首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Mutations in the bone morphogenetic protein type II receptor gene (BMPR2) are the major genetic cause of familial pulmonary arterial hypertension (FPAH). Although smooth muscle cell proliferation contributes to the vascular remodeling observed in PAH, the role of BMPs in this process and the impact of BMPR2 mutation remains unclear. Studies involving normal human pulmonary artery smooth muscle cells (PASMCs) suggest site-specific responses to BMPs. Thus, BMP-4 inhibited proliferation of PASMCs isolated from proximal pulmonary arteries, but stimulated proliferation of PASMCs from peripheral arteries, and conferred protection from apoptosis. These differences were not caused by differential activation of BMP signaling pathways because exogenous BMP-4 led to phosphorylation of Smad1, p38(MAPK), and ERK1/2 in both cell types. However, the proproliferative effect of BMP-4 on peripheral PASMCs was found to be p38MAPK/ERK-dependent. Conversely, overexpression of dominant-negative Smad1 converted the response to BMP-4 in proximal PASMCs from inhibitory to proliferative. Furthermore, we confirmed that proximal PASMCs harboring kinase domain mutations in BMPR2 are deficient in Smad signaling and are unresponsive to the growth suppressive effect of BMP-4. Moreover, we show that the pulmonary vasculature of patients with familial and idiopathic PAH are deficient in the activated form of Smad1. We conclude that defective Smad signaling and unopposed p38(MAPK)/ERK signaling, as a consequence of mutation in BMPR2, underlie the abnormal vascular cell proliferation observed in familial PAH.  相似文献   

3.
Monocyte chemoattractant protein-1 (MCP-1) is an important component of the inflammatory response of the vessel wall and has been shown to be regulated by cytokines, such as tumor necrosis factor-alpha (TNF-alpha). However, the precise signaling pathways leading to MCP-1 induction have not been fully elucidated in vascular smooth muscle cells (VSMCs). Cytokine signal transduction involves protein kinases as well as reactive oxygen species (ROS). The relation between these 2 factors is not clear. In this study, we show that TNF-alpha induces a parallel phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38MAPK) and increases MCP-1 mRNA expression in cultured VSMCs. Inhibition of ERK1/2 but not p38MAPK caused a partial attenuation of MCP-1 induction (43+/-10% inhibition). Incubation of VSMCs with multiple antioxidants (diphenylene iodonium, liposomal superoxide dismutase, catalase, N-acetylcysteine, dimethylthiourea, and pyrrolidine dithiocarbamate) had no effect on TNF-alpha-mediated MCP-1 upregulation. However, simultaneous blockade of the ERK1/2 and ROS pathways by using PD098059 combined with diphenylene iodonium or N-acetylcysteine potently enhanced the ability of MAPK kinase inhibitors to abrogate MCP-1 mRNA expression (100+/-2% inhibition). Thus, parallel ROS-dependent and ERK1/2-dependent pathways converge to regulate TNF-alpha-induced MCP-1 gene expression in VSMCs. These data unmask a complex but organized integration of ROS and protein kinases that mediates cytokine-induced vascular inflammatory gene expression.  相似文献   

