首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The present study tested the hypothesis that exposure to an increased level of maternal nutrition before birth results in altered expression of adipogenic, lipogenic, and adipokine genes in adipose tissue in early postnatal life. Pregnant ewes were fed either at or approximately 50% above maintenance energy requirements during late pregnancy, and quantitative RT-PCR was used to measure peroxisome proliferator-activated receptor (PPAR)-gamma, lipoprotein lipase (LPL), glycerol-3-phosphate-dehydrogenase (G3PDH), adiponectin, and leptin mRNA expression in perirenal (PAT) and sc adipose tissue (SCAT) in the offspring on postnatal d 30. Relative SCAT mass was higher in lambs of well-fed ewes (40.0 +/- 4.0 vs. 22.8 +/- 3.3 g/kg, P < 0.05) and was directly related to plasma insulin in the first 24 h after birth and to G3PDH and LPL expression. The expression of leptin mRNA in both the SCAT and PAT depots was higher (P < 0.05) in lambs of well-fed ewes. PPARgamma adiponectin, LPL, and G3PDH mRNA expression were not, however, different between well-fed and control groups in either depot. Relative PPARgamma expression in SCAT was directly related to plasma insulin concentrations in the first 24 h after birth (r(2) = 0.23; P < 0.05), and G3PDH and LPL expressions were also positively correlated with PPARgamma expression (r(2) = 0.27; P < 0.05). We have demonstrated that exposure to increased prenatal nutrition increases leptin expression at 1 month of age in both PAT and SCAT. The results of this study provide evidence that the nutritional environment before and immediately after birth can influence the development of adipose tissue in early postnatal life.  相似文献   

3.
Adipose tissue IL-6 expression is increased in obesity and is a strong predictor of abnormalities in adipocyte and systemic metabolism. We used adipose tissue organ culture to test the direct effects of IL-6 on leptin expression, lipolysis, and lipoprotein lipase activity. To assess possible interactions with the hormonal milieu, IL-6 effects were tested in the presence or absence of insulin and/or glucocorticoid [dexamethasone (dex)]. Because omental (Om) and abdominal sc depots differ in IL-6 expression, their responses to exogenous IL-6 were compared. Although IL-6 had no significant effects under basal conditions, culture with the combination of IL-6 and dex, compared with dex alone, for 2 d increased leptin in both depots [+95 +/- 30% (sc) and +67 +/- 19% (Om), P < 0.01]; IL-6 did not affect leptin production when added in the presence of insulin. Culture with IL-6 in the absence of hormones moderately increased lipolysis during culture in both sc and Om [+79 +/- 23% (sc) and +26 +/- 9% (Om), each P < 0.01]. IL-6 markedly reduced the high levels of lipoprotein lipase activity in tissue cultured with insulin plus dex. We conclude that high local concentrations of IL-6 can modulate leptin production and lipid metabolism in human adipose tissue.  相似文献   

4.
5.
OBJECTIVE: Human adenovirus Ad-36 causes adiposity in animal models and enhances differentiation and lipid accumulation in human and 3T3-L1 preadipocytes, which may, in part, explain the adipogenic effect of Ad-36. We determined the consequences of Ad-36 infection on leptin and glucose metabolism in fat cells. DESIGN: 3T3-L1 preadipocytes were used to determine the effect of infection by human adenoviruses Ad-36, Ad-2, Ad-9 and Ad-37 on leptin secretion and lipid accumulation. Rat primary adipocytes were used to determine the effect of Ad-36 infection on leptin secretion and glucose uptake in vitro. Furthermore, the effect of Ad-36 on expressions of leptin and selected genes of de novo lipogenesis pathway of visceral adipose tissue were compared ex vivo, between Ad-36 infected and uninfected control rats. RESULTS: Ad-36 suppressed the expression of leptin mRNA in 3T3-L1 cells by approximately 58 and 52% on days 3 and 5 post-infection, respectively. Leptin release normalized to cellular lipid content was 51% lower (P<0.002) in the Ad-36 infected 3T3-L1 cells. Lipid accumulation was significantly greater and leptin secretion was lower for the 3T3-L1 cells infected with other human adenoviruses Ad-9, Ad-36, or Ad-37. Whereas, human adenovirus Ad-2 did not influence cellular lipid accumulation or the leptin release. In rat primary adipocytes, Ad-36 reduced leptin release by about 40% in presence of 0.48 (P<0.01) or 1.6 nM insulin (P<0.05) and increased glucose uptake by 93% (P<0.001) or 18% (P<0.05) in presence of 0 or 0.48 nM insulin, respectively. Next, the adipose tissue of Ad-36 infected rats showed two to fivefold lower leptin mRNA expression, and 1.6- to 21-fold greater expressions for acetyl Co-A carboxylase-1 and 1.2- to 6.3-fold greater expressions for fatty acid synthase, key genes of de novo lipogenesis, compared to the uninfected weight and adiposity matched controls. CONCLUSION: The in vitro and ex vivo studies show that Ad-36 modulates adipocyte differentiation, leptin production and glucose metabolism. Whether such a modulation contributes to enhanced adipogenesis and consequent adiposity in Ad-36 infected animals or humans needs to be determined.  相似文献   

