首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinins locally synthesized in the cardiovascular tissue are believed to contribute to the regulation of cardiovascular homeostasis by stimulating the endothelial cells to release nitric oxide, prostacyclin, or a hyperpolarizing factor via autocrine-paracrine mechanisms. This study was designed to investigate the action of sevoflurane on bradykinin-induced Ca2+ mobilization in endothelial cells in situ. Utilizing fura-2-loaded rat pulmonary arterial valve leaflets, the effects of sevoflurane were examined on bradykinin-induced increases in intracellular Ca2+ concentration ([Ca2+]i) in endothelial cells in situ. In the presence of extracellular Ca2+ (1.5 mM), bradykinin (3-30 microM) produced an initial phasic and a subsequent tonic increase in [Ca2+]i in a concentration-dependent manner. However, it produced only the phasic increase in [Ca2+]i in the absence of extracellular Ca2+. Sevoflurane (5%, 0.67 mM) inhibited both the phasic and tonic responses to bradykinin. In these experiments, sevoflurane (3-5%) generated sustained increases (approximately 20-40% of the bradykinin-induced maximal increase in [Ca2+]i) in the resting [Ca2+]i level. Sevoflurane still increased [Ca2+]i after depletion of the intracellular Ca stores with ionomycin (0.1 microM ). However, the sevoflurane-induced increase in [Ca2+]i was eliminated by removal of the extracellular Ca and attenuated by NiCl (1-3 mM). In conclusion, in the pulmonary arterial valvular endothelial cells, sevoflurane inhibits both bradykinin-induced Ca2+ release from the intracellular stores and bradykinin-induced plasmalemmal Ca2+ influx. In addition, sevoflurane appears to stimulate the plasmalemmal Ca2+ influx and thereby increase the endothelial [Ca2+]i level. Sevoflurane might influence the pulmonary vascular tone through its direct action on the pulmonary arterial valvular endothelial cells.  相似文献   

