could be employed as oral drug delivery systems. The present review is concerned with the study of drug release through asymmetric membrane capsule systems. When these systems are exposed to water, low levels of water soluble additive are leached from polymeric material i.e. the semipermeable membrane and the drug releases in a controlled manner over an extended period of time. Drug delivery from this system is not influenced by the different physiological factors within the gut lumen and the release characteristics can be predicted easily from the known properties of the drug and the dosage form. This patent review is useful in the knowledge of asymmetric membrane capsule osmotic pump for its application.  相似文献   

11.
Targeting drug delivery into the lungs has become one of the most important aspects of systemic or local drug delivery systems. Consequently, in the last few years, techniques and new drug delivery devices intended to deliver drugs into the lungs have been widely developed. Currently, the main drug targeting regimens include direct application of a drug into the lungs, mostly by inhalation therapy using either pressurized metered dose inhalers (pMDI) or dry powder inhalers (DPI). Intratracheal administration is commonly used as a first approach in lung drug delivery in vivo. To convey a sufficient dose of drug to the lungs, suitable drug carriers are required. These can be either solid, liquid, or gaseous excipients. Liposomes, nano- and microparticles, cyclodextrins, microemulsions, micelles, suspensions, or solutions are all examples of this type of pharmaceutical carrier that have been successfully used to target drugs into the lungs. The use of microreservoir-type systems offers clear advantages, such as high loading capacity and the possibility of controlling size and permeability, and thus of controlling the release kinetics of the drugs from the carrier systems. These systems make it possible to use relatively small numbers of vector molecules to deliver substantial amounts of a drug to the target. This review discusses the drug carriers administered or intended to be administered into the lungs. The transition to CFC-free inhalers and drug delivery systems formulated with new propellants are also discussed. Finally, in addition to the various advances made in the field of pulmonary-route administration, we describe new systems based on perfluorooctyl bromide, which guarantee oxygen delivery in the event of respiratory distress and drug delivery into the lungs.  相似文献   

12.
Preparing and evaluating delivery systems for proteins.   总被引:2,自引:0,他引:2  
From a formulation perspective proteins are complex and therefore challenging molecules to develop drug delivery systems for. The success of a formulation depends on the ability of the protein to maintain the native structure and activity during preparation and delivery as well as during shipping and long-term storage of the formulation. Therefore, the development and evaluation of successful and promising drug delivery systems is essential. In the present review, some of the particulate drug delivery systems for parenteral delivery of protein are presented and discussed. The challenge for incorporation of protein in particulate delivery systems is exemplified by water-in-oil emulsions.  相似文献   

13.
智能药物释放体系能按病灶信号实现药物释放的开-关控制,由高分子包囊药物所构筑。智能型聚合物在环境发生变化时,其微结构发生可逆变化,即从亲水状态转变成疏水状态,据此可构筑响应不同刺激信号的药物释放体系。本文概述了智能药物释放体系的应用现状及研究进展。  相似文献   

14.
Approaches to neural tissue engineering using scaffolds for drug delivery   总被引:9,自引:0,他引:9  
This review seeks to give an overview of the current approaches to drug delivery from scaffolds for neural tissue engineering applications. The challenges presented by attempting to replicate the three types of nervous tissue (brain, spinal cord, and peripheral nerve) are summarized. Potential scaffold materials (both synthetic and natural) and target drugs are discussed with the benefits and drawbacks given. Finally, common methods of drug delivery, including degradable/diffusion-based delivery systems, affinity-based delivery systems, immobilized drug delivery systems, and electrically controlled drug delivery systems, are examined and critiqued. Based on the current body of work, suggestions for future directions of research in the field of neural tissue engineering are presented.  相似文献   

15.
在口服制剂中,胃滞留给药系统可以延长药物在胃内的滞留时间,进而延长其在整个胃肠道的转运时间,增加药物的吸收,从而提高临床疗效,因此它是一种理想的给药系统。本文通过查阅国内外文献进行归纳,从胃滞留给药系统的影响因素、分类、制剂研究(包括中药胃滞留制剂)及上市产品进展等方面对近年来胃滞留制剂的研究进展进行综述。  相似文献   

