首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Mouse models for mitochondrial disease   总被引:9,自引:0,他引:9  
  相似文献   

2.
3.
Aging is an intricate process that increases susceptibility to sarcopenia and cardiovascular diseases. The accumulation of mitochondrial DNA (mtDNA) mutations is believed to contribute to mitochondrial dysfunction, potentially shortening lifespan. The mtDNA mutator mouse, a mouse model with a proofreading-deficient mtDNA polymerase γ, was shown to develop a premature aging phenotype, including sarcopenia, cardiomyopathy and decreased lifespan. This phenotype was associated with an accumulation of mtDNA mutations and mitochondrial dysfunction. We found that increased expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a crucial regulator of mitochondrial biogenesis and function, in the muscle of mutator mice increased mitochondrial biogenesis and function and also improved the skeletal muscle and heart phenotypes of the mice. Deep sequencing analysis of their mtDNA showed that the increased mitochondrial biogenesis did not reduce the accumulation of mtDNA mutations but rather caused a small increase. These results indicate that increased muscle PGC-1α expression is able to improve some premature aging phenotypes in the mutator mice without reverting the accumulation of mtDNA mutations.  相似文献   

4.
5.
While mitochondrial abnormalities are increasingly recognized in cardiac diseases including hypertrophic cardiomyopathy, their presence in idiopathic dilated cardiomyopathy and the role that age plays in their incidence and severity have yet not been assessed. Levels of cardiac respiratory enzyme activities and mitochondrial DNA (mtDNA) were examined in 55 subjects with idiopathic dilated cardiomyopathy divided into 3 age groups. Respiratory enzyme activity levels were significantly lower in 37 patients (67%) compared to age-matched controls and increased activity levels were noted in 9 (16%). Decreased activities were found in complex I (n = 11), III (n = 16), IV (n = 12) and V (n = 13), but not in II, the only respiratory complex entirely nuclear-encoded. No age-specific differences were found in the overall frequency of enzymatic abnormalities. However, older patients had significantly increased multiple enzyme activity defects as well as increases in abundance and frequency of the 7.4 kb deletion. In addition, 3 patients were noted with marked reduction in mtDNA levels. None of the pathogenic mtDNA mutations previously associated with hypertrophic cardiomyopathy were found, nor was there any relationship that could be established between levels of specific mtDNA deletions and enzyme activities. In summary, specific mitochondrial abnormalities are heterogenous and frequent in both adults and children with idiopathic dilated cardiomyopathy. Older patients are more likely to have mtDNA deletions and multiple enzyme activity defects. The molecular basis for these abnormalities remains undefined.  相似文献   

6.
The Polycomb-group genes (PcG) are widely conserved from Drosophila to mammals and are required for maintaining positional information during development. The rae28 gene (rae28) is a member of the mouse PcG. Mice deficient in rae28 (rae28(-/-)) demonstrated that rae28 has a role not only in anteroposterior patterning but also in cardiac morphogenesis. In this study we generated transgenic mice with ubiquitous or cardiomyocyte-specific exogenous rae28 expression. Genetic complementation experiments with these transgenic mice showed that ubiquitous expression of rae28 could reverse the cardiac anomalies in rae28(-/-), whereas cardiomyocyte-specific expression of rae28 could not, suggesting that rae28 is involved in cardiac morphogenesis through a noncardiomyocyte pathway. Interestingly, however, cardiomyocyte-specific overexpression of rae28 caused dilated cardiomyopathy, which was associated with cardiomyocyte apoptosis, abnormal myofibrils, and severe heart failure. Cardiac expression of rae28 was predominant in the early embryonic stage, whereas that of the other PcG members was relatively constitutive. Because rae28 forms multimeric complexes with other PcG proteins in the nucleus, it is presumed that constitutive cardiomyocyte-specific rae28 overexpression impaired authentic PcG functions in the heart. rae28-induced dilated cardiomyopathy may thus provide a clue for clarifying the direct role of PcG in the maintenance of cardiomyocytes.  相似文献   