2.
This study characterizes the correlation between intracellular pH (pHi) and the cytosolic free Ca2+ concentration ([Ca2+]i) in suspended and adherent human epidermoid A-431 cells. Using the fluorescent dyes 2,7-bis(carboxyethyl)carboxyfluorescein acetoxymethyl ester (BCECF) and fura-2, the resting pHi and [Ca2+]i in suspended cells were 7.23 +/- 0.03 and 209 +/- 30 nM; those in adherent cells were 7.28 +/- 0.02 and 87 +/- 5 nM. Removal of external Ca2+ did not change the resting pHi but reduced the resting [Ca2+]i, indicating the resting level of [Ca2+]i is in part maintained by an influx of Ca2+ from the external medium. When both suspended and adherent cells were acidified or alkalinized, resting [Ca2+]i was altered. An intracellular acidification induced a fall in [Ca2+]i, and a rise in pHi induced a rise in [Ca2+]i. These changes in [Ca2+]i were correlated with an uptake of 45Ca2+ from the external medium, whereas no Ca2+ efflux occurred. The alteration in [Ca2+]i induced by modification of pHi was abolished in the absence of external Ca2+ or by adding 2 mM CoCl2, LaCl3, and attenuated by the addition of 2 mM MnCl2 to the bathing medium. It was insensitive to the voltage-gated Ca2+ channel blockers nifedipine or verapamil (1 mM). CoCl2, LaCl3, and MnCl2 each induced changes in pHi and [Ca2+]i but verapamil and nifedipine did not. Because CoCl2, LaCl3, and MnCl2 are also known to block Na+/Ca2+ exchange, intracellular Na+ ([Na+]i) was measured by flame photometry in acidified or alkalinized cells. In either case no change in [Na+]i was observed. Furthermore, treatment with amiloride (100 microM), a blocker of the Na+/Ca2+ exchanger, did not inhibit the pH-induced changes in [Ca2+]i. 1,2-bis(o-Aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) (100 microM), a Ca2+ chelator, induced a decrease in pHi as well as a reduction of [Ca2+]i, also supporting the direct relation between pHi and [Ca2+]i. 3,4,5-Trimethoxybenzoic acid 8-(diethylamino)ocytl ester HCl (TMB-8) (100 microM), a known blocker of intracellular Ca2+ mobilization, did not change the resting pHi and [Ca2+]i in normal cells or cells acidified or alkalinized. This observation, taken together with data from cells incubated in the absence of external Ca2+, suggests intracellular Ca2+ pools are not involved in changes in [Ca2+]i that result from a modification of pHi. Resting pHi and [Ca2+]i in cells treated with either 8-bromo-dibutyryl cAMP (1 mM) or forskolin (150 microM) are not changed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
1. In order to investigate the vasodilator mechanisms of the K+ channel openers, cromakalim, pinacidil and nicorandil, we measured changes in cytoplasmic Ca2+ concentration [( Ca2+]i) simultaneously with force by a microfluorimetric method using fura-2, a calcium indicator, in canine coronary arterial smooth muscle cells. 2. The three K+ channel openers all produced a concentration-dependent reduction of [Ca2+]i in 5 and 30 mM KCl physiological salt solution (PSS) but failed to affect [Ca2+]i in 45 and 90 mM KCl-PSS. 3. Cromakalim only partly inhibited (-45%) the 30 mM KCl-induced contractures, whereas pinacidil and nicorandil nearly abolished contractions produced by 45 mM, 90 mM and 30 mM KCl-PSS. 4. Tetrabutylammonium (TBA), a nonselective K+ channel blocker, or glibenclamide, a supposed adenosine 5'-triphosphate (ATP)-sensitive K+ channel blocker, abolished the reduction of [Ca2+]i caused by the three K+ channel openers and the relaxant effect of cromakalim, whereas they only slightly attenuated the relaxant effects of pinacidil and nicorandil. 5. The increase in [Ca2+]i produced by 45 or 90 mM KCl-PSS in the presence of pinacidil or nicorandil was abolished by 10(-5) M verapamil, indicating that the increase in [Ca2+]i was caused by the influx of extracellular Ca2+ and that pinacidil and nicorandil did not affect the voltage-dependent Ca2+ channel directly. 6. The [Ca2+]i-force relationship in the presence of cromakalim was not distinguishable from that of control. 7. The [Ca2+]i-force curve was shifted to the right by pinacidil and nicorandil.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effect of Zn2+ on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells was investigated by measuring the changes in the fluorescence of the Ca2+-sensitive dye fura-2. Zn2+ significantly increased cytoplasmic free Ca2+ levels ([Ca2+]i) at concentrations of 2-100 microM. The maximum response was obtained at concentrations of 25-100 microM. The [Ca2+]i rise induced by 100 microM Zn2+ consisted of a gradual rise and a plateau phase, and was primarily mediated by La3+-sensitive extracellular Ca2+ influx because the [Ca2+]i rise was abolished by pretreatment with 100 microM La3+ or removal of extracellular Ca2+, and that Zn2+ induced Mn2+ quench of fura-2 fluorescence at 360 nm excitation wavelength which was prevented by pretreatment with 100 microM La3+. Pretreatment with 100 microM Zn2+ for 220 s did not reduce the [Ca2+]i rise induced by the endoplasmic reticulum (ER) Ca2+ pump inhibitor, thapsigargin, suggesting that Ca2+ release from the ER played a minor role in the Zn2+-induced [Ca2+]i rise. Zn2+ (100 microM) nearly abolished the capacitative Ca2+ entry induced by ATP (100 microM). We also investigated the effect of Zn2+ pretreatment on the [Ca2+]i rise induced by ATP. Zn2+ (100 microM) affected ATP-induced [Ca2+]i rise by abolishing capacitative Ca2+ entry and increasing [Ca2+]i on its own without altering Ca2+ release from intracellular sources. The effect of Zn2+ on [Ca2+]i was dissociated from changes in membrane potential.  相似文献   