16.
Colloidal drug delivery systems have been providing alternative formulation approaches for problematic drug candidates, and improved delivery for existing compounds for decades. Colloidal systems for drug delivery have all evolved down a similar pathway, almost irrespective of the delivery system, from conception, to the use of safer excipients, PEGylation for passive targeting and attachment of ligands for active targeting. The recent emergence of truly biologically interactive systems represents the latest step forward in colloidal delivery systems. In this article, the maturation pathway and recent advances for the major classes of colloidal delivery systems are reviewed, and the paper poses the question of whether the nanotechnology boom will create a revolution in colloidal delivery, or just the next natural stage in evolution.  相似文献   

17.
Drug-loaded polymeric nanocapsules have exhibited potential applications in the field of drug delivery systems in recent years. This article entails the biodegradable polymers generally used for preparing nanocapsules, which include both natural polymers and synthetic polymers. Furthermore, the article presents a general review of the different preparation methods: nanoprecipitation method, emulsion-diffusion method, double emulsification method, emulsion-coacervation method, layer-by-layer assembly method. In addition, the analysis methods of nanocapsule characteristics, such as mean size, morphology, surface characteristics, shell thickness, encapsulation efficiency, active substance release, dispersion stability, are mentioned. Also, the applications of nanocapsules as carriers for use in drug delivery systems are reviewed, which primarily involve targeting drug delivery, controlled/sustained release drug delivery systems, transdermal drug delivery systems and improving stability and bioavailability of drugs. Nanocapsules, prepared with different biodegradable polymers, have received more and more attention and have been regarded as one of the most promising drug delivery systems.  相似文献   

18.
To achieve effective chemotherapy, many types of drug delivery systems have been developed for the specific environments in tumor tissues. Polymer–drug conjugates are increasingly used in tumor therapy due to several significant advantages over traditional delivery systems. In the fabrication of polymer–drug conjugates, a smart linker is an important component that joins two fragments or molecules together and can be cleared by a specific stimulus, which results in targeted drug delivery and controlled release. By regulating the conjugation between the drug and the nanocarriers, stimulus-sensitive systems based on smart linkers can offer high payloads, certified stability, controlled release and targeted delivery. In this review, we summarize the current state of smart linkers (e.g. disulfide, hydrazone, peptide, azo) used recently in various polymer–drug conjugate-based delivery systems with a primary focus on their sophisticated design principles and drug delivery mechanisms as well as in vivo processes.  相似文献   

19.
INTRODUCTION: Combination therapy with multiple therapeutic agents has wide applicability in medical and surgical treatment, especially in the treatment of cancer. Thus, new drug delivery systems that can differentially release two or more drugs are desired. Utilizing new techniques to engineer the established drug delivery systems and synthesizing new materials and designing carriers with new structures are feasible ways to fabricate proper multi-agent delivery systems, which are critical to meet requirements in the clinic and improve therapeutic efficacy. AREAS COVERED: This paper aims to give an overview about the multi-agent delivery systems developed in the last decade for differential release in combination therapy. Multi-agent delivery systems from nanoscale to bulk scale, such as liposomes, micelles, polymer conjugates, nano/microparticles and hydrogels, developed over the last 10 years, have been collected and summarized. The characteristics of different delivery systems are described and discussed, including the structure of drug carriers, drug-loading techniques, release behaviors and consequent evaluation in biological assays. EXPERT OPINION: The chemical structure of drug delivery systems is the key to controlling the release of therapeutic agents in combination therapy, and the differential release of multiple drugs could be realized by the successful design of a proper delivery system. Besides biological evaluation in vitro and in vivo, it is important to speed up practical application of the resulting delivery systems.  相似文献   

20.
This article shall give an overview on drug delivery systems for new therapeutic strategies in the treatment of inflammatory bowel disease. The various features of the different approaches allowing locally restricted drug delivery to the inflamed colon are discussed including the main physiological and pathophysiological limitations for the different systems. Conventional drug delivery systems are tightly adapted from developments for colonic delivery by oral administration triggered by release mechanisms owing to the physiological environment that these systems encounter in the colonic region. The newer developments in this context aim for an increased selectivity of drug delivery by targeting mechanisms which have a closer relation to pathophysiological particularities of the disease. Therefore, we were focused especially on new strategies for such treatment including liposomal formulations, cyclodextrins, micro- or nanoparticles, viral gene therapy approaches, and others. Effective and selective delivery even of an otherwise nonspecifically acting drug could provide new therapeutic pathways in the treatment of inflammatory bowel disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号