首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 411 毫秒
1.
Autophagy is a cellular catabolic pathway by which long-lived proteins and damaged organelles are targeted for degradation. Activation of autophagy enhances cellular tolerance to various stresses. Recent studies indicate that a class of anticancer agents, histone deacetylase (HDAC) inhibitors, can induce autophagy. One of the HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA), is currently being used for treating cutaneous T-cell lymphoma and under clinical trials for multiple other cancer types, including glioblastoma. Here, we show that SAHA increases the expression of the autophagic factor LC3, and inhibits the nutrient-sensing kinase mammalian target of rapamycin (mTOR). The inactivation of mTOR results in the dephosphorylation, and thus activation, of the autophagic protein kinase ULK1, which is essential for autophagy activation during SAHA treatment. Furthermore, we show that the inhibition of autophagy by RNAi in glioblastoma cells results in an increase in SAHA-induced apoptosis. Importantly, when apoptosis is pharmacologically blocked, SAHA-induced nonapoptotic cell death can also be potentiated by autophagy inhibition. Overall, our findings indicate that SAHA activates autophagy via inhibiting mTOR and up-regulating LC3 expression; autophagy functions as a prosurvival mechanism to mitigate SAHA-induced apoptotic and nonapoptotic cell death, suggesting that targeting autophagy might improve the therapeutic effects of SAHA.  相似文献   

2.
Heart failure is a progressive disease, leading to reduced quality of life and premature death. Adverse ventricular remodeling involves changes in the balance between cardiomyocyte protein synthesis and degradation, forcing these myocytes in equilibrium between life and death. In this context, autophagy has been recognized to play a role in the pathophysiology of heart failure. At basal levels, autophagy performs housekeeping functions, maintaining cardiomyocyte function and ventricular mass. Autophagy also occurs in the failing human heart, and upregulation has been reported in animal models of pressure overload–induced heart failure. Although the factors that determine whether autophagy will be protective or detrimental are not well known, the level and duration of autophagy seem important. Autophagy may antagonize ventricular hypertrophy by increasing protein degradation, which decreases tissue mass. However, the rate of protective autophagy declines with age. The inability to remove damaged structures results in the progressive accumulation of ‘garbage’, including abnormal intracellular proteins aggregates and undigested materials such as lipofuscin. Eventually, the progress of these changes results in enhanced oxidative stress, decreased ATP production, collapse of the cellular catabolic machinery, and cell death. By contrast, in load-induced heart failure, the extent of autophagic flux can rise to maladaptive levels. Excessive autophagy induction leads to autophagic cell death and loss of cardiomyocytes and may contribute to the worsening of heart failure. Accordingly, the development of therapies that up-regulate the repair qualities of the autophagic process and down-regulate the cell death aspects would be of great value in the treatment of heart failure.  相似文献   

3.
Dynamic regulation of cell shape underlies many developmental and immune functions. Cortical remodeling is achieved under the central control of Rho GTPase pathways that modulate an exquisite balance in the dynamic assembly and disassembly of the cytoskeleton and focal adhesions. Macroautophagy (autophagy), associated with bulk cytoplasmic remodeling through lysosomal degradation, has clearly defined roles in cell survival and death. Moreover, it is becoming apparent that proteins, organelles, and pathogens can be targeted for autophagic clearance by selective mechanisms, although the extent and roles of such degradation are unclear. Here we report a conserved role for autophagy specifically in the cortical remodeling of Drosophila blood cells (hemocytes) and mouse macrophages. Continuous autophagy was required for integrin-mediated hemocyte spreading and Rho1-induced cell protrusions. Consequently, hemocytes disrupted for autophagy were impaired in their recruitment to epidermal wounds. Cell spreading required ref(2)P, the Drosophila p62 multiadaptor, implicating selective autophagy as a novel mechanism for modulating cortical dynamics. These results illuminate a specific and conserved role for autophagy as a regulatory mechanism for cortical remodeling, with implications for immune cell function.  相似文献   

4.
In failing hearts, cardiomyocytes degenerate and interstitial fibrosis, which indicates cardiomyocyte loss, becomes more prominent in the myocardium. However, the precise mechanism of cardiomyocyte degeneration that leads to cell death is still unclear, although it is presumed that lysosomal function and autophagy play an important role because lysosomal activity increases under stress such as hypoxia. Myocardium that had been resected during partial left ventriculectomy performed in patients with dilated cardiomyopathy (DCM) was examined. Under light microscopy, some cardiomyocytes had a marked scarcity of myofibrils and had prominent cytoplasmic vacuolization. Atrophic and degenerated cardiomyocytes were often observed adjacent to replacement fibrotic tissue. Immunohistochemistry showed positivity for lysosome-associated membrane protein and a lysosomal catheptic enzyme in vacuoles of various sizes in the cardiomyocytes and these lysosomal markers were markedly increased in atrophic and degenerated cardiomyocytes. Electron microscopy revealed that degenerated cardiomyocytes had many vacuoles containing intracellular organelles, such as mitochondria, and were considered to be autophagic vacuoles. In DCM hearts, autophagy appeared to be associated not only with degradation of damaged intracellular organelles but also with progressive destruction of cardiomyocytes. It is possible that autophagic degeneration is one of the mechanisms of myocardial cell death.  相似文献   

