首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Central resetting of baroreflex in the spontaneously hypertensive rat   总被引:4,自引:0,他引:4  
The role of central nervous system in the resetting of baroreflex was investigated in 5-month-old spontaneously hypertensive rats (SHR) of Okamoto strain. Age-matched Wistar-Kyoto (WKY) rats were used as normotensive controls. The aortic nerves, which in the rat, contain few or no chemoreceptor fibers, were stimulated electrically using a wide range of stimulus frequencies. The depressor responses (expressed as percent decrease in blood pressure as compared to its blood pressure value prior to aortic nerve stimulation) produced by these stimulations were significantly smaller in SHR than those in WKY. In another series of experiments, changes in the efferent limb of the baroreflex arc (i.e., greater splanchnic nerve activity) in response to stimulation of the baroreceptor afferents in the aortic nerve were recorded. Inhibition of the greater splanchnic nerve activity due to aortic nerve stimulation was found to be significantly smaller in SHR than in the WKY. Control sympathetic nerve activity was greater in SHR than in WKY. These results suggest that the central bulbospinal nervous system may be another site for resetting of baroreflex in hypertension.  相似文献   

2.
The purpose of the study is to investigate the role of the serotonergic nervous system in centrally administrated angiotensin II (A-II) mediated hemodynamic as well as vasopressin (AVP) responses. Eight-week-old male SHR and age-matched Wistar Kyoto rats (WKY) were used and the experiment was performed in the conscious state. In protocol 1, after resting observation of 30 minutes 10ng of A-II was given intracerebroventricularly (i.c.v.). This was followed by i.c.v. injection of 1 microgram of 5-HT2 receptor antagonist, xylamidine, 50 minutes later; then 10ng of i.c.v. A-II was repeated after 10 minutes (SHR: n = 7, WKY: n = 10). In protocol 2, plasma vasopressin (AVP) was measured in the following groups. In one group, 1.3ml of blood was sampled from the carotid cannula after resting observation, and the same amount of blood from an age-matched donor rat of the same strain was transfused immediately. Two hours later, 10ng of A-II was given i.c.v., and blood was sampled again after 1 minute (SHR: n = 7, WKY: n = 12). In another group, 1 microgram of xylamidine was given i.c.v. and was followed by 10ng of A-II 10 minutes later; then blood was collected after 1 minute (SHR: n = 8, WKY: n = 13). In protocol 1, resting MAP were 144 +/- 6mmHg in SHR and 99 +/- 2mmHg in WKY. I.c.v. A-II elicited a consistent pressor response in both SHR and WKY, but the response was significantly larger in SHR than that in WKY, +45 +/- 3 and +37 +/- 1mmHg, respectively. Xylamidine had no effect on MAP, and repeated A-II produced significant pressor responses. However, the responses were significantly smaller in both SHR (+36 +/- 3mmHg) and WKY (+25 +/- 1mmHg) as compared with those to initial A-II injection. In protocol 2, resting AVP were similar in SHR (1.5 +/- 0.2pg/ml) and in WKY (1.6 +/- 0.1pg/ml). However, after i.c.v. A-II injection, AVP became higher in SHR (131 +/- 14pg/ml) than in WKY (64 +/- 6pg/ml). AVP after A-II injection with xylamidine pretreatment were similar in SHR (48 +/- 6pg/ml) and in WKY (45 +/- 4pg/ml). Since the responses of both MAP and AVP to i.c.v. A-II were larger in SHR, and the responses were effectively suppressed by S2 receptor antagonists, the central serotonergic nervous system may play an important role in the hemodynamic as well as AVP responses to i.c.v. A-II administration.  相似文献   