5.
1. Microfluorimetry techniques with fura-2 were used to characterize the effects of efaroxan (200 microM), phenotolamine (200-500 microM) and idazoxan (200-500 microM) on the intracellular free Ca2+ concentration ([Ca2+]i) in mouse isolated islets of Langerhans. 2. The imidazoline receptor agonists efaroxan and phentolamine consistently elevated cytosolic Ca2+ by mechanisms that were dependent upon Ca2+ influx across the plasma membrane; there was no rise in [Ca2+]i when Ca2+ was removed from outside of the islets and diazoxide (100-250 microM) attenuated the responses. 3. Modulation of cytosolic [Ca2+]i by efaroxan and phentolamine was augmented by glucose (5-10 mM) which both potentiated the magnitude of the response and reduced the onset time of imidazoline-induced rises in [Ca2+]i. 4. Efaroxan- and phentolamine-evoked increases in [Ca2+]i were unaffected by overnight pretreatment of islets with the imidazolines. Idazoxan failed to increase [Ca2+]i under any experimental condition tested. 5. The putative endogenous ligand of imidazoline receptors, agmatine (1 microM-1 mM), blocked KATP channels in isolated patches of beta-cell membrane, but effects upon [Ca2+]i could not be further investigated since agmatine disrupts fura-2 fluorescence. 6. In conclusion, the present study shows that imidazolines will evoke rises in [Ca2+]i in intact islets, and this provides an explanation to account for the previously described effects of imidazolines on KATP channels, the cell membrane potential and insulin secretion in pancreatic beta-cells.  相似文献   

6.
Riluzole is an effective neuroprotective drug. Its effect on intracellular free Ca2+ levels ([Ca2+]i) has not been explored. This study examined the effect of riluzole on [Ca2+]i in IMR32 neuroblastoma cells using fura-2 as a Ca2+ probe. Riluzole 0.1-1 mM increased [Ca2+]i in a concentration-dependent manner. Removal of extracellular Ca2+ inhibited the response by 52 +/- 5%. The [Ca2+]i increase induced by 0.2 mM riluzole was unaltered by 0.1 mM La3+ or 10 microM verapamil, but was inhibited by 51 +/- 4% by 10 microM nifedipine. In Ca2+-free medium, pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) reduced the 0.2 mM riluzole-induced Ca2+ release by 44 +/- 3%; this reduction was augmented to 66 +/- 5% by additionally depleting the Ca2+ stores in the Golgi complex with 50 microM brefeldin A. Inhibition of inositol 1,4,5-trisphosphate formation by 2 microM U73122, a phospholipase C inhibitor, did not affect Ca2+ release induced by 0.2 microM riluzole. It was concluded that the neuroprotective agent riluzole increased [Ca2+]i in IMR32 neuroblastoma cells concentration-dependently by releasing Ca2+ from multiple stores in an inositol 1,4,5-trisphosphate-independent manner and also by inducing nifedipine-sensitive Ca2+ influx.  相似文献   

7.
The fura-2 microscopic fluorimetric method was used to examine the effects of the thromboxane A2 analogue, U46619, on the force of contraction and intracellular calcium concentrations ([Ca2+]i) in canine coronary arteries. Upon cumulative application, U46619 increased [Ca2+]i and force. Depolarization by 20 mM KCl potentiated the increase in [Ca2+]i and increased the maximum force induced by U46619. In 5 mM KCl-PSS, the reduction of resting [Ca2+]i by cromakalim (3 x 10(-6) M) was greater than that by verapamil (3 x 10(-6) M). Cromakalim and verapamil inhibited the increases in [Ca2+]i and force induced by U46619 in 5 mM KCl-PSS. In 90 mM KCl-PSS in the presence of U46619, verapamil inhibited the increases in [Ca2+]i and force, whereas cromakalim did not inhibit them at all. The inhibitory effect of cromakalim was counteracted by depolarization by 20 or 25 mM KCl. Curves in the presence of U46619 which related force to [Ca2+]i were shifted to the left compared with that in the absence of U46619, suggesting that U46619 increases the Ca(2+)-sensitivity of the contractile proteins. Thus, U46619 produces Ca2+ influx through L-type Ca2+ channels, which are deactivated by hyperpolarization induced by cromakalim.  相似文献   