7.
Pathogenic mitochondrial DNA (mtDNA) mutations leading to mitochondrial dysfunction can cause cardiomyopathy and heart failure. Owing to a high mutation rate, mtDNA defects may occur at any nucleotide in its 16 569 bp sequence. Complete mtDNA sequencing may detect pathogenic mutations, which can be difficult to interpret because of normal ethnic/geographic-associated haplogroup variation. Our goal is to show how to identify candidate mtDNA mutations by sorting out polymorphisms using readily available online tools. The purpose of this approach is to help investigators in prioritizing mtDNA variants for functional analysis to establish pathogenicity. We analyzed complete mtDNA sequences from 29 Italian patients with mitochondrial cardiomyopathy or suspected disease. Using MITOMASTER and PhyloTree, we characterized 593 substitution variants by haplogroup and allele frequencies to identify all novel, non-haplogroup-associated variants. MITOMASTER permitted determination of each variant''s location, amino acid change and evolutionary conservation. We found that 98% of variants were common or rare, haplogroup-associated variants, and thus unlikely to be primary cause in 80% of cases. Six variants were novel, non-haplogroup variants and thus possible contributors to disease etiology. Two with the greatest pathogenic potential were heteroplasmic, nonsynonymous variants: m.15132T>C in MT-CYB for a patient with hypertrophic dilated cardiomyopathy and m.6570G>T in MT-CO1 for a patient with myopathy. In summary, we have used our automated information system, MITOMASTER, to make a preliminary distinction between normal mtDNA variation and pathogenic mutations in patient samples; this fast and easy approach allowed us to select the variants for traditional analysis to establish pathogenicity.  相似文献   

8.
Zheng QS  Guo WG  Lu ZF  Shi XQ  Su FF  Li H 《Medical hypotheses》2008,71(3):434-438
Dystrophin and its associated proteins form a scaffold underneath the cardiomyocyte membrane and connect the intracellular cytoskeleton to the extracellular matrix. Dystrophin localizes at the X chromosome, whose mutations might result in Duchenne muscular dystrophy, Becker muscular dystrophy and X-linked dilated cardiomyopathy. In addition to these genetic dilated cardiomyopathies, some acquired dilated cardiomyopathy like viral dilated cardiomyopathy is also related to dystrophin disruption or aberrant cleavage. In this review, we summarize the structure and distribution of dystrophin and researches of dystrophin in genetic and viral dilated cardiomyopathy. Moreover, we hypothesize that dystrophin play a critical role in ventricular remodeling in ischemic myocardium and treatment targeting restoration of dystrophin onto membrane could benefit for ischemic cardiomyopathy.  相似文献   

9.
Dilated cardiomyopathy is the most frequent form of myocardial disease. Many factors contribute to dilated cardiomyopathy, for instance, long-term use of doxorubicin, one of the anthracyclines clinically used for cancer chemotherapy, result in dilated cardiomyopathy and congestive heart failure. However, the mechanism underlining doxorubicin-induced cardiomyocyte is still not fully understood. In this study, we evaluate the effects and their mechanisms of PPARα and PGC-1α pathways in doxorubicin induced mice cardiomyocytes. In vitro, cardiomyocytes isolated from hearts of adult FVB/NJ mice were treated with doxorubicin, GW 6471 (PPARα inhibitors) and WY14643 (PPARα agonists). The expression of PPARα and PGC-1α were detected via western blotting and Quantitative Real-Time PCR methods. Changes in energy and substrate metabolism were analyzed. MTT and flow cytometry were used for cell proliferation and apoptosis analysis. We detected expression of PPARα and PGC-1α was significantly higher in control group than doxorubicin group. Mitochondrial dysfunction was found in doxorubicin group including lower content of high-energy phosphates, significantly decreased mitochondrial ANT transport activity and markedly reduced mitochondrial membrane potential compared with control group. Metabolic remodeling existed in doxorubicin group because of higher concentration of free fatty acid and glucose consumption than of control group. More accumulations of reactive oxygen species were detected in doxorubicin group. The decreased cell viability and increased cell apoptosis observed in doxorubicin group. Severe apoptosis in doxorubicin group was verified by a set of markers including Bax, Bcl-2, cytosolic cytochrome c and caspase-3 up-regulation expression. These findings indicate that the PPARα and PGC-1α are closely involved in energy metabolism remodeling and apoptosis in cardiomyocytes.  相似文献   