3.
In both animals and humans, stimuli leading to sympathetic activation are accompanied by an impairment of the baroreceptor-heart rate reflex. To determine whether sympathetic activity normally interferes with this reflex function we examined in conscious Wistar-Kyoto (WKY) rats the effect of chemical sympathectomy by 6-hydroxydopamine on the bradycardic response to baroreceptor stimulation induced by raising blood pressure via intravenous phenylephrine boluses; control rats received vehicle. Spontaneously hypertensive rats were also studied because in these animals there is both a baroreceptor reflex impairment and a sympathetic overactivity. Baroreceptor reflex sensitivity, calculated as the ratio of the peak increase in pulse interval to the peak increase in mean arterial pressure, was 75% greater in sympathectomized WKY rats than in control WKY rats (1.28 +/- 0.15 versus 0.73 +/- 0.10 msec/mm Hg, mean +/- SEM; p less than 0.01). The sympathectomy-induced increase in sensitivity was even larger in spontaneously hypertensive rats (SHR) (1.26 +/- 0.12 versus 0.44 +/- 0.06 msec/mm Hg in sympathectomized SHR versus control SHR, +186%; p less than 0.01) so that the impaired baroreceptor reflex sensitivity observed in control SHR as compared with control WKY rats (-40%, p less than 0.01) was no longer detectable in the sympathectomized groups. To establish whether the sympathectomy-induced potentiation of the reflex was due to an increase in cardiac responsiveness to vagal stimuli, we subjected separate groups of anesthetized, vagotomized SHR and WKY rats to graded electrical stimulation of the right efferent vagus. The bradycardic effects of vagal stimulation, however, were similar in sympathectomized and control animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
The effects of lifetime oral captopril treatment on baroreflex control of heart rate and lumbar sympathetic nerve activity were measured in 19-21-week-old spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). The sensitivity of baroreflex control of heart rate and lumbar sympathetic nerve activity were determined by the slopes of the relation between the change in mean arterial pressure (MAP) (mm Hg) versus the change in pulse interval (msec/beat) and the change in MAP versus the percent change in nerve activity, respectively. Untreated SHR had significantly higher MAP than WKY (157 +/- 3 vs. 115 +/- 3 mm Hg, p less than 0.001) and exhibited a decreased baroreflex control of heart rate. Lifetime treatment with captopril prevented the development of hypertension in SHR (MAP = 110 +/- 5 mm Hg) and increased the sensitivity of baroreflex function. The gains of the baroreflex control of heart rate for captopril-treated SHR and control SHR when MAP was raised or lowered by phenylephrine or nitroprusside were 2.38 +/- 0.49 vs. 1.10 +/- 0.33 msec/mm Hg (p less than 0.05) and 0.74 +/- 0.20 vs. 0.54 +/- 0.09 (NS) msec/mm Hg, respectively. The sensitivity of the baroreflex control of lumbar sympathetic nerve activity was greater in captopril-treated SHR than in control SHR when MAP was increased or decreased (-1.03 +/- 0.26 vs. -0.38 +/- 0.11, p less than 0.05; -0.84 +/- 0.2 vs. -0.04 +/- 0.58 (NS) mm Hg-1, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We have previously reported that urotensin II acts on the central nervous system to increase blood pressure in normotensive rats. In the present study, we have determined the central cardiovascular action of urotensin II in spontaneously hypertensive rats (SHR). Intracerebroventricular (ICV) injection of urotensin II elicited a dose-dependent increase in blood pressure in both SHR and normotensive Wistar-Kyoto rats (WKY). The changes in mean arterial pressure induced by ICV urotensin II at doses of 1 and 10 nmol in the WKY were 8 +/- 2 and 23 +/- 3 mmHg, respectively. ICV administration of urotensin II caused significantly greater increases in blood pressure in SHR (16 +/- 3 mmHg at 1 nmol and 35 +/- 3 mmHg at 10 nmol, respectively) compared with those in WKY. Urotensin II (10 nmol) elicited significant and comparable increases in heart rate in SHR (107 +/- 10 bpm) and WKY (101 +/- 21 bpm). Plasma epinephrine concentrations after ICV administration of 10 nmol urotensin II were 203 +/- 58 pmol/ml in SHR and 227 +/- 47 pmol/ml in WKY, which tended to be higher than those in artificial cerebrospinal fluid-injected rats (73+/- 7 and 87 +/- 28 pmol/ml, respectively, p < 0.1). The immunoreactivity of urotensin II receptor GPR 14 was expressed extensively in the glial cells within the brainstem, hypothalamus, and thalamus. These results suggest that central urotensin II may play a role in the pathogenesis of hypertension in SHR. Since GPR 14 was expressed in the glial cells of the brain, urotensin II may act as a neuromodulator to regulate blood pressure.  相似文献   