6.
7.
Several reports have demonstrated that the pineal hormone, melatonin, plays an important role in body mass regulation in mammals. To date, however, the target tissues and relevant biochemical mechanisms involved remain uncharacterized. As adipose tissue is the principal site of energy storage in the body, we investigated whether melatonin could also act on this tissue. Semiquantitative RT-PCR analysis revealed the expression of MT1 and MT2 melatonin receptor mRNAs in the human brown adipose cell line, PAZ6, as well as in human brown and white adipose tissue. Binding analysis with 2-[(125)I]iodomelatonin ((125)I-Mel) revealed the presence of a single, high affinity binding site in PAZ6 adipocytes with a binding capacity of 7.46 +/- 1.58 fmol/mg protein and a K(d) of 457 +/- 5 pM. Both melatonin and the MT2 receptor-selective antagonist, 4-phenyl-2-propionamidotetraline, competed with 2-[(125)I]iodomelatonin binding, with respective K(i) values of 3 x 10(-11) and 1.5 x 10(-11) M. Functional expression of melatonin receptors in PAZ6 adipocytes was indicated by the melatonin-induced, dose-dependent inhibition of forskolin-stimulated cAMP levels and basal cGMP levels with IC(50) values of 2 x 10(-9) and 3 x 10(-10) M, respectively. Modulation of the cGMP pathway by melatonin further supports functional expression of MT2 receptors, as this pathway was shown to be specific for that subtype in humans. In addition, long-term melatonin treatment of PAZ6 adipocytes was found to decrease the expression of the glucose transporter Glut4 and glucose uptake, an important parameter of adipocyte metabolism. These results suggest that melatonin may act directly at MT2 receptors on human brown adipocytes to regulate adipocyte physiology.  相似文献   

8.
The global epidemic of obesity has heightened the need to understand the mechanisms that underpin its pathogenesis. Clinical observations in patients with Cushing's syndrome have highlighted the link between cortisol and central obesity. However, although circulating cortisol levels are normal or reduced in obesity, local regeneration of cortisol, from inactive cortisone, by 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) has been postulated as a pathogenic mechanism. Although levels of expression of 11betaHSD1 in adipose tissue in human obesity are debated in the literature, global inhibition of 11betaHSD1 improves insulin sensitivity. We have determined the effects of significant weight loss on cortisol metabolism and adipose tissue 11betaHSD1 expression after 10-wk ingestion of a very low calorie diet in 12 obese patients (six men and six women; body mass index, 35.9 +/- 0.9 kg/m2; mean +/- SE). All patients achieved significant weight loss (14.1 +/- 1.3% of initial body weight). Total fat mass fell from 41.8 +/- 1.9 to 32.0 +/- 1.7 kg (P < 0.0001). In addition, fat-free mass decreased (64.4 +/- 3.4 to 58.9 +/- 2.9 kg; P < 0.0001) and systolic blood pressure and total cholesterol also fell [systolic blood pressure, 135 +/- 5 to 121 +/- 5 mm Hg (P < 0.01); total cholesterol, 5.4 +/- 0.2 to 4.8 +/- 0.2 mmol/liter (P < 0.05)]. The serum cortisol/cortisone ratio increased after weight loss (P < 0.01). 11betaHSD1 mRNA expression in isolated adipocytes increased 3.4-fold (P < 0.05). Decreased 11betaHSD1 activity and expression in obesity may act as a compensatory mechanism to enhance insulin sensitivity through a reduction in tissue-specific cortisol concentrations. Inhibition of 11betaHSD1 may therefore be a novel, therapeutic strategy for insulin sensitization.  相似文献   