10.
11.
Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy   总被引:30,自引:0,他引:30  
BACKGROUND: The molecular basis of idiopathic dilated cardiomyopathy, a primary myocardial disorder that results in reduced contractile function, is largely unknown. Some cases of familial dilated cardiomyopathy are caused by mutations in cardiac cytoskeletal proteins; this finding implicates defects in contractile-force transmission as one mechanism underlying this disorder. To elucidate this important cause of heart failure, we investigated other genetic causes of dilated cardiomyopathy. METHODS: Clinical evaluations were performed in 21 kindreds with familial dilated cardiomyopathy. A genome-wide linkage study prompted a search of the genes encoding beta-myosin heavy chain, troponin T, troponin I, and alpha-tropomyosin for disease-causing mutations. RESULTS: A genetic locus for mutations associated with dilated cardiomyopathy was identified at chromosome 14q11.2-13 (maximal lod score, 5.11; theta=0), where the gene for cardiac beta-myosin heavy chain is encoded. Analyses of this and other genes for sarcomere proteins identified disease-causing dominant mutations in four kindreds. Cardiac beta-myosin heavy-chain missense mutations (Ser532Pro and Phe764Leu) and a deletion in cardiac troponin T (deltaLys210) caused early-onset ventricular dilatation (average age at diagnosis, 24 years) and diminished contractile function and frequently resulted in heart failure. Affected persons had neither antecedent cardiac hypertrophy (average maximal left-ventricular-wall thickness, 8.5 mm) nor histopathological findings characteristic of hypertrophy. CONCLUSION: Mutations in sarcomere protein genes account for approximately 10 percent of cases of familial dilated cardiomyopathy and are particularly prevalent in families with early-onset ventricular dilatation and dysfunction. Because distinct mutations in sarcomere proteins cause either dilated or hypertrophic cardiomyopathy, the effects of mutant sarcomere proteins on muscle mechanics must trigger two different series of events that remodel the heart.  相似文献   

12.
13.
14.
Mitochondrial oxidative stress, DNA damage, and heart failure   总被引:6,自引:0,他引:6  
  相似文献   

15.
16.
Cardiac remodeling (CR) is a structural change of the heart due to chronic hemodynamic overload related to changes in both myocyte and extracellular matrix (ECM). We investigated that the imbalance of collagen V promotes cardiomyocyte apoptosis that contributes to heart failure and cell death. Aortic stenosis was induced surgically and male Wistar rats were randomized to 18 weeks (Sham 18?w, n?=?12; AoS 18?w, n?=?12) and severe of heart failure (Sham HF, n?=?12; AoS HF, n?=?12) groups. Functional and structural echocardiogram, immunohistochemistry for Ki-67, TUNEL assay and Immunofluorescence for collagen were performed. Our main results were: (1) Progressive reduction of cardiac functional capacity due to cardiac remodeling with decreased eject fraction in heart failure; (2) Imbalance of collagen deposition with increased, crowded and irregular collagen I in situ expression; (3) Dysregulation of dynamic control of collagen fibers with exposed epitopes of collagen V; (4) Additional apoptosis that are dependent to cardiac injury. The collagen V expression in cardiac remodeling is for the first time described and may be related to additional apoptosis and autoimmune response. Our findings suggest a critical role of collagen V in cardiac remodeling to modulate and promote heart failure and death.  相似文献   

17.
目的 研究反复柯萨奇病毒B3 m(CVB3 m)感染对小鼠的影响,建立可行的病毒性心肌病动物模型.方法 115只3~4周龄雄性Balb/c小鼠随机分为增量感染组,等量感染组,单次感染组和正常对照组,于首次感染病毒后第104天处死小鼠,应用阻抗微分法测定心输出量,病理及组织化学技术分析心肌病理损伤和胶原系统改变 ,计算胶原容积分数.ELISA法测定血清sIL-2R含量.结果 增量感染组小鼠死亡率持续增高,心脏重量增加,心功能下降,心肌胶原容积分数和血清sIL-2R含量高于其它各组(P<0.05),病理学特征为基质胶原明显增生重建.结论 反复增量病毒感染诱发小鼠心脏重构和免疫系统功能异常可做为病毒性心肌病模型进一步研究.  相似文献   