7.
The influence of treadmill exercise training on cardiovascular regulation was investigated in spontaneously hypertensive rats (SHR) of Okamoto strain during their 8th to 18th week of life. Non-exercising age-matched SHR and Wistar-Kyoto (WKY) rats served as cage controls. Resting systolic blood pressure (SBP), heart rate (HR) and weight changes were measured in the three groups during the training period. At the completion of the training period (week 18), the trained SHR had SBP values of 164 ± 4 mm Hg and HR values of 388 ± 8 beats per minute, which were significantly less than (P<0.05) those values recorded for the control SHR(SBP = 186 ± 3 mm Hg; HR = 422 ± 11 bpm).

The influence of exercise on baroreceptor regulation of HR was evaluated in anesthetized animals from all three groups. Phenylephrine-induced increases in mean arterial blood pressure (MAP) produced significantly greater (P<0.05) reflex decreases in HR in the trained SHR versus the sedentary SHR. No significant difference in baroreflex sensitivity values were noted between the WKY and trained SHR. Additionally, norepinephrine infusion produced significantly smaller (P<0.05) pressor responses in trained versus sedentary SHR. We conclude that exercise training significantly reduces resting SBP and HR while modifying the baroreceptor regulation of HR and cardiovascular responses to adrenergic agents in the SHR.  相似文献   

8.
The aim of this study was to appreciate consequences of rosuvastatin administration on hemodynamic function, vascular oxidative stress and ischemia/reperfusion disorders in normotensive and hypertensive rats. At 10 weeks of age, spontaneously hypertensive rats (SHR, n=20) and normotensive Wistar Kyoto male rats (WKY, n=20) were divided into four groups and given, either vehicle or 10 mg/kg/day of rosuvastatin by gavage for 3 weeks. Systolic blood pressure was assessed every week. At the end of these treatments, vascular NADPH oxidase activity was evaluated by chemiluminescence (lucigenin 0.5 microM). Hearts were isolated and perfused according to the Langendorff method and were subjected to 30 min of global ischemia. Reactive oxygen species (ROS) produced during reperfusion were quantified by electron spin resonance (ESR) spectroscopy using a spin probe (CP-H, 1 mM). After one week of treatment, rosuvastatin reduced the arterial pressure in SHR rats (180.3 +/- 2.1, SHR vs 169.7 +/- 2.3 mmHg, SHR+rosuvastatin; p < 0.01), without lowering plasma cholesterol levels; these effects were not observed in WKY. NADPH activity was 25% higher in control SHR rat aortas compared to control WKY, and was reduced by rosuvastatin in SHR rats. In isolated rat hearts subjected to ischemia/reperfusion sequences, there was a deterioration in functional parameters in control SHR compared to control WKY hearts. Rosuvastatin decreased post-ischemic contracture in WKY hearts by 50% (41.5 +/- 7.5, WKY control vs 18.4 +/- 4.6 mmHg, WKY+rosuvastatin; p < 0.01) and increased left ventricular developed pressure. This beneficial effect was accompanied by a decrease in ROS detected by ESR during reperfusion (312.5 +/- 45.3, WKY control; vs 219.3 +/- 22.9 AUC/mL, WKY+rosuvastatin; p < 0.05). In conclusion, these results are in accordance with the hypothesis that oxidative stress plays a crucial role in the pathogenesis of cardiovascular diseases including hypertension, and demonstrate the beneficial effects of rosuvastatin.  相似文献   