4.
The objective of the study was to identify the functional outcome of intracellular versus extracellular angiotensin II-AT(1) receptor interactions in vascular cells. Rat vascular smooth muscle cell line A10 was transfected, independently and concurrently, with plasmids encoding fluorescent fusion proteins of rat angiotensin II (pECFP/AII, encodes AII fused downstream of enhanced cyan fluorescent protein) and the rat AT(1a) receptor (pAT(1)R/EYFP, encodes the rat AT(1a) receptor fused upstream of enhanced yellow fluorescent protein). The AII fluorescent fusion protein possesses no secretory signal peptide and deconvolution microscopy established that is maintained within these cells predominantly in the nucleus. AT(1)R/EYFP was absent from the nucleus when expressed exclusively or in untreated cells but accumulated in the nucleus following exogenous AII treatment or when co-expressed with ECFP/AII. Furthermore, expression of ECFP/AII stimulated proliferation of A10 vascular smooth muscle cells (VSMCs) 1.6-fold (P < 0.05). Transfection of a control, pECFP/AII(C) (which encodes a scrambled AII peptide fused to ECFP) had no growth effect. In light of the intracellular growth effects of ECFP/AII, we sought to elucidate the underlying signaling pathways. We found that extracellular AII treatment of A10 cells activated cAMP response element-binding protein (CREB) as determined by one-hybrid assays and immunoblots. Expression of intracellular ECFP/AII similarly activated CREB. However, intracellular and extracellular AII activated CREB through different phosphorylation pathways. Exogenous AII treatment of A10 cells activated p38MAPK and ERK1/2 phosphorylation as determined by Western blot analyses and one-hybrid assays. The p38MAPK inhibitor, SB203580, and the ERK kinase inhibitor, PD98059 each partially inhibited exogenous AII-conferred CREB activation confirming that p38MAPK and ERK1/2 mediate CREB phosphorylation in this system. In contrast, expression of ECFP/AII (intracellular AII) in A10 VSMCs activated p38MAPK but not ERK1/2; inhibition of p38MAPK by SB203580 inhibited intracellular AII-induced CREB phosphorylation. In summary, extracellular AII stimulates at least one pathway common to intracellular AII. This common pathway, in the case of exogenous AII, likely reflects intracellular signaling following internalization of receptor-ligand complex. Extracellular AII also stimulates a unique pathway, apparently reflecting interaction with plasma membrane-associated AT(1)R.  相似文献   

5.
Atheroma formation involves the movement of vascular smooth muscle cells (VSMC) into the subendothelial space. The aim of this study was to determine the involvement of PI3K and MAPK pathways and the importance of cross-talk between these pathways, in glucose-potentiated VSMC chemotaxis to serum factors. VSMC chemotaxis occurred in a serum gradient in 25 mmol/L glucose (but not in 5 mmol/L glucose) in association with increased phosphorylation (activation) of Akt and ERK1/2 in PI3K and MAPK pathways, respectively. Inhibitors of these pathways blocked chemotaxis, as did an mTOR inhibitor. VSMC expressed all class IA PI3K isoforms, but microinjection experiments demonstrated that only the p110beta isoform was involved in chemotaxis. ERK1/2 phosphorylation was reduced not only by MAPK pathway inhibitors but also by PI3K and mTOR inhibitors; when PI3K was inhibited, ERK phosphorylation could be induced by microinjected activated Akt, indicating important cross-talk between the PI3K and ERK1/2 pathways. Glucose-potentiated phosphorylation of molecules in the p38 and JNK MAPK pathways inhibited these pathways but did not affect chemotaxis. The statin, mevinolin, blocked chemotaxis through its effects on the MAPK pathway. Mevinolin-inhibited chemotaxis was restored by farnesylpyrophosphate but not by geranylgeranylpyrophosphate; in the absence of mevinolin, inhibition of farnesyltransferase reduced ERK phosphorylation and blocked chemotaxis, indicating a role for the Ras family of GTPases (MAPK pathway) under these conditions. In conclusion, glucose sensitizes VSMC to serum, inducing chemotaxis via pathways involving p110beta-PI3K, Akt, mTOR, and ERK1/2 MAPK. Cross-talk between the PI3K and MAPK pathways is necessary for VSMC chemotaxis under these conditions.  相似文献   

