首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The general goal of this paper is to extend the parallel-beam projection-slice theorem to divergent fan-beam and cone-beam projections without rebinning the divergent fan-beam and cone-beam projections into parallel-beam projections directly. The basic idea is to establish a novel link between the local Fourier transform of the projection data and the Fourier transform of the image object. Analogous to the two- and three-dimensional parallel-beam cases, the measured projection data are backprojected along the projection direction and then a local Fourier transform is taken for the backprojected data array. However, due to the loss of the shift invariance of the image object in a single view of the divergent-beam projections, the measured projection data is weighted by a distance dependent weight w(r) before the local Fourier transform is performed. The variable r in the weighting function w(r) is the distance from the backprojected point to the x-ray source position. It is shown that a special choice of the weighting function, w(r)=1/r, will facilitate the calculations and a simple relation can be established between the Fourier transform of the image function and the local Fourier transform of the 1/r-weighted backprojection data array. Unlike the parallel-beam cases, a one-to-one correspondence does not exist for a local Fourier transform of the backprojected data array and a single line in the two-dimensional (2D) case or a single slice in the 3D case of the Fourier transform of the image function. However, the Fourier space of the image object can be built up after the local Fourier transforms of the 1/r-weighted backprojection data arrays are shifted and then summed in a laboratory frame. Thus the established relations Eq. (27) and Eq. (29) between the Fourier space of the image object and the Fourier transforms of the backprojected data arrays can be viewed as a generalized projection-slice theorem for divergent fan-beam and cone-beam projections. Once the Fourier space of the image function is built up, an inverse Fourier transform could be performed to reconstruct tomographic images from the divergent beam projections. Due to the linearity of the Fourier transform, an image reconstruction step can be performed either when the complete Fourier space is available or in parallel with the building of the Fourier space. Numerical simulations are performed to verify the generalized projection-slice theorem by using a disc phantom in the fan-beam case.  相似文献   

2.
Tang Q  Zeng GL  Wu J  Gullberg GT 《Medical physics》2005,32(11):3440-3447
This paper presents analytical fan-beam and cone-beam reconstruction algorithms that compensate for uniform attenuation in single photon emission computed tomography. First, a fan-beam algorithm is developed by obtaining a relationship between the two-dimensional (2D) Fourier transform of parallel-beam projections and fan-beam projections. Using this relationship, 2D Fourier transforms of equivalent parallel-beam projection data are obtained from the fan-beam projection data. Then a quasioptimal analytical reconstruction algorithm for uniformly attenuated Radon data, developed by Metz and Pan, is used to reconstruct the image. A cone-beam algorithm is developed by extending the fan-beam algorithm to 4pi solid angle geometry. The cone-beam algorithm is also an exact algorithm.  相似文献   

3.
A cone-beam image reconstruction algorithm using spherical harmonic expansions is proposed. The reconstruction algorithm is in the form of a summation of inner products of two discrete arrays of spherical harmonic expansion coefficients at each cone-beam point of acquisition. This form is different from the common filtered backprojection algorithm and the direct Fourier reconstruction algorithm. There is no re-sampling of the data, and spherical harmonic expansions are used instead of Fourier expansions. As a special case, a new fan-beam image reconstruction algorithm is also derived in terms of a circular harmonic expansion. Computer simulation results for both cone-beam and fan-beam algorithms are presented for circular planar orbit acquisitions. The algorithms give accurate reconstructions; however, the implementation of the cone-beam reconstruction algorithm is computationally intensive. A relatively efficient algorithm is proposed for reconstructing the central slice of the image when a circular scanning orbit is used.  相似文献   

4.
Tuy's cone-beam inversion formula was modified to develop a cone-beam reconstruction algorithm. The algorithm was implemented for a cone-beam vertex orbit consisting of a circle and two orthogonal lines. This orbit geometry satisfies the cone-beam data sufficiency condition and is easy to implement on commercial single photon emission computed tomography (PECT) systems. The algorithm, which consists of two derivative steps, one rebinning step, and one three-dimensional backprojection step, was verified by computer simulations and by reconstructing physical phantom data collected on a clinical SPECT system. The proposed algorithm gives equivalent results and is as efficient as other analytical cone-beam reconstruction algorithms.  相似文献   