8.
Interaction of ionized magnesium ([Mg2+]o) and caffeine in regulation of intracellular free calcium concentration ([Ca2+]i) in human aortic endothelial cells was studied using fura-2 and digital imaging microscopy. In 1.2 mM [Mg2+]o, basal [Ca2+]i was 73.7 +/- 22.4 nM, with a heterogeneous distribution within the cells. No significant changes of basal [Ca2+]i were found either when cells were treated with 10 mM caffeine or when [Mg2+]o was lowered from 1.2 mM to 0.3 mM. However, a combined superfusion of the cells with 0.3 mM [Mg2+]o and 10 mM caffeine resulted in a significant elevation of [Ca2+]i to 382.8 +/- 57.1 nM, probably by release of Ca2+ from internal stores, which was attenuated by NiCl2 (1 mM). These results suggest that a Ca(2+)-induced Ca2+ release mechanism is involved in regulation of [Ca2+]i in endothelial cells, which may be either regulated or modulated by Mg2+.  相似文献   

9.
1. Using front-surface fluorometry of fura-2-loaded strips, and measuring the transmembrane 45Ca2+ fluxes of ring preparations of the rabbit femoral artery, the mechanism underlying a sustained decrease in the cytosolic Ca2+ concentration ([Ca2+]i) induced by angiotensin II (AT-II) was investigated. 2. The application of AT-II during steady-state 118 mM K(+)-induced contractions caused a sustained decrease in [Ca2+]i following a rapid and transient increase in [Ca2+]i, while the tension was transiently enhanced. 3. When the intracellular Ca2+ stores were depleted by thapsigargin, the initial rapid and transient increase in [Ca2+]i was abolished, however, neither the sustained decrease in [Ca2+]i nor the enhancement of tension were affected. 4. Depolarization with 118 mM K+ physiological salt solution containing 1.25 mM Ba2+ induced a sustained increase in both the cytosolic Ba2+ concentration ([Ba2+]i) level and tension. However, the application of 10(-6) M AT-II during sustained Ba(2+)-contractions was found to have no effect on [Ba2+]i, but it did enhance tension. 5. After thapsigargin treatment, AT-II neither decreased nor increased the enhanced Ca2+ efflux rate induced by 118 mM K(+)-depolarization, whereas AT-II did increase the enhanced 45Ca2+ influx and the 45Ca2+ net uptake induced by 118 mM K(+)-depolarization. 6. Pretreatment with calphostin-C, partially, but significantly inhibited the decrease in [Ca2+]i induced by AT-II. 7. These findings therefore suggest that AT-II stimulates Ca2+ sequestration into the thapsigargin-insensitive Ca2+ stores, and thus induces a decrease in [Ca2+]i in the high external K(+)-stimulated rabbit femoral artery.  相似文献   

10.
Nordihydroguaiaretic acid (NDGA) is widely used as a pharmacological tool to inhibit lipoxygenases; however, recent evidence suggests that it increases renal intracellular [Ca2+]i via novel mechanisms. Here the effect of NDGA on Ca2+ signaling in MG63 osteoblastic cells was explored using fura-2 as a Ca2+ indicator. NDGA (2-50 microM) increased [Ca2+]i in a concentration-dependent manner. The signal comprised an initial rise and an elevated phase over a time period of 4 min. Removing extracellular Ca2+ reduced 2-50 microM NDGA-induced signals by 62+/-2%. After incubation with 50 microM NDGA in Ca2+-free medium for several minutes, addition of 3 mM CaCl2 induced an increase in [Ca2+]i. NDGA (50 microM)-induced [Ca2+]i increases were not changed by pretreatment with 10 microM of verapamil, diltiazem, nifedipine, nimodipine and nicardipine. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (1 microM) inhibited 50 microM NDGA-induced [Ca2+]i increases by 69+/-3%. Inhibition of phospholipase C with 2 microM U73122 had little effect on 50 microM NDGA-induced Ca2+ release. Several other lipoxygenase inhibitors had no effect on basal [Ca2+]i. At a concentration that did not increase basal [Ca2+]i, NDGA (1 microM) did not alter 10 microM ATP- or 1 microM thapsigargin-induced [Ca2+]i increases. Alteration of protein kinase C activity with 1 nM phorbol 12-myristate 13-acetate or 2 microM GF 109203X did not affect 50 microM NDGA-induced [Ca2+]i increases. Together, the results show that NDGA increased [Ca2+]i in osteoblasts in a lipoxygenase-independent manner, by releasing stored Ca2+ in a fashion independent of phospholipase C activity, and by causing Ca2+ influx.  相似文献   