6.
目的:通过建立慢性低氧性肺动脉高压大鼠模型,研究慢性低氧对大鼠肺血管细胞外信号调节蛋白激酶(ERK1/2)、p38MAPK蛋白表达的影响。方法建立慢性常压低氧肺动脉高压大鼠模型,将雄性SD大鼠随机分为正常对照组、低氧1d、3d、7d、14d和21d组,应用免疫组织化学技术检测肺动脉高压形成过程中大鼠肺血管 ERK1/2、p38MAPK 蛋白表达水平。结果①RVSP 和 RV/(LV+S)比值较正常对照组明显增加(P<0.05),低氧后3 d、7 d、14 d和21 d后大鼠肺血管明显增厚;②ERK1/2、p38MAPK蛋白广泛分布于肺血管内皮细胞、平滑肌细胞和成纤维细胞中,且随着低氧时间的延长,ERK1/2、p38MAPK蛋白表达量增加。结论 ERK1/2、p38MAPK 蛋白表达量的上调可能参与了慢性低氧诱导的大鼠肺动脉高压肺血管重塑的发生、发展过程。  相似文献   

7.
8.
The role of mitogen-activated protein kinase (MAPK) signaling pathways in the regulation of TNF-alpha and NOS2 production by human monocytes infected with Mycobacterium bovis BCG was examined. Inhibition studies showed that ERK1/2 and p38 MAPK activation were necessary for the monocyte response to M. bovis infection. Analysis of MAPK activation showed rapid phosphorylation of ERK1/2 and p38 in response to M. bovis BCG. Phosphorylation was not due to an autocrine effect of TNF-alpha secretion, since an anti-TNF-alpha antibody had no significant effect on the levels of p38 phosphorylation. The inhibitor PD98059 significantly reduced M. bovis BCG-induced TNF-alpha production and almost completely abrogated phosphorylation of ERK1/2; in addition the potent MEK inhibitor U0126 also abrogated phosphorylation. In contrast, studies using inhibitors selective for ERK1/2 and p38 showed that p38 plays an essential role in the induction of NOS2, whereas the role of ERK1/2 was minor. These results suggest that ERK1/2 and p38 kinases differentially regulate the M. bovis BCG-mediated induction of TNF-alpha and NOS2 in human monocytes.  相似文献   

9.
Mitogen-activated protein kinases (MAPKs) play important roles in cell proliferation, differentiation, and apoptosis. Important functional roles for MAPKs in postmitotic cells have recently been suggested. In the present study, we investigated the effect of aging on the brain ERK (extracellular signal-regulated kinase) and p38 MAPK signaling pathways of Fischer 344 rats. The results show that basal tyrosine-phosphorylated ERK1/ERK2 in cortex of 24-month-old rats was reduced by 36%-59%, compared to 6- and 12-month-old rats (p<.05, 24- vs. 12- or 6-month-old rats). Similarly, the phosphotransferase activities of ERK and p38 MAPK, measured by in vitro immunocomplex kinase assays using myelin basic protein (MBP) as substrate, were shown to be reduced approximately 50% and 59% respectively, in the cerebrocortex of 24-month-old rats (p<.01, 24- vs. 12- or 6-month-old rats). The reductions in basal ERK and p38 MAPK activities are not due to altered protein levels of these kinases as assessed by Western analysis. Immunohistochemically, no age-related differences in ERK expression and cellular distribution were observed However, cytosolic ERK tended to aggregate in brain neurons of aged rats. In contrast brain tyrosine-phosphorylated PLCgamma1 did not change with age. Activation of ERK in response to EGF or PMA was also reduced in cortical brain slices of 24-month-old rats. These results demonstrate an age-associated selective impairment in the MAPK signaling pathways. Moreover, lifelong caloric restriction completely prevented the age-related decrease in basal brain ERK activity and diminished the age-related reduction of p38 MAPK activity. Taken together, these data indicate that ERK and p38 MAPK signaling pathways are impaired in the aged brain and that lifelong caloric restriction modulates these defects in brain intracellular signaling pathways.  相似文献   