5.
In this paper, a new image reconstruction scheme is presented based on Tuy's cone-beam inversion scheme and its fan-beam counterpart. It is demonstrated that Tuy's inversion scheme may be used to derive a new framework for fanbeam and cone-beam image reconstruction. In this new framework, images are reconstructed via filtering the backprojection image of differentiated projection data. The new framework is mathematically exact and is applicable to a general source trajectory provided the Tuy data sufficiency condition is satisfied. By choosing a piece-wise constant function for one of the components in the factorized weighting function, the filtering kernel is one dimensional, viz. the filtering process is along a straight line. Thus, the derived image reconstruction algorithm is mathematically exact and efficient. In the cone-beam case, the derived reconstruction algorithm is applicable to a large class of source trajectories where the pi-lines or the generalized pi-lines exist. In addition, the new reconstruction scheme survives the super-short scan mode in both the fan-beam and cone-beam cases provided the data are not transversely truncated. Numerical simulations were conducted to validate the new reconstruction scheme for the fan-beam case.  相似文献   

6.
We present a new approach to three-dimensional (3D) image reconstruction using analytical inversion of the exponential divergent beam transform, which can serve as a mathematical model for cone-beam 3D SPECT imaging. We apply a circular cone-beam scan and assume constant attenuation inside a convex area with a known boundary, which is satisfactory in brain imaging. The reconstruction problem is reduced to an image restoration problem characterized by a shift-variant point spread function which is given analytically. The method requires two computation steps: backprojection and filtering. The modulation transfer function (MTF) of the filter is derived by means of an original methodology using the 2D Laplace transform. The filter is implemented in the frequency domain and requires 2D Fourier transform of transverse slices. In order to obtain a shift-invariant cone-beam projection-backprojection operator we resort to an approximation, assuming that the collimator has a relatively large focal length. Nevertheless, numerical experiments demonstrate surprisingly good results for detectors with relatively short focal lengths. The use of a wavelet-based filtering algorithm greatly improves the stability to Poisson noise.  相似文献   

7.
Zhu L  Yoon S  Fahrig R 《Medical physics》2007,34(11):4422-4438
A 3D reconstruction formula has been derived for a circular cone-beam (CB) short scan using ID shift-invariant filtering, CB backprojection, and equal weighting. By first converting the divergent projections to parallel projections, we analyze the circular CB data using the classic central slice theorem. The sampling density in Fourier space is investigated and 1D shift-invariant filtering before backprojection can be used to compensate for the nonuniformity. The final formula consists of a conventional FDK reconstruction and a correction term using differential backprojection and the 1D Hilbert transform in the image domain. On a full scan, the approach reduces to the FDK algorithm, while for a short scan, the CB artifacts are suppressed by the second term. This algorithm outperforms the modified FDK algorithm with Parker's weighting, as illustrated by computer simulations and experimental results. Due to its shift-invariant filtered-backprojection structure, the proposed algorithm is implemented efficiently, and requires a simple adaptation of the FDK algorithm.  相似文献   

8.
Multifocal converging-beam collimation has been suggested for cardiac SPECT imaging to increase sensitivity over the heart without truncation of the activity distribution in the chest. In this study, an analytical reconstruction algorithm is derived for multifocal fan-beam and multifocal cone-beam tomography. In the algorithm, the projection data are differently weighted and filtered, depending on the distance from the detector. For a given image point, the set of filtered data corresponding to the distance between this point and detector is backprojected to determine the pixel value of the point. Thus, the backprojection is done only once at each projection view. To evaluate the algorithm, simulation studies are performed using a 3D Defrise slab phantom without considering photon attenuation and scatter, detector response, and statistical noise. Reconstructed images demonstrate that reasonable quality can be achieved with a modest focal-length variation rate and with a small radius of rotation. A collimator with a focal length increasing quickly near its centre provides better quality in the image region distant from the central plane of the cone geometry, but produces more severe artifacts at the centre of the reconstructed image, compared to a collimator with an initially slowly varying focal length.  相似文献   