9.
Urinary excretion of active kallikrein was determined every day (amidolytic assay) in 6 male Okamoto-Aoki spontaneously hypertensive rats (SHR) and in 6 male normotensive Wistar-Kyoto rats (WKY) from ages 3 to 6 weeks and from 12 to 16 weeks. The rats were placed into individual metabolic cages and allowed free access to food having normal sodium content and to tap water. Urinary kallikrein excretion (UKall V, nKat/24 h) was lower in 3-week-old SHR (7.8 +/- 1.4 nKat/24 h) than in WKY (15.5 +/- 2.3 nKat/24 h, p less than 0.01) at a moment when systolic blood pressure (BP) in SHR (85.5 +/- 4.0 mmHg) was already higher than in WKY (76.3 +/- 4.6 mmHg, p less than 0.01). The slope of the increase in kallikrein excretion from week 3 to week 6 was not different for SHR and WKY (y = 6.39 x - 12.09, r = 0.95 vs y = 7.49 x - 9.40, r = 0.93). In contrast, from week 12 to week 15, this slope was slightly negative for SHR (y = 1.08 x + 59.38, r = 0.66) and became significantly different (p less than 0.05) from the slope in WKY which remained positive (y = 5.09 x + 7.05, r = 0.48). The relation between kallikrein excretion and systolic BP was an exponential curve for both SHR and WKY. But the curve of SHR (y = 1.22.e0.03x, r = 0.91) was significantly different (p less than 0.01) from the curve of WKY (y = 1.08.e0.03x, r = 0.95). For each identical systolic BP, UKall V was always lower in SHR than in WKY.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We recently reported that arterial baroreflex control of renal nerve traffic is impaired in renal hypertensive rabbits. The purpose of this study was to determine if vagal cardiopulmonary baroreflex control of renal nerve traffic is also impaired. Experiments were performed in 10 hypertensive (mean arterial pressure +/- SE in conscious state, 110 +/- 3 mm Hg) and 10 normotensive (79 +/- 1 mm Hg) chloralose-anesthetized rabbits. Responses to graded blood volume expansion (+5, +10, +15 ml/kg) with dextran in saline were recorded with all baroreflexes intact, after sinoaortic baroreceptor denervation, and after vagotomy. With arterial and cardiopulmonary baroreflexes intact, volume expansion resulted in decreases in renal nerve traffic of -12 +/- 2%/mm Hg increase in left atrial pressure in normotensive rabbits, but of only -5 +/- 2%/mm Hg in the hypertensive rabbits (P less than 0.05). This difference is particularly striking in view of the larger maximum increases in arterial (25 +/- 7 vs. 12 +/- 3 mm Hg) and left atrial pressure (9 +/- 1 vs. 6 +/- 1 mm Hg) during volume expansion in hypertensive vs. normotensive rabbits. After sinoaortic baroreceptor denervation, the responses of normotensive rabbits were preserved (-11 +/- 3%/mm Hg), while those of hypertensive rabbits were impaired further (-2 +/- 1%/mm Hg). Vagotomy abolished responses of renal nerves to volume expansion in both groups. These data demonstrate striking impairment of vagal cardiopulmonary baroreflex control of renal nerve traffic in renal hypertension. Even though arterial baroreflexes have been shown to be abnormal in renal hypertension, they still may partially compensate for markedly impaired cardiopulmonary baroreflex control of the renal nerves.  相似文献   