18.
Cardiac hypertrophic stimuli induce both adaptive and maladaptive growth response pathways in heart. Here we show that mice lacking junD develop less adaptive hypertrophy in heart after mechanical pressure overload, while cardiomyocyte-specific expression of junD in mice results in spontaneous ventricular dilation and decreased contractility. In contrast, fra-1 conditional knock-out mice have a normal hypertrophic response, whereas hearts from fra-1 transgenic mice decompensate prematurely. Moreover, fra-1 transgenic mice simultaneously lacking junD reveal a spontaneous dilated cardiomyopathy associated with increased cardiomyocyte apoptosis and a primary mitochondrial defect. These data suggest that junD promotes both adaptive-protective and maladaptive hypertrophy in heart, depending on its expression levels.  相似文献   

19.
It is now clear that mitochondrial defects are associated with a plethora of clinical phenotypes in man and mouse. This is the result of the mitochondria''s central role in energy production, reactive oxygen species (ROS) biology, and apoptosis, and because the mitochondrial genome consists of roughly 1500 genes distributed across the maternal mitochondrial DNA (mtDNA) and the Mendelian nuclear DNA (nDNA). While numerous pathogenic mutations in both mtDNA and nDNA mitochondrial genes have been identified in the past 21 years, the causal role of mitochondrial dysfunction in the common metabolic and degenerative diseases, cancer, and aging is still debated. However, the development of mice harboring mitochondrial gene mutations is permitting demonstration of the direct cause-and-effect relationship between mitochondrial dysfunction and disease. Mutations in nDNA-encoded mitochondrial genes involved in energy metabolism, antioxidant defenses, apoptosis via the mitochondrial permeability transition pore (mtPTP), mitochondrial fusion, and mtDNA biogenesis have already demonstrated the phenotypic importance of mitochondrial defects. These studies are being expanded by the recent development of procedures for introducing mtDNA mutations into the mouse. These studies are providing direct proof that mtDNA mutations are sufficient by themselves to generate major clinical phenotypes. As more different mtDNA types and mtDNA gene mutations are introduced into various mouse nDNA backgrounds, the potential functional role of mtDNA variation in permitting humans and mammals to adapt to different environments and in determining their predisposition to a wide array of diseases should be definitively demonstrated.  相似文献   

20.
Giordano C  D'Amati G 《Pathologica》2005,97(6):361-368
Cardiomyopathies are defined as diseases of the myocardium associated with cardiac dysfunction and are classified by morphological characteristics as hypertrophic (HCM), dilated (DCM) arrhithmogenic right ventricular (ARVC) and restrictive cardiomyopathy. These were once considered as specific diagnoses but there is now considerable evidence that many different gene mutations can cause these pathologies. In recent years, big emphasis has been given to the possibility that deregulation of cardiac metabolism may play a role in the mechanisms that lead to cardiac maladaptive remodelling. Cardiac energy metabolism is tightly controlled in mammalian organisms during development and in response to diverse dietary, physiologic, and pathologic conditions. The cardiac phenotype of many genetic diseases caused by mutations in proteins involved in mitochondrial energy production and/or homeostasis, underscores the importance of energetic pathway on cardiac function. For example, inborn errors in nuclear-encoded mitochondrial fatty acid oxidation (FAO) pathway enzymes and defects in fatty acid uptake are an important cause of childhood HCM and sudden death. Abnormalities in mitochondrial respiratory chain function, particularly those caused by mitochondrial DNA (mtDNA) mutations, are responsible for a heterogeneous group of clinical disorders, including isolated HCM. Mitochondrial cardiomyopathies (MCM) are characterized by an adverse clinical course with biventricular dilation and failure, even at a young age. Mutations in genes encoding the gamma2 subunit of AMP-activated protein kinase (PRKAG2), alpha-galactosidase A (GLA) and lysosome-associated membrane proteine-2 (LAMP2) can cause profound myocardial hypertrophy in association with electrophysiological defects. Unlike HCM due to sarcomere gene mutations, which is characterized by myofiber disarray and fibrosis, large cytosolic vacuoles characterize cardiomyopathy due to defect in energy metabolism. Ultrastructural analysis revealed massive mitochondrial proliferation in MCM and glycogen in complexes with protein and/or lipids in cardiomyopathy due to PRKAG2, GLA and LAMP2 mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号