9.
In this paper, Novikov's inversion formula of the attenuated two-dimensional (2D) Radon transform is applied to the reconstruction of attenuated fan-beam projections acquired with equal detector spacing and of attenuated cone-beam projections acquired with a flat planar detector and circular trajectory. The derivation of the fan-beam algorithm is obtained by transformation from parallel-beam coordinates to fan-beam coordinates. The cone-beam reconstruction algorithm is an extension of the fan-beam reconstruction algorithm using Feldkamp-Davis-Kress's (FDK) method. Computer simulations indicate that the algorithm is efficient and is accurate in reconstructing slices close to the central slice of the cone-beam orbit plane. When the attenuation map is set to zero the implementation is equivalent to the FDK method. Reconstructed images are also shown for noise corrupted projections.  相似文献   

10.
Several image reconstruction algorithms based on rebinning have been proposed recently for helical cone-beam CT. These algorithms separate the 3D reconstruction into a set of independent 2D reconstructions for a set of surfaces: planar or non-planar surfaces are defined and then reconstructed using 2D filtered backprojection from a 2D fan-beam or parallel-beam set of data estimated from the cone-beam (CB) measurements. The first part of this paper presents a unified derivation of rebinning algorithms for planar and non-planar surfaces. An integral equation is derived for the surface allowing the best rebinning and an iterative algorithm converging to the solution of that equation is given. The second part presents an efficient method to correct the residual reconstruction artefacts observed with rebinning algorithms when the cone-angle is too large for the required accuracy. This correction algorithm involves a CB backprojection and the reconstruction time is slightly longer than for the zero-boundary (ZB) method.  相似文献   

11.
A two-step Hilbert transform method for 2D image reconstruction   总被引:8,自引:0,他引:8  
The paper describes a new accurate two-dimensional (2D) image reconstruction method consisting of two steps. In the first step, the backprojected image is formed after taking the derivative of the parallel projection data. In the second step, a Hilbert filtering is applied along certain lines in the differentiated backprojection (DBP) image. Formulae for performing the DBP step in fanbeam geometry are also presented. The advantage of this two-step Hilbert transform approach is that in certain situations, regions of interest (ROIs) can be reconstructed from truncated projection data. Simulation results are presented that illustrate very similar reconstructed image quality using the new method compared to standard filtered backprojection, and that show the capability to correctly handle truncated projections. In particular, a simulation is presented of a wide patient whose projections are truncated laterally yet for which highly accurate ROI reconstruction is obtained.  相似文献   

12.
In this paper, a shift-invariant filtered backprojection cone-beam image reconstruction algorithm is derived, based upon Katsevich's general inversion scheme, and validated for the source trajectory of two concentric circles. The source trajectory is complete according to Tuy's data sufficiency condition and is used as the basis for an exact image reconstruction algorithm. The algorithm proceeds according to the following steps. First, differentiate the cone-beam projection data with respect to the detector coordinates and with respect to the source trajectory parameter. The data are then separately filtered along three different orientations in the detector plane with a shift-invariant Hilbert kernel. Eight different filtration groups are obtained via linear combinations of weighted filtered data. Voxel-based backprojection is then carried out from eight sets of view angles, where separate filtered data are backprojected from each set according to the backprojection sets' associated filtration group. The algorithm is first derived for a scanning configuration consisting of two concentric and orthogonal circles. By performing an affine transformation on the image object, the developed image reconstruction algorithm has been generalized to the case where the two concentric circles are not orthogonal. Numerical simulations are presented to validate the reconstruction algorithm and demonstrate the dose advantage of the equal weighting scheme.  相似文献   