10.
《Atherosclerosis》1999,142(1):47-56
Proliferation of vascular smooth muscle cells contributes to initimal hyperplasia during atherogenesis, but the factors regulating their proliferation are not well known. In the present study we report that sublytic C5b-9 assembly induced proliferation of differentiated human aortic smooth muscle cells (ASMC) in culture. Cell cycle re-entry occurred through activation of cdk4, cdk2 kinase and the reduction of p21 cell cycle inhibitor. We also investigated if C5b-9 cell cycle induction is mediated through activation of mitogen activated protein kinase (MAPK) pathways. Extracellular signal regulated kinase (ERK) 1 activity was significantly increased, while c-jun NH2-terminal kinase (JNK) 1 and p38 MAPK activity were only transiently increased. Pretreatment with wortmannin inhibits ERK1 activation by C5b-9, suggesting the involvement of phosphatidylinositol 3-kinase (PI 3-kinase). Both PI 3-kinase and p70 S6 kinase were activated by C5b-9 but not by C5b6. C5b-9 induced DNA synthesis was abolished by pretreatment with inhibitors of ERK1 and PI 3-kinase, but not by p38 MAPK. These data indicated that ERK1 and PI 3-kinase play a major role in C5b-9 induced ASMC proliferation.  相似文献   

11.
OBJECTIVE: To investigate whether stress- and mitogen-activated protein kinases (SAPK/MAPK), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK, are significantly activated in rheumatoid arthritis (RA) synovial tissue compared with their activation in degenerative joint disease; to assess the localization of SAPK/MAPK activation in rheumatoid synovial tissue; and to search for the factors leading to stress kinase activation in human synovial cells. METHODS: Immunoblotting and immunohistology by antibodies specific for the activated forms of SAPK/MAPK were performed on synovial tissue samples from patients with RA and osteoarthritis (OA). In addition, untreated and cytokine-treated human synovial cells were assessed for SAPK/MAPK activation and downstream signaling by various techniques. RESULTS: ERK, JNK, and p38 MAPK activation were almost exclusively found in synovial tissue from RA, but not OA, patients. ERK activation was localized around synovial microvessels, JNK activation was localized around and within mononuclear cell infiltrates, and p38 MAPK activation was observed in the synovial lining layer and in synovial endothelial cells. Tumor necrosis factor alpha, interleukin-1 (IL-1), and IL-6 were the major inducers of ERK, JNK, and p38 MAPK activation in cultured human synovial cells. CONCLUSION: Signaling through SAPK/MAPK pathways is a typical feature of chronic synovitis in RA, but not in degenerative joint disease. SAPK/MAPK signaling is found at distinct sites in the synovial tissue, is induced by proinflammatory cytokines, and could lead to the design of highly targeted therapies.  相似文献   

12.
We compared the tissue content, basal phosphorylation, and stretch-induced phosphorylation of the mitogen-activated protein kinase (MAPK) members; extracellular-signal-regulated kinases (ERK 1/2), p38, and c-Jun NH2-terminal kinase (JNK) in the fast-twitch extensor digitorium longus (EDL) and slow-twitch soleus of young adult (6 month), aged (30 month), and very aged (36 month) F344/NNiaHSD X Brown Norway/BiNia (F344/NXBN) rats. The expression and basal phosphorylation of the ERK 1/2, p38, and JNK MAPK proteins were regulated differently with aging in the EDL and soleus. Stretch induced significant phosphorylation of each signaling molecule in both muscle types of young adult and aged animals. In the very aged animals, stretch stimulated ERK 1/2 MAPK phosphorylation; however, EDL stretch failed to induce JNK MAPK phosphorylation, while soleus stretch was unable to induce the phosphorylation of p38 MAPK. The results suggest that skeletal muscle mechanotransduction processes are affected in very aged F344/NXBN rats and that aging alters load-induced signaling in fast- and slow-twitch muscle types differently.  相似文献   