11.
OBJECTIVE: The hypothesis was tested that differences in oxidative stress play a role in the sex differences in the development and maintenance of hypertension in spontaneously hypertensive rats (SHR). DESIGN AND METHODS: Male and female SHR [and Wistar-Kyoto (WKY) rats in the long-term study] (n = 6-12 per group) received tempol (30 mg/kg per day) or tap water for 6 weeks from 9 to 15 weeks of age or from birth until 15 weeks of age. Blood pressure [mean arterial pressure (MAP)] and kidney tissue F2-isoprostane (IsoP) were measured at 15 weeks of age. RESULTS: In SHR given tempol for 6 weeks, blood pressure and IsoP were reduced in males, but not in females. In SHR given tempol from birth, MAP was higher in SHR than WKY rats (SHR males, 181 +/- 2 mmHg; SHR females, 172 +/- 3 mmHg; WKY males, 100 +/- 2 mmHg; WKY females, 101 +/- 2 mmHg, P < 0.01), and tempol reduced MAP by 14% (156 +/- 3) and 26% (127 +/- 4) in male and female SHR, respectively, but had no effect on WKY rats. IsoP was higher in SHR than WKY rats and higher in male SHR than female SHR (SHR males, 5.18 +/- 0.23 ng/mg; SHR females, 3.71 +/- 0.19 ng/mg, P < 0.01; WKY males, 1.72 +/- 0.45 ng/mg; WKY females, 2.21 +/- 0.08 ng/mg, P < 0.05, compared with SHR). Tempol reduced IsoP in SHR to levels found in WKY rats, but had no effect on IsoP in WKY rats. CONCLUSIONS: Development of hypertension in SHR is mediated in part by oxidative stress independent of sex. Also, tempol is effective in reducing blood pressure in females only when given prior to the onset of hypertension.  相似文献   

12.
The objective of our study was to evaluate the role of the baroreflex control of peripheral sympathetic nervous system on the increase of muscle sympathetic nerve activity (MSNA) in salt-sensitive (SS) and salt-resistant (SR) hypertensives under low salt diet. In phase I mild-to-moderate hypertensive patients (n=5) received three diet periods: a first regular salt (RS1), a low salt (LS=20 meq Na+/day), followed by a second regular salt diet (RS2) with a 7-day duration of each. At the end of each period, sympathetic and heart rate baroreflex control were recorded. Baseline MSNA varied (P<0.005) from 18+/-8 (RS1) to 32+/-9 (LS) and to 14+/-9 (RS2) bursts per minute (bpm). In phase II additional patients (n=6) were included to have baseline MSNA, sympathetic and heart rate baroreflex control evaluated at the end of the LS and RS2. For all patients (n=11), there was a significant decrease of MSNA from 36+/-4 to 20+/-8 bpm on day 7 of LS to RS2 (P<0.05). The response of MSNA to a salt restriction was similar for SS and SR patients, who showed a change from 32+/-6 to 18+/-11 and from 36+/-9 to 17+/-7 bpm for SS and SR on day 7 of LS and RS2 diets, respectively (P<0.05). MSNA baroreflex gain was similar during phenylephrine infusions at day 7 of LS and RS2 (5.1+/-1.6 and 6.1+/-2.9 bpm/mmHg), but it was reduced under LS during sodium nitroprusside infusion (19.5+/-4.9 vs 8.9+/-0.7 bpm/mmHg) (P<0.05) for the whole group. Baroreflex control of MSNA was also similar during phenylephrine infusions under LS and RS2 diets for SS (4.0+/-0.9 and 3.3+/-0.2 bpm/mmHg) and for SR patients (10.1+/-2.5 and 5.6+/-1.5 bpm/mmHg). During nitroprusside infusion, baroreflex gain was significantly greater under RS2 for SR patients (19.5+/-2.6 bpm/mmHg) when compared to LS (11.2+/-5.2 bpm/mmHg) and the same significant difference was observed among SS patients (14.4+/-4.7 and 9.1+/-3.6 bpm/mmHg under RS2 and LS diets, respectively). There was no difference in heart rate baroreflex gain between LS and RS2 diets. Data support the hypotheses that (1) sodium supresses baseline MSNA in SS and SR hypertensives and (2) sodium restriction may impair baroreflex control of MSNA in SR and SS mild-to-moderate hypertensive patients during blood pressure reductions.  相似文献   