11.
Kupffer cells contain voltage-dependent calcium channels.   总被引:13,自引:0,他引:13  
Kupffer cells, the resident hepatic macrophages, are activated by calcium, but conclusive evidence that they contain voltage-dependent calcium channels has not been presented previously. In this study, the cytosolic free calcium concentration ([Ca2+]i) of cultured Kupffer cells was measured with the fluorescent Ca2+ indicator fura-2. Partial replacement of extracellular Na+ by K+ caused an increase in [Ca2+]i in a concentration-dependent manner (half-maximal effect at 81 mM K+), presumably due to membrane depolarization. At 65 mM K+, where there were minimal changes in [Ca2+]i, addition of the dihydropyridine-type calcium channel agonist BAY K 8644 (1 microM) caused a large increase in [Ca2+]i. Overall, the effect of BAY K 8644 (1 microM) was to shift the concentration-response curve for K+ to the left (half-maximal effect at 61 mM K+). Under depolarizing conditions (65 mM K+), BAY K 8644 increased [Ca2+]i in a concentration-dependent manner (half-maximal effect at approximately 400 nM BAY K 8644). Moreover, the dihydropyridine-type calcium channel blocker nitrendipine inhibited the BAY K 8644-induced increase in [Ca2+]i in a concentration-dependent manner (half-maximal inhibition with about 25 nM nitrendipine). When extracellular Ca2+ was omitted from the incubation medium, the increases in [Ca2+]i due to BAY K 8644 were prevented completely. In addition, an intracellular Ca2+ antagonist, 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate hydrochloride (200 microM), did not inhibit the BAY K 8644-sensitive, voltage-dependent increase in [Ca2+]i. Thus, these data collectively indicate that BAY K 8644 causes a transmembrane Ca2+ influx in Kupffer cells in a voltage-dependent manner, providing the first direct evidence that Kupffer cells contain L-type voltage-dependent Ca2+ channels.  相似文献   

12.
1. Single native aortic endothelial cells obtained by enzymatic dispersion of the rabbit aortic endothelium were held under voltage clamp using patch pipette and whole-cell membrane currents were measured. In parallel experiments performed on cells from the same batches, the free internal calcium concentration, [Ca2+]i, in the cell was estimated by use of the Ca(2+)-sensitive fluorescent dye, fura-2. 2. Caffeine (20 mM) applied to the cell evoked an outward current and an initial peak in [Ca2+]i followed by a lower sustained rise (plateau). Ca(2+)-free, EGTA-containing solution applied outside the cells did not reduce these responses. 3. Following caffeine stimulation there was a biphasic rising phase of outward current both in the presence and absence of extracellular Ca2+. 4. Application of graded doses of caffeine revealed all-or-none type responses of both the outward current and the rise in [Ca2+]i. 5. Preincubation with lower doses of caffeine reduced the magnitude of both the outward current and the [Ca2+]i transient evoked by 20 mM caffeine. 6. Tetraethylammonium (3 mM) applied to the bathing solution blocked unitary and spontaneous transient outward currents (STOCs) stimulated by Ca(2+)-free solution, but only reduced the outward current evoked by caffeine (20 mM). 7. In conclusion, our results reveal the all-or-none nature of Ca2+ release from the endoplasmic reticulum (ER) in native aortic endothelial cells. Lower concentrations of caffeine (0.4-0.5 mM) may deplete intracellular Ca2+ stores. Extracellular Ca2+ is not necessary for maintaining the activity of spontaneous and caffeine-induced outward currents in native aortic endothelial cells. Spontaneous outward currents are believed to represent the sporadic release of calcium from store sites independent of both extracellular Ca2+ and the caffeine-sensitive Ca2+ stores which stimulate the outward current.  相似文献   