13.
The existing literature indicates a crucial role of p38 MAP (mitogen-activated protein) kinase (p38MAPK) and its downstream target MAPKAP kinase 2 (MK2) in ischemic preconditioning (IPC). Accordingly, deletion of MK2 gene should abolish the cardioprotective ability of IPC. Interestingly, we were able to partially precondition the hearts from MK2(-/-) knockout mice suggesting the existence of an as yet unknown alternative downstream target of p38MAPK. A recent study from our laboratory also determined a crucial role of CREB (cyclic AMP response element binding protein) in IPC. Since CREB is a downstream target of MSK-1 (mitogen- and stress-activated protein kinase-1) situated at the crossroad of ERK (extracellular receptor kinase) and p38MAPK signaling pathways, we reasoned that MSK-1 could be a downstream molecular target for p38MAPK and ERK signaling in the IPC hearts. To test this hypothesis, the rat hearts were subjected to IPC by four cyclic episodes of 5 min ischemia and 10 min reperfusion. As expected, IPC induced the activation of ERK1/2, p38MAPK, MK2 and HSP (heat shock protein) 27 as evidenced by their increased phosphorylation; and the inhibition of p38MAPK with SB203580 almost completely, and the inhibition of ERK1/2 with PD098059 partially, abolished cardioprotective effects of IPC. Inhibition of MSK-1 with short hairpin RNA (shRNA) also abolished the IPC-induced cardioprotection. SB203580 partially blocked the effects of MSK-1 suggesting that MSK-1 sits downstream of p38MAPK. shRNA-MSK-1 blocked the contribution of both p38MAPK and ERK1/2 as it is uniquely situated at the downstream crossroad of both of these MAP kinases. Although MSK-1 sits downstream of both ERK1/2 and p38MAPK, ERK1/2 activation appears to play less significant role compared to p38MAPK, since its inhibition blocked MSK activation only partially. Consistent with these results, shRNA-MSK-1 blocked the partial PC in MK2(-/-) hearts, and in combination with SB203580, completely abolished the PC effects in the wild-type hearts. The IPC-induced survival signaling was almost completely inhibited with SB203580, and only partially with PD 098059 as evidenced from the inhibition patterns of IPC induced activation of CREB, Akt and Bcl-2. Again SB203580 alone or in combination with shRNA-MSK-1 inhibited IPC induced survival signal comparatively, suggesting that MSK-1 exists downstream of p38MAPK. Taken together, these results indicate for the first time MSK-1 as an alternative (other than MK2) downstream target for p38MAPK, which also transmits survival signal through the activation of CREB.  相似文献   

14.
Aims/hypothesis p38 mitogen activated protein kinase (MAPK) is generally thought to facilitate signal transduction to genomic, rather than metabolic responses. However, recent evidence implicates a role for p38 MAPK in the regulation of glucose transport; a site of insulin resistance in Type 2 diabetes. Thus we determined p38 MAPK protein expression and phosphorylation in skeletal muscle from Type 2 diabetic patients and non-diabetic subjects.Methods In vitro effects of insulin (120 nmol/l) or AICAR (1 mmol/l) on p38 MAPK expression and phosphorylation were determined in skeletal muscle from non-diabetic (n=6) and Type 2 diabetic (n=9) subjects.Results p38 MAPK protein expression was similar between Type 2 diabetic patients and non-diabetic subjects. Insulin exposure increased p38 MAPK phosphorylation in non-diabetic, but not in Type 2 diabetic patients. In contrast, basal phosphorylation of p38 MAPK was increased in skeletal muscle from Type 2 diabetic patients.Conclusion/interpretation Insulin increases p38 MAPK phosphorylation in skeletal muscle from non-diabetic subjects, but not in Type 2 diabetic patients. However, basal p38 MAPK phosphorylation is increased in skeletal muscle from Type 2 diabetic patients. Thus, aberrant p38 MAPK signalling might contribute to the pathogenesis of insulin resistance.Abbreviations AICAR 5-aminoimidazole-4-carboxamide ribonucleoside - AMPK 5-AMP activated protein kinase - ERK 1/2 extracellular regulated kinase - GIR glucose infusion rate - IRS-1 insulin receptor substrate 1 - MAPK mitogen-activated protein kinase - PI phosphatidylinositol - VO2max maximal oxygen uptake  相似文献   