13.
Single-slice rebinning method for helical cone-beam CT   总被引:4,自引:0,他引:4  
In this paper, we present reconstruction results from helical cone-beam CT data, obtained using a simple and fast algorithm, which we call the CB-SSRB algorithm. This algorithm combines the single-slice rebinning method of PET imaging with the weighting schemes of spiral CT algorithms. The reconstruction is approximate but can be performed using 2D multislice fan-beam filtered backprojection. The quality of the results is surprisingly good, and far exceeds what one might expect, even when the pitch of the helix is large. In particular, with this algorithm comparable quality is obtained using helical cone-beam data with a normalized pitch of 10 to that obtained using standard spiral CT reconstruction with a normalized pitch of 2.  相似文献   

14.
In backprojection cone-beam CT the cone-beam projection images are first filtered, then 3D backprojected into the object space. In this paper the point spread function (PSF) for the filtering operation is studied. For the cases where the normalization matrix is a constant, i.e. all integration planes intersect the scan path the same number of times, the derivation of the PSF is extended to the general case of limited angular range for the Radon line integrals. It is found that the 2D component of the PSF can be reduced to the form of space-variant 1D Hilbert transforms. The application of the PSF to a number of aspects in long object imaging will be discussed.  相似文献   

15.
In this paper, we present a new algorithm designed for a specific data truncation problem in fan-beam CT. We consider a scanning configuration in which the fan-beam projection data are acquired from an asymmetrically positioned half-sized detector. Namely, the asymmetric detector only covers one half of the scanning field of view. Thus, the acquired fan-beam projection data are truncated at every view angle. If an explicit data rebinning process is not invoked, this data acquisition configuration will reek havoc on many known fan-beam image reconstruction schemes including the standard filtered backprojection (FBP) algorithm and the super-short-scan FBP reconstruction algorithms. However, we demonstrate that a recently developed fan-beam image reconstruction algorithm which reconstructs an image via filtering a backprojection image of differentiated projection data (FBPD) survives the above fan-beam data truncation problem. Namely, we may exactly reconstruct the whole image object using the truncated data acquired in a full scan mode (2pi angular range). We may also exactly reconstruct a small region of interest (ROI) using the truncated projection data acquired in a short-scan mode (less than 2pi angular range). The most important characteristic of the proposed reconstruction scheme is that an explicit data rebinning process is not introduced. Numerical simulations were conducted to validate the new reconstruction algorithm.  相似文献   

16.
Redundant data and exact helical cone-beam reconstruction   总被引:1,自引:0,他引:1  
This paper is about helical cone-beam reconstruction and the use of redundant data in the framework of two reconstruction methods. The first method is the approximate wedge reconstruction formula introduced by Tuy at the 3D meeting in 1999. The second method is a (exact) hybrid implementation of the exact filtered backprojection formula of Katsevich (2004 Adv. Appl. Math. at press) that combines filtering in the native cone-beam geometry with backprojection in the wedge geometry. The similarity of the two methods is explored and their image quality performance is compared for geometries with up to 112 detector rows. Furthermore, the concept of aperture weighting is introduced to allow the handling of variable amounts of redundant data. A reduction of motion artefacts using redundant data is demonstrated for geometries with 16, 32 and 112 detector rows using a pitch factor of 1.25. For scans with up to 100 rows, utilizing 50% of the redundant data provided excellent results without any introduction of cone-beam artefacts. For larger cone angles, an alternative approach that utilizes all available redundant data, even at reduced pitch factors, is suggested.  相似文献   