9.
Leptin, the product of the ob gene, is secreted from white adipocytes and regulates food intake and whole-body energy metabolism. In rodents and humans, leptin gene expression is under complex endocrine and metabolic control, and is strongly influenced by energy balance. Growth hormone (GH) has myriad effects on adipose tissue metabolism. The primary aim of this study was to determine the ability of GH to regulate leptin mRNA expression in bovine adipose tissue in vitro and in vivo. Incubation of subcutaneous adipose tissue explants for 24 h with GH alone had no effect on bovine leptin gene expression, whereas high concentrations of insulin or dexamethasone (DEX) potently stimulated bovine leptin mRNA abundance. GH, in combination with high concentrations of insulin, DEX, or both, attenuated the ability of insulin or DEX to stimulate leptin expression in vitro. These data indicate that GH can indirectly regulate leptin expression in vitro by altering the adipose tissue response to insulin or DEX. We extended these studies to examine the ability of GH to regulate leptin expression in vivo, using young castrate male cattle treated with no hormone (control) or GH (200 micrograms/kg body weight per day) for 3 days. GH increased plasma GH and insulin concentrations, but not those of cortisol or non-esterified fatty acid (NEFA) concentrations. GH treatment increased adipose tissue leptin and IGF-1 mRNA concentrations (n=9, P>0.001). In addition, leptin abundance was highly correlated with adipose tissue IGF-1 mRNA in GH-treated animals (P>0.001). The timing of GH-induced changes in leptin gene expression preceded measurable GH effects on adiposity.  相似文献   

10.
11.
Vagal stimulation rapidly increases leptin secretion in human stomach   总被引:13,自引:0,他引:13  
BACKGROUND & AIMS: Leptin production has been reported in the rat and in human stomach. It initiates intestinal nutrient absorption. In this study, we analyzed the effect of vagal stimulation on leptin release in the human stomach. METHODS: We studied the secretion of gastric acid and leptin on stimulation with insulin (a stimulant of vagal pathways via hypoglycemia) and pentagastrin in 11 healthy men (normal endoscopy and normal histological gastric mucosa), 5 with previous highly selective vagotomy (HSV), and 6 without HSV. Fundic biopsies were performed for immunostaining of leptin. RESULTS: There was no difference between the 2 groups with respect to age, body mass index, basal leptin (4.8 +/- 1.2 ng/15 minutes) and gastric acid (0.7 +/- 0.2 mmol/15 minutes) outputs. Leptin-immunoreactivity was found in the fundic glands, and its distribution and density were similar in 2 groups. Insulin caused a rapid (15-minute) increase in leptin output in men without HSV (31 +/- 9 ng/15 minutes), but not in those with HSV (7.7 +/- 3.2 ng/15 minutes). Insulin-stimulated gastric leptin was biphasic, with a rapid increase (15 minutes after injection) followed by a second steady and sustained increase (39.9 +/- 7.6 ng/15 minutes at 120 minutes after injection). Pentagastrin increased gastric leptin output in individuals with (30 +/- 4.9 ng/15 minutes) and without (26 +/- 3.2 ng/15 minutes) HSV. Insulin and pentagastrin did not modify plasma leptin, whatever HSV status. CONCLUSIONS: Vagal stimulation of leptin release in the human stomach suggests that leptin is released during the cephalic phase of gastric secretion. Luminal leptin may be involved in vagus-mediated intestinal functions.  相似文献   

12.
In pieces of human subcutaneous adipose tissue incubated in primary culture for 48 hours, the release of leptin was stimulated by 50% in the presence of 3.3 micromol/L troglitazone. Insulin (0.1 nmol/L) and dexamethasone (200 nmol/L) stimulated leptin release by 30% and 300%, respectively. Troglitazone in combination with either insulin or dexamethasone had no effect on leptin release. Instead, troglitazone inhibited leptin release in the presence of both dexamethasone and insulin. The stimulatory effect of troglitazone on leptin release was also mimicked by 1 micromol/L 15-deoxy-delta(12-14)prostaglandin J2 (dPGJ2). However, if the concentration of dPGJ2 was increased to 10 micromol/L in the presence of dexamethasone, there was a decrease in leptin release, as well as of lactate formation and lipolysis. These data indicate that both stimulatory and inhibitory effects of troglitazone and dPGJ2 can be seen on leptin release by human adipose tissue.  相似文献   