15.
AIM: To explore the effect of Echinococcusmultilocularis on the activation of mitogen-activated protein kinase (MAPK) signaling pathways and on livercell proliferation.METHODS: Changes in the phosphorylation of MAPKs and proliferating cell nuclear antigen (PCNA)expression were measured in the liver of patients withalveolar echinococcosis (AE). MAPKs, MEK1/2 [MAPK/extracellular signal-regulated protein kinase (ERK)kinase] and ribosomal S6 kinase (RSK) phosphorylationwere detected in primary cultures of rat hepatocytesin contact in vitro with (1) E. multilocu/aris vesicle fluid(EmF), (2)E. multilocularis-conditioned medium (EmCM).RESULTS: In the liver of AE patients, ERK 1/2 andp38 MAPK were activated and PCNA expression wasincreased, especially in the vicinity of the metacestode.Upon exposure to EmF, p38, c-Jun N-terminal kinase(JNK) and ERK1/2 were also activated in hepatocytesin vitro, as well as MEK1/2 and RSK, in the absenceof any toxic effect. Upon exposure to EmCM, only JNKwas up-regulated.CONCLUSION: Previous studies have demonstratedan influence of the host on the MAPK cascade inE. multilocularis. Our data suggest that the reverse,i.e. parasite-derived signals efficiently acting onMAPK signaling pathways in host liver ceils, is actuallyoperating.  相似文献   

16.
Melatonin is an indoleamine secreted by the pineal gland as well as a plant-derived product that exerts potential anti-inflammatory properties, but the mechanisms of action remain unclear. Here, we investigated the roles of melatonin in regulation of proinflammatory mediators and identified the underlying mechanisms in human vascular smooth muscle (VSM) cell line CRL1999 stimulated by lipopolysaccharide (LPS). We found that treatment with melatonin significantly inhibited the production and expression of TNF-α and interleukin (IL)-1β, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase, prostaglandin E(2) (PGE2), and nitric oxide (NO) in a dose-dependent manner. Moreover, we also found that the suppression of proinflammatory mediators by melatonin was mediated through inhibition of MAPK, NF-κB, c/EBPβ, and p300 signaling in LPS-stimulated CRL1999 cells. Treatment with melatonin markedly inhibited phosphorylation of ERK1/2, JNK, p38 MAPK, IκB-α, and c/EBPβ, blocked binding of NF-κB and c/EBPβ to promoters, and suppressed p300 histone acetyltransferase (HAT) activity and p300 HAT-mediated NF-κB acetylation. Transfection with an ERK-, IκB-, or c/EBPβ-specific siRNA or pretreatment with an ERK-, p38 MAPK-, or p300-selective inhibitor considerably abrogated the melatonin-mediated inhibition of proinflammatory mediators. Conversely, exogenous overexpression of a constitutively active p300, but not its HAT mutant, effectively reversed the melatonin-mediated inhibitions. Collectively, these results indicate that melatonin suppresses proinflammatory mediators by simultaneously targeting the multiple signaling such as ERK/p38 MAPK, c/EBPβ, NF-κB, and p300, in LPS-stimulated VSM cell line CRL1999, and suggest that melatonin is a potential candidate compound for the treatment of proinflammatory disorders.  相似文献   