13.
1. The effects of ryanodine and caffeine on intracellular free Ca2+ concentration ([Ca2+]i) were studied by use of fura-2 microfluorometry in single smooth muscle cells freshly dispersed from bovine and porcine coronary artery. 2. Bovine and porcine cells demonstrated similar sensitivities to 10 min of exposure to ryanodine in physiological salt solution (PSS), as determined by comparable dose-dependent decreases in the subsequent [Ca2+]i transient induced by 5 mM caffeine. 3. Ryanodine (10 microM) caused a significant increase in [Ca2+]i to a plateau level 27 +/- 3% and 38 +/- 4% above baseline [Ca2+]i (baseline [Ca2+]i = [Ca2+]i at 0 min) in porcine and bovine cells, respectively, when bathed in PSS. In bovine cells the time required to reach 1/2 the plateau level was only 3 min versus 6 min for porcine cells. 4. The ryanodine-induced plateau increase in [Ca2+]i was 35 +/- 5% above baseline for bovine cells bathed in 0 Ca PSS (PSS including 10 microM EGTA with no added Ca2+), but only 7 +/- 3% above baseline in porcine cells during 10 min exposure to 10 microM ryanodine. In bovine cells [Ca2+]i showed proportional increases when extracellular Ca2+ was increased from the normal 2 mM Ca2+ PSS to 5 and 10 mM. 5. Cells pretreated with caffeine in 0 Ca PSS, which depleted the caffeine-sensitive sarcoplasmic reticulum Ca2+ store, showed no increase in [Ca2+]i when challenged with 10 microM ryanodine. The ryanodine-associated increase in [Ca2+]i, which was sustained in 0 Ca PSS during the 10 min ryanodine exposure in cells not pretreated with caffeine, suggests that ryanodine releases Ca2+ from the sarcoplasmic reticulum, but also inhibits Ca2+ efflux.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The effects of alpha 1-adrenergic stimulation on intracellular pH (pHi) and Ca2+ concentration ([Ca2+]i) were investigated in isolated rat cardiomyocytes with fluorescence dyes, BCECF and fura-2, respectively. In the presence of 5 or 25 mM HCO3- norepinephrine (NE) increased pHi in a dose-dependent manner. Intracellular alkalinization was inhibited by prazosin and phentolamine but not by yohimbine. NE-induced alkalinization was inhibited in the presence of a Na+/H+ exchange inhibitor (5-(N,N-hexamethylene) amiloride (HMA)), a C kinase inhibitor (H-7) or a calmodulin inhibitor (W-7), or in the absence of extracellular Na+. NE also increased [Ca2+]i following the pHi increase, which was abolished in the absence of extracellular Na+ or Ca2+. This Ca2+ influx was inhibited by HMA but not by diltiazem (10(-5) M). Thus, we conclude that alpha 1-adrenergic stimulation enhances Na+/H+ exchange by activation of C kinase, thereby allowing intracellular alkalinization, and that subsequent activation of Na+/Ca2+ exchange increases Ca2+ influx.  相似文献   