13.
OBJECTIVE: To examine whether chronic oral treatment with an angiotensin-converting enzyme inhibitor imidapril and an angiotensin II type 1 receptor antagonist TCV-116 would alter the response to angiotensin II in the rostral ventrolateral medulla. METHODS: Twelve-week-old spontaneously hypertensive rats (SHR) were treated with imidapril (20 mg/kg per day, n = 7), TCV-116 (5 mg/kg per day, n = 8) or vehicle (n = 8) for 4 weeks. Wistar- Kyoto rats (WKY) (n = 8) served as normotensive controls. At 16 weeks of age, angiotensin II (100 pmol) was microinjected into the rostral ventrolateral medulla of anaesthetized rats. RESULTS: Blood pressure decreased significantly in the rats treated with either imidapril or TCV-116. Pressor responses to angiotensin II microinjected into the rostral ventrolateral medulla were comparable in the untreated SHR, the imidapril-treated SHR and WKY (12 +/- 2, 15 +/- 4 and 10 +/- 1 mmHg, respectively), but were abolished in SHR treated with TCV-116 (0 +/- 2 mmHg, P< 0.01). Angiotensin-converting enzyme activity in the brain stem was significantly lower in SHR treated with imidapril (0.70 +/- 0.06 nmol/mg per h), but significantly higher in SHR treated with TCV-116 (1.62 +/- 0.04 nmol/mg per h) than in the untreated SHR (1.37 +/- 0.05 nmol/mg per h). CONCLUSIONS: Chronic oral treatment with imidapril and TCV-116 may have divergent influences on the renin-angiotensin system within the brain stem. TCV-116, but not imidapril, abolishes the pressor effect of angiotensin II in the rostral ventrolateral medulla.  相似文献   

14.
This study examines whether longitudinal antioxidant treatment initiated in prehypertensive spontaneously hypertensive rats (SHR) can attenuate vascular oxidant stress and prevent blood pressure elevation during development. Male SHR and age-matched Wistar-Kyoto rats (WKY) were treated from 6 to 11 weeks of age with Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidinoxyl) (1 mmol/l in drinking water), a membrane-permeable superoxide dismutase mimetic. Mean systolic blood pressures (SBPs) were measured by tail-cuff Agonist-induced and basal O2- production was measured in thoracic aortas of 6- and 11-week-old SHR and WKY by lucigenin-derived chemiluminescence and oxidative fluorescent microscopy, respectively. SBP of 6-week-old SHR (131 +/- 5 mmHg) and WKY (130 +/- 4 mmHg) were not different; however, 11-week-old SHR SBP (171 +/- 4 mmHg) was significantly greater (p = .0001) than 11-week-old WKY SBP (143 +/- 5 mmHg). Tempol treatment completely, but reversibly, prevented this age-related rise in SHR SBP (SHR + Tempol: 137 +/- 4 mmHg; p < .0001 versus untreated SHR). Agonist-induced vascular O2- was increased in 6- (p = .03) and 11-week-old SHR (p < .0001) and 11-week-old WKY (p = .03) but not in 6-week-old WKY. Long-term Tempol treatment significantly lowered O2- production in both strains. Basal O2- measurements in both 6- and 11-week-old SHR were qualitatively increased compared with age-matched WKY; this increase in SHR was inhibited with in vitro Tempol treatment. These data show that antioxidant treatment to reduce oxidative stress prevents the age-related development of high blood pressure in an animal model of genetic hypertension.  相似文献   

15.
Renal sympathetic antidiuretic, antinatriuretic, and vasoconstrictor responses are mediated by alpha 1-adrenergic receptors in the normal rat. Since the renal nerve has been implicated in the pathogenesis of rat genetic hypertension, we investigated renal alpha 1-adrenergic receptor coupling to phosphoinositide turnover in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). In cortical slices from adult (13-week-old) SHR and WKY, stimulation with norepinephrine (10(-7)-10(-3) M) caused a concentration-dependent increase in accumulation of [3H]inositol phosphates. However, dose-response curves for SHR characteristically displayed a depression of the maximum response as compared with those for WKY. Baseline accumulation of [3H]inositol phosphates was not different between strains (39.4 +/- 2.2 cpm/mg tissue/hr for WKY and 34.4 +/- 2.1 cpm/mg tissue/hr for SHR slices; n = 5 rats/group, determined in triplicate). Antagonist competition studies revealed that norepinephrine-stimulated (10(-4) M) [3H]inositol phosphate accumulation was mediated by alpha 1-adrenergic receptors (IC50) for prazosin: 65 +/- 11 nM for SHR and 64 +/- 5 nM for WKY). The reduction in norepinephrine-stimulated [3H]inositol phosphate accumulation in SHR cortex was not the result of the hypertension, since it was also present in cortical slices from young (4-week-old) SHR in which the blood pressure was not yet significantly different from that in WKY and since [3H]inositol phosphate accumulation was unchanged from control values in rats made hypertensive by treatment with deoxycorticosterone acetate. Scatchard analysis of [3H]prazosin binding in renal cortical membranes of young and adult SHR and WKY revealed no significant differences in alpha 1-adrenergic receptor density or affinity between strains at either age. Our results suggest that renal alpha 1-adrenergic receptor coupling to phospholipase C is less efficient in SHR than in WKY. This impaired response is not the result of hypertension or changes in receptor density; this defect may play a role in increased renal sympathetic nerve activity and in the development or maintenance of hypertension in SHR.  相似文献   