13.
14.
人瘦素的基因克隆及其在COS-7细胞中的表达   总被引:4,自引:0,他引:4  
目的 构建重组人瘦素哺乳细胞表达载体并在COS-7细胞表达重组人瘦素。方法 提取脂肪细胞总RNA,用RT-PCR扩增人瘦素cDNA并克隆至载体pUCm-T,并对克隆基因进行DNA序列分析。以克隆的人瘦素cDNA为模板,用特异引物扩增瘦素基因,经KpnI和BamH I酶切,插入相应酶切的哺乳细胞表达载体pcDNA3,构建重组哺乳细胞表达载体并转染COS-7细胞,RT-PCR和Western印迹检测其在COS-7细胞中的表达。结果 RT-PCR扩增的DNA片断和预期的人瘦素cDNA大小一致;序列分析显示,克隆的基因序列和文献报道的人瘦素基因序列一致;经RT-PCR和Western印迹鉴定,转染的COS-7细胞可表达、分泌人瘦素。结论 构建了人瘦素的哺乳动物细胞表达载体,并成功地在COS-7细胞中获得重组人瘦素的分泌表达。  相似文献   

15.
目的:探讨瘦素对人脐静脉内皮细胞(HUVECs)血管内皮生长因子(VEGF)表达的影响。方法:用不同浓度的瘦素刺激原代培养的HUVECs,检测HUVECs表达VEGF的情况。结果:在相同作用时间下,随着瘦素浓度的升高,VEGF蛋白及VEGF mRNA的表达也随之升高,经统计学检验有相关性;在相同瘦素浓度下, 随着作用时间的延长,VEGF蛋白及VEGFmRNA的表达也随之升高,且有相关性。结论:瘦素可以刺激HU- VECs表达VEGF而且呈时间和剂量相关性。  相似文献   

16.
Placental leptin secretion has important implications for maternal adaptation to pregnancy, fetal growth and development, and local autocrine/paracrine actions within trophoblast. In this study we used a cell culture insert model to examine directional secretion of leptin from the basal and apical surfaces of human choriocarcinoma BeWo cells, and to assess the effects of dexamethasone and syncytialization. Additionally, the effects of dexamethasone on transcellular passage of leptin across BeWo monolayers, and on expression of the leptin receptor isoforms Ob-Rs and Ob-RL were examined. Leptin was secreted into both the basal and apical chambers and was stimulated by dexamethasone. Treatment of BeWo cells with forskolin induced syncytialization and loss of monolayer integrity, but resulted in a marked increase in total leptin secretion, an effect further enhanced by co-treatment with dexamethasone. Bidirectional transfer of 125I-leptin between the apical and basal chambers of BeWo cell cultures was low but indicative of specific transcellular passage of leptin; transfer was unaffected by dexamethasone. Treatment of BeWo cells with forskolin increased Ob-Rs mRNA expression, whilst Ob-RL mRNA expression increased in response to forskolin only in the presence of dexamethasone. In conclusion, our data show that leptin is secreted from both the apical and basal surfaces of BeWo placental cells and is increased by both syncytialization and glucocorticoids. Moreover, transport of exogenous leptin occurred in both the apical to basal and reverse directions, suggesting the potential for maternal-fetal exchange of leptin across the human placenta.  相似文献   

17.
18.
19.
20.
OBJECTIVE: Adipose tissue displays depot-specific metabolic properties and a predominant gene expression of leptin in subcutaneous tissue. The aim of the study was to evaluate leptin mRNA expression in various adipose tissues and to relate it to plasma leptin concentrations. Furthermore, developmental changes in leptin gene expression from childhood to adulthood were examined. DESIGN AND METHODS: Thoracic subcutaneous and intrathoracic adipose tissue specimens were obtained in 22 adults (51-81 years) and 23 children (0.1-17 years) undergoing cardiac surgery, and abdominal subcutaneous, omental and mesenterial fat specimens were collected from 21 adults (38-79 years) and 22 children (0.2-17 years) before abdominal surgery. Preoperative plasma leptin concentrations were measured by RIA. Leptin mRNA expression was quantified by TaqMan real-time PCR. RESULTS: In adults, there was no difference between leptin gene expression in subcutaneous and intrathoracic fat, whereas in children leptin mRNA expression was significantly higher in subcutaneous adipose tissue. In omental fat, leptin mRNA levels were significantly lower compared with subcutaneous and mesenterial sites in both children and adults. Adults revealed a significantly higher leptin gene expression in subcutaneous, omental and mesenterial adipose tissues than children. Subcutaneous and omental leptin gene expression are independent factors for plasma leptin concentrations in children and adults. CONCLUSION: Leptin is differentially expressed at different adipose tissue sites, a situation which is even more pronounced in children. There is a developmental increase in leptin mRNA expression in adipose tissue during childhood, reaching maximal capacity in adulthood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号