15.
1. The effect on intracellular free calcium concentration ([Ca2+]i) of simultaneous activation of receptors coupled to phospholipase C via pertussis toxin (PTX)-sensitive and -insensitive G-proteins has been investigated in the hamster vas deferens smooth muscle cell line, DDT1MF-2. 2. In fura-2-loaded DDT1MF-2 cells, activation of adenosine A1-receptors (which are linked to PTX-sensitive G-proteins) with a maximal concentration of N6-cyclopentyladenosine (CPA; 300 nM) increased [Ca2+]i from 121 +/- 5 nM to 254 +/- 20 nM (n = 8). These experiments were performed in the presence of extracellular Ca2+. Stimulation of histamine H1-receptors (which are linked to PTX-insensitive G-proteins) with a low concentration of histamine (1 microM) increased [Ca2+]i from 128 +/- 8 nM to 150 +/- 13 nM (n = 8). When combined, CPA (300 nM) and histamine (1 microM) synergistically raised [Ca2+]i from 134 +/- 6 nM to 607 +/- 61 nM (n = 8). 3. Removal of extracellular Ca2+ (experiments performed in Ca(2+)-free buffer containing 0.1 mM EGTA) had no effect on the synergistic interaction between CPA (300 nM) and histamine (1 microM). 4. The addition of maximal concentrations of CPA (300 nM) and histamine (100 microM) resulted in a rise in [Ca2+]i which was additive when compared to the Ca2+ responses obtained with the two agonists alone. Low (30 nM) and subthreshold (3 nM) concentrations of CPA did not alter the Ca2+ response elicited by maximal concentrations of histamine (100 microM). 5. Subthreshold concentrations of CPA (3 nM) and low concentrations of histamine (1 microM) elicited synergistic rises in [Ca2+]i.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1. Changes in cytoplasmic Ca2+ concentration ([Ca2+]1) were measured simultaneously with force by a microfluorometric method using a calcium indicator, fura-2, in canine coronary arterial smooth muscle cells. 2. Depolarization by high (30-90 mM) KCl-physiological salt solution (PSS) produced concentration-dependent increases in force and [Ca2+]i. 3. The KCl-induced increase in [Ca2+]i abolished by Ca2+-free conditions and almost abolished by verapamil 10-5 M, suggesting that it was entirely due to the increased Ca2+ influx through voltage-dependent Ca2+ channels. 4. The [Ca2+]i force relationship in the presence of verapamil was not distinguishable from that of control. 5. Nitroglycerin produced a concentration-dependent, reversible contraction of the coronary artery that had been contracted by high KCl-PSS, without reduction of the increased [Ca2+]i. 6. The KCl-induced increase in [Ca2+]i was not affected by nitroglycerin and in a presence of nitroglycerin it was abolished by 10-5 M verapamil suggesting that it was caused by the influx of extracellular Ca2+. 7. The [Ca2+]-force curve was shifted to the right by nitroglycerin. 8. It is likely that nitroglycerin relaxes the coronary arterial smooth muscle b reducing the amount of myosin light chain phosphorylation even in the presence of raised [Ca2+]i produced by increased Ca2+ influx following depolarization.  相似文献   

17.
1. We investigated the effects of okadaic acid (OA), a phosphatase inhibitor derived from a 38-carbon fatty acid and isolated from the black sponge, genus Halichondria, on cytosolic Ca2+ concentration ([Ca2+]i) and tension developed in porcine coronary arterial strips loaded with fura-2. 2. Both in the presence (1.25 mM) and absence of extracellular Ca2+, OA (over 10(-6) M) induced a concentration-dependent, slow and progressive increase in tension. Calcium removal had no effect on the maximum level of tension, time between application of the drug and the onset of tension, or the time required to reach the maximum tension. However, there was a slight concentration-dependent increase in [Ca2+]i, only in the presence of extracellular Ca2+. 3. At a lower concentration that did not cause contraction or increase [Ca2+]i, OA (10(-6) M) inhibited tension development but not the Ca2+ transient on readmission of Ca2+ in 118 mM K+-depolarizing solution. OA inhibited the maximum levels of the developed tension, without affecting the KD value (598 +/- 204 nM for control vs 678 +/- 464 nM after OA treatment) or the Hill coefficient (1.78 +/- 0.10 for control vs 1.98 +/- 0.47 for OA treatment). 4. It is concluded that high concentrations of OA induce a contraction independent of extracellular Ca2+ and without any changes in [Ca2+]i. Lower concentrations of OA inhibit the Ca2+-dependent contractions. The lack of effect on KD values suggests that the [Ca2+]i-sensitivity of the contractile apparatus is not affected by this inhibition of contraction.  相似文献   