16.
The experiments were performed to study the role of the renal nerves and the reno-renal reflexes in the control of water and sodium excretion in spontaneously hypertensive rats (SHR) compared to their normotensive controls, Wistar Kyoto (WKY) rats. Unilateral renal denervation in anaesthetized animals produced a slight, progressive decrease in arterial pressure in both WKY and SHR rats. The glomerular filtration rate temporarily increased in the kidney that underwent the denervation in the SHR group only. After unilateral renal denervation a sharp increase in water and sodium excretion from the ipsilateral kidney was observed in both WKY and SHR. One hour after the denervation, the percent changes in water and sodium excretion were smaller in WKY (+32 ± 19% and +24 ± 17%) than in SHR rats (+84 ± 15% and +93 ± 20%). In the kidney contralateral to the denervation a reduction in water and sodium excretion was observed and this reduction was prompter in SHR than in WKY rats. One hour after the denervation, the percent changes in water and sodium excretion were similar in WKY (-21 ± 8% and -18 ± 7%) and SHR (-19 ± 6% and -19 ± 7%). In control groups, sham denervation did not cause significant changes in glomerular filtration rate, and urinary water and sodium excretion. Arterial pressure slightly and progressively decreased in both control groups. Electrical stimulation of the efferent renal nerves performed in WKY and SHR produced similar decreases in renal blood flow, glomerular filtration rate, and water and sodium excretion in the two groups for the same frequencies of stimulation. As this finding indicates that renal targets in hypertensive rats are normally responsive to the neural drive, our data demonstrate that renal responses to unilateral renal denervation in hypertensive rats are equal to the responses observed in normotensive rats. Our results indicate that tonically active inhibitory reno-renal reflexes normally operate in spontaneously hypertensive rats.  相似文献   

17.
The purpose of the present study was to analyze the influence of dopamine on norepinephrine release in resistance vessels in spontaneously hypertensive rats (SHR). Perfused mesenteric vasculature preparations from spontaneously hypertensive rats (7-10 weeks old) and age-matched normotensive Wistar Kyoto rats (WKY) were used to compare the effects of dopamine on both pressor responses and norepinephrine release. Both responses to electrical nerve stimulation were significantly greater in SHR than in WKY rats. Dopamine reduced these responses in a dose-dependent manner in WKY. However, this suppression of responses to electrical stimulation was attenuated in SHR. These results suggest that the enhanced adrenergic transmission in SHR may partly reflect impaired dopamine-mediated inhibition of nerve terminals, which would contribute to the pathogenesis of hypertension.  相似文献   

18.
The effect of acute ouabain treatment was evaluated on afferent baroreceptor nerve activity in spontaneously hypertensive rats (SHR) compared with Wistar Kyoto rats (WKY). Under urethane anesthesia (1.2 mg/Kg) the discharge of the recurrent laryngeal nerve was utilized as index of arterial baroreceptor activity (BNA) in rats with the ipslateral vagus cut at a proximal level. The ouabain (30 μg, i.v.) treatment produced an excitatory effect on BNA without changes in basal arterial pressure in both groups studied. This effect was larger in SHR (92±10%) than WKY (37±4%, P < 0.01)