17.
Image reconstruction from cone-beam projections is required for both x-ray computed tomography (CT) and single photon emission computed tomography (SPECT). Grangeat's algorithm accurately performs cone-beam reconstruction provided that Tuy's data sufficiency condition is satisfied and projections are complete. The algorithm consists of three stages: (a) Forming weighted plane integrals by calculating the line integrals on the cone-beam detector, and obtaining the first derivative of the plane integrals (3D Radon transform) by taking the derivative of the weighted plane integrals. (b) Rebinning the data and calculating the second derivative with respect to the normal to the plane. (c) Reconstructing the image using the 3D Radon backprojection. A new method for implementing the first stage of Grangeat's algorithm was developed using spherical harmonics. The method assumes that the detector is large enough to image the whole object without truncation. Computer simulations show that if the trajectory of the cone vertex satisfies Tuy's data sufficiency condition, the proposed algorithm provides an exact reconstruction.  相似文献   

18.
A circular scanning trajectory is and will likely remain a popular choice of trajectory in computed tomography (CT) imaging because it is easy to implement and control. Filtered-backprojection (FBP)-based algorithms have been developed previously for approximate and exact reconstruction of the entire image or a region of interest within the image in circular cone-beam and fan-beam cases. Recently, we have developed a 3D FBP-based algorithm for image reconstruction on PI-line segments in a helical cone-beam scan. In this work, we demonstrated that the 3D FBP-based algorithm indeed provided a rather general formulation for image reconstruction from divergent projections (such as cone-beam and fan-beam projections). On the basis of this formulation we derived new approximate or exact algorithms for image reconstruction in circular cone-beam or fan-beam scans, which can be interpreted as special cases of the helical scan. Existing algorithms corresponding to the derived algorithms were identified. We also performed a preliminary numerical study to verify our theoretical results in each of the cases. The results in the work can readily be generalized to other non-circular trajectories.  相似文献   

19.
Reconstruction algorithms for cone-beam CT have been the focus of many studies. Several exact and approximate reconstruction algorithms were proposed for step-and-shoot and helical scanning trajectories to combat cone-beam related artefacts. In this paper, we present a new closed-form cone-beam reconstruction formula for tilted gantry data acquisition. Although several algorithms were proposed in the past to combat errors induced by the gantry tilt, none of the algorithms addresses the scenario in which the cone-beam geometry is first rebinned to a set of parallel beams prior to the filtered backprojection. We show that the image quality advantages of the rebinned parallel-beam reconstruction are significant, which makes the development of such an algorithm necessary. Because of the rebinning process, the reconstruction algorithm becomes more complex and the amount of iso-centre adjustment depends not only on the projection and tilt angles, but also on the reconstructed pixel location. In this paper, we first demonstrate the advantages of the row-wise fan-to-parallel rebinning and derive a closed-form solution for the reconstruction algorithm for the step-and-shoot and constant-pitch helical scans. The proposed algorithm requires the 'warping' of the reconstruction matrix on a view-by-view basis prior to the backprojection step. We further extend the algorithm to the variable-pitch helical scans in which the patient table travels at non-constant speeds. The algorithm was tested extensively on both the 16- and 64-slice CT scanners. The efficacy of the algorithm is clearly demonstrated by multiple experiments.  相似文献   

20.
Huang Q  Zeng GL 《Medical physics》2006,33(4):997-1004
The pinhole collimator is currently the collimator of choice in small animal single photon emission computed tomography (SPECT) imaging because it can provide high spatial resolution and reasonable sensitivity when the animal is placed very close to the pinhole. It is well known that if the collimator rotates around the object (e.g., a small animal) in a circular orbit to form a cone-beam imaging geometry with a planar trajectory, the acquired data are not sufficient for an exact artifact-free image reconstruction. In this paper a novel skew-slit collimator is mounted instead of the pinhole collimator in order to significantly reduce the image artifacts caused by the geometry. The skew-slit imaging geometry is a more generalized version of the pinhole imaging geometry. The multiple pinhole geometry can also be extended to the multiple-skew-slit geometry. An analytical algorithm for image reconstruction based on the tilted fan-beam inversion is developed with nonuniform attenuation compensation. Numerical simulation shows that the axial artifacts are evidently suppressed in the skew-slit images compared to the pinhole images and the attenuation correction is effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号