17.
18.
19.
Wernig F  Mayr M  Xu Q 《Hypertension》2003,41(4):903-911
Recently we demonstrated that mechanical stress induces apoptosis of vascular smooth muscle cells in vitro and in vein grafts (Mayr et al. FASEB J. 2000;15:261-270). The current study was designed to investigate molecular mechanisms of mechanical stretch-induced apoptosis. Smooth muscle cells cultivated on silicone elastomer plates precoated with collagen I, elastin, laminin, or Pronectin were subjected to cyclic mechanical stretch. Interestingly, in response to mechanical stress, the number of apoptotic cells increased significantly in cells growing on collagen I-coated plates but not on other matrixes. We therefore thought that receptors mediating binding to collagen I, such as integrin beta1 containing receptors, might be involved in signaling pathways leading to stretch-induced apoptosis. On collagen plates, mechanical stress rapidly activated p38 MAPK that phosphorylated p53 in smooth muscle cells. Lack of functional Rac completely abrogated p38 MAPK-p53 activation as well as apoptosis. Furthermore, mechanical stress resulted in increases of both integrin beta1 protein expression and activity as identified by Western blotting and Shc immunoprecipitation assays. Treatment with a beta1-integrin-blocking antibody or integrin signaling inhibitor cytochalasin B but not growth factor receptor inhibitor suramin abrogated both stretch-induced phosphorylation of p38 MAPK and p53 expression. Akin to the inhibition of p38 MAPK-p53 signaling, pretreatment with a beta1-integrin-blocking antibody or cytochalasin B but not suramin inhibited stretch-induced apoptosis on collagen plates. These results suggest that mechanical stress-induced apoptosis in vascular smooth muscle cells is mediated by beta1-integrin-rac-p38-p53 signaling pathways.  相似文献   

20.
AIM: Previous studies showed that exogenous basic fibroblast growth factor (bFGF or FGF-2) could improve physiological dysfunction after intestinal ischemia/ reperfusion (I/R) injury. However, the mechanisms of this protective effect of bFGF are still unclear. The present study was to detect the effect of bFGF on the activities of mitogen-activated protein kinase (MAPK) signaling pathway in rat intestine after I/R injury, and to investigate the protective mechanisms of bFGF on intestinal ischemia injury. METHODS: Rat intestinal I/R injury was produced by clamping the superior mesenteric artery (SMA) for 45 minutes and followed by reperfusion for 48 hours. Seventy-eight Wistar rats were used and divided randomly into sham-operated group (A), normal saline control group (B), bFGF antibody pre-treated group (C), and bFGF treated group (D). In group A, SMA was separated without occlusion. In groups B, C and D, SMA was separated and occluded for 45 minutes, then, released for reperfusion for 48 hours. After the animals were sacrificed, blood and tissue samples were taken from the intestine 45 minutes after ischemia in group A and 2, 6, 24, and 48 hours after reperfusion in the other groups. Phosphorylated forms of p42/p44 MAPK, p38 MAPK and stress activated protein kinase/C-Jun N-terminal kinase (SAPK/JNK) were measured by immunohistochemistry. Plasma levels of D-lactate were examined and histological changes were observed under the light microscope. RESULTS: Intestinal I/R injury induced the expression of p42/p44 MAPK, p38 MAPK, and SAPK/JNK pathways and exogenous bFGF stimulated the early activation of p42/p44 MAPK and p38 MAPK pathways. The expression of phosphorylated forms of p42/p44 MAPK was primarily localized in the nuclei of crypt cells and in the cytoplasm and nuclei of villus cells. The positive expression of p38 MAPK was localized mainly in the nuclei of crypt cells, very few in villus cells. The activities of p42/p44 MAPK and p38 MAPK peaked 6 hours after reperfusion in groups B and C, while SAPK/JNK peaked 24 hours after reperfusion. The activities of p42/p44 MAPK and p38 MAPK peaked 2 hours after reperfusion in group D and those of SAPK/JNK were not changed in group B. D-lactate levels and HE staining showed that the intestinal barrier was damaged severely 6 hours after reperfusion; however, histological structures were much improved 48 hours after reperfusion in group D than in the other groups. CONCLUSION: The results indicate that intestinal I/R injury stimulates the activities of MAPK pathways, and that p42/p44 MAPK and p38MAPK activities are necessary for the protective effect of exogenous bFGF on intestinal I/R injury. The protective effect of bFGF on intestinal dysfunction may be mediated by the early activation of p42/p44 MAPK and p38 MAPK signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号