18.
The effect of the antidepressant fluoxetine on Ca2+ signaling in cultured cells was largely unknown. The effect of various concentrations of fluoxetine on [Ca 2+] i in populations of bladder female transitional cancer (BFTC) cells was evaluated by using fura-2 as a Ca2+ probe. Fluoxetine increased [Ca 2+] i concentration dependently (20-100 microM) with an EC50 value of 30 microM. The response was inhibited by 50-60% on extracellular Ca2+ removal. In Ca2+ -free medium, pretreatment with 1 microM thapsigargin (an inhibitor of the endoplasmic reticulum Ca2+ pump) abolished 50 microM fluoxetine-induced Ca2+ release; whereas pretreatment with fluoxetine did not alter the thapsigargin-induced Ca2+ response. Addition of 3 mM Ca2+ increased [Ca 2+] i after pretreatment with 50 microM fluoxetine in Ca2+ -free medium, suggestive of fluoxetine-induced capacitative Ca2+ entry. Suppression of inositol 1,4,5-trisphosphate formation by 2 microM U73122 (a phospholipase C inhibitor) did not affect 50 microM fluoxetine-induced Ca2+ release. Collectively, this study shows that fluoxetine increased [Ca 2+] i in bladder cancer cells in a concentration-dependent fashion, by releasing Ca2+ from thapsigargin-sensitive Ca2+ stores in an IP3-independent manner, and by inducing Ca2+ influx from extracellular medium.  相似文献   

19.
Chao YY  Su W  Jan CR  Ko YC  Chen JJ  Cheng JS  Liu CP  Lo YK  Chou KJ  Lee KC  Chen WC  Chen IS 《Archives of toxicology》2002,75(11-12):695-702
The effects of five lignans (epi-aschantin, epi-magnolin, epi-yangambin, deoxypodophyllotoxin, yatein) isolated from Hernandia nymphaeifolia (Presl.) Kubitzki (Hernandiaceae) on intracellular Ca2+ levels ([Ca2+]i) in human neutrophils were investigated by using fura-2 as a fluorescent probe. In both Ca2+-containing and Ca2+-free media, the lignans (50-100 microM) did not alter basal [Ca2+]i but inhibited the [Ca2+]i increase induced by platelet activating factor (PAF, 10 microM), leukotriene B4 (LTB4, 0.2 microM), and thapsigargin (1 microM) to different extents. In Ca2+-free medium, after depleting stores of Ca2+ with PAF, LTB4 or thapsigargin, addition of 3 mM Ca2+ induced Ca2+ influx. Each of the lignans (50-100 microM) caused 39-89% inhibition of PAF-induced Ca2+ influx; whereas only epi-aschantin was able to inhibit LTB4- and thapsigargin-induced Ca2+ influx by 54-79%. Together, the results suggest that in human neutrophils, these lignans did not alter basal [Ca2+]i but inhibited Ca2+ movement induced by Ca2+ mobilizing agents.  相似文献   

20.
The effect of fluoxetine on Ca2+ signaling in Madin-Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca2+ probe. Fluoxetine increased [Ca2+]i concentration-dependently between 5 microM and 200 microM with an EC50 value of 40 microM. The response was reduced by external Ca2+ removal by 30%40%. In Ca2+-free medium pretreatment with 1 microM thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+ pump, abolished 100 microM fluoxetine-induced Ca2+ release. Addition of 3 mM Ca2+ to Ca2+-free medium increased [Ca2+]i when cells were pretreated with 100 microM fluoxetine. Suppression of 1,4,5-trisphosphate (IP3) formation by 2 microM U73122 (a phospholipase C inhibitor) did not affect 100 microM fluoxetine-induced Ca2+ release. Fluoxetine (5-100 microM) also increased [Ca2+]i in neutrophils, prostate cancer cells and bladder cancer cells from human and rat glioma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号