The arterial pressor response to phenylephrine was similar in both SHR and WKY before (20±1 and 22±1.2 mmHg) and after (18±1.4 and 20±2 mmHg, respectively) ouabain. The BNA under phenylephrine-induced peaks of high arterial pressure was significantly higher in SHR (61±15%) than in WKY (41±5% P < 0.01) but after ouabain treatment the opposite was observed (31±5 vs. 61±4% P < 0.01). The inhibitory effects of sodium nitroprusside on arterial pressure and BNA were similar in SHR and WKY groups both before and after the ouabain treatment

These data indicate an excitatory effect of ouabain on baroreceptor nerve activity in normotensive and markedly in hypertensive rats which could contribute to the reflex arterial pressure regulation, besides the known inotropic action on the heart  相似文献   

19.
The aim of the present study was to investigate alterations in catecholamine release in the central nervous system of spontaneously hypertensive rats. Slices of hypothalamus, medulla oblongata and striatum were prepared from spontaneously hypertensive rats (SHR: 9-10 weeks old) and age-matched Wistar Kyoto rats (WKY). The slices were incubated with (3H)norepinephrine (NE) or (3H)dopamine (DA), superfused with Krebs-solution in vitro, and the release of the catecholamines was compared between the two strains. The basal release of hypothalamic (3H)NE did not differ between SHR and WKY slices. However, stimulation (1 Hz)-evoked (3H)NE release was significantly greater in SHR than in WKY (percent fractional release of total tissue NE: WKY 0.494 +/- 0.019%, n = 6, SHR 0.730 +/- 0.053%, n = 6, p less than 0.05). The stimulation-evoked (3H)NE release from the medulla oblongata did not differ significantly between SHR and WKY slices. Finally stimulation-evoked release of striatal (3H)DA was significantly depressed in SHR (percent fractional release of total tissue DA: WKY 2.048 +/- 0.24%, n = 6, SHR 1.460 +/- 0.068%, n = 6, p less than 0.05). These results indicate that the release of hypothalamic NE and striatal DA are altered in SHR. It is suggested that enhanced hypothalamic noradrenergic activity and reduced striatal dopaminergic activity can increase sympathetic outflow to the periphery, which may play a role in the pathogenesis of this form of hypertension.  相似文献   

20.
OBJECTIVE: Antihypertensive treatment with angiotensin-converting enzyme inhibitors (ACEIs) reverses cerebral arteriolar remodeling, thus restoring dilatation and hence the lower limit of cerebral blood flow (CBF) autoregulation (LLCBF). The objective of this study was to determine whether angiotensin II receptor AT1 blockers (ARBs) produce the same effect. DESIGN: We examined the effects of treatment with an ARB [telmisartan (TEL), 1.93 +/- 0.04 mg/kg per day] or an ACEI [ramipril (RAM), 1.00 +/- 0.02 mg/kg per day] on the cerebral circulation in spontaneously hypertensive rats (SHR). METHODS: Arteriolar pressure and diameter (cranial window) and CBF (laser Doppler) were measured during stepwise hypotensive hemorrhage, before and after deactivation (ethylenediamine tetraacetic acid), in untreated Wistar-Kyoto (WKY) rats and SHR untreated or treated for 3 months with TEL or RAM in the drinking water. RESULTS: Treatment normalized arteriolar internal diameter (SHR, 38 +/- 3 microm; TEL, 52 +/- 2 microm; RAM, 50 +/- 2 microm; WKY, 58 +/- 4 microm), essentially by reversing eutrophic inward remodeling, and the LLCBF (SHR, 80 +/- 11 mmHg; TEL, 60 +/- 4 mmHg; RAM, 71 +/- 6 mmHg; WKY, 57 +/- 5 mmHg). CONCLUSION: The fact that the ARB (TEL) is as effective as an ACEI (RAM) in reversing cerebral arteriolar remodeling suggests that the cerebrovascular AT1 receptor is an underlying mechanism that promotes hypertensive eutrophic inward remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号