5.
Concanavalin A (ConA), a lectin with mannose specificity that can induce acute hepatic inflammation, was tested for its therapeutic effect against hepatoma. ConA is cytotoxic or inhibitory to hepatoma cells, which is mediated by the autophagic pathway through mitochondria. Once it was bound to cell membrane glycoproteins, the ConA was internalized and preferentially localized onto the mitochondria. The mitochondria membrane permeability changed, and an autophagic pathway including LC3-II generation, double-layer vesicle, BNIP3 induction, and acidic vesicular organelle formation was induced. Either 3-MA or siRNA for BNIP3 and LC3, but neither beclin-1 nor ATG 5, partially inhibited the ConA-induced cell death. In addition to the autophagy induction, ConA is known to be a T cell mitogen. Using an in situ hepatoma model, ConA can exert an anti-hepatoma therapeutic effect, inhibiting tumor nodule formation in the liver and prolonging survival. Conclusion: ConA can be considered as an anti-hepatoma agent therapeutically because of its autophagic induction and immunomodulating activity. This dual function of ConA provides a novel mechanism for the biological effect of lectin.  相似文献   

6.
Autophagy is a cell survival mechanism that involves degradation and recycling of cytoplasmic components, such as long-lived proteins and organelles. In addition, autophagy mediates cell death under specific circumstances. Apoptosis, a form of programmed cell death, has been well characterized, and the molecular events involved in apoptotic death are well understood. Damaged cardiomyocytes that show characteristics of autophagy have been observed during heart failure. However, it remains unclear whether autophagy is a sign of failed cardiomyocyte repair or is a suicide pathway for the failing cardiomyocytes. Although autophagy and apoptosis are markedly different processes, several pathways regulate both autophagic and apoptotic machinery and autophagy can cooperate with apoptosis. This review summarizes the evidence for crosstalk between autophagy and apoptosis.  相似文献   

7.
Abstract: Methamphetamine (METH) is a common drug of abuse that induces toxicity in the central nervous system and is connected to neurological disorders such as Parkinson’s disease. METH neurotoxicity is induced by reactive oxygen species (ROS) production and apoptosis. Moreover, autophagy is an alternative to cell death and a means for eliminating dysfunctional organelles. In other cases, autophagy can end up in cell death. Nonetheless, it is not clear whether autophagy is also correlated with apoptotic signaling in drug‐induced neurotoxicity. Therefore, we hypothesized that METH‐generated toxicity associated with initiating the apoptotic signaling cascade can also increase the autophagic phenotype in neuronal cells. Using the SK–N–SH dopaminergic cell line as our model system, we found that METH‐induced autophagy by inhibiting dissociation of Bcl‐2/Beclin 1 complex and its upstream pathway that thereby led to cell death. We uncovered a novel function for the anti‐apoptotic protein Bcl‐2, as it played a role in negatively regulating autophagy by blocking an essential protein in the signaling pathway, Beclin 1. Furthermore, Bcl‐2 was activated by c‐Jun N‐terminal kinase 1 (JNK 1), which is upstream of Bcl‐2 phosphorylation, to induce Bcl‐2/Beclin 1 dissociation. Furthermore, we demonstrated a novel role for melatonin in protecting cells from autophagic cell death triggered by the Bcl‐2/Beclin 1 pathway by inhibiting the activation of the JNK 1, Bcl‐2 upstream pathway. This study provides information regarding the link between apoptosis and autophagy signaling, which could lead to the development of therapeutic strategies that exploit the neurotoxicity of drugs of abuse.  相似文献   

8.
AIM:To investigate the role of endoplasmic reticulum(ER) stress in cancer radiotherapy and its molecular mechanism.METHODS:Tunicamycin(TM) was applied to induce ER stress in human esophageal cancer cell line EC109,and the radiosensitization effects were detected by acute cell death and clonogenic survival assay.Cell cycle arrest induced by TM was determined by flow cytometric analysis after the cellular DNA content was labeled with propidium iodide.Apoptosis of EC109 cells induced by TM was detected by annexin V staining and Western blotting of caspase-3 and its substrate poly ADP-ribose polymerase.Autophagic response was determined by acridine orange(AO) staining and Western blotting of microtubule-associated protein-1 light chain-3(LC3) and autophagy related gene 5(ATG5).In order to test the biological function of autophagy,specific inhibitor or Beclin-1 knockdown was used to inhibit autophagy,and its effect on cell apoptosis was thus detected.Additionally,involvement of the phosphatidylinositol-3 kinase(PI3K)/Akt/mammalian target of the rapamycin(mTOR) pathway was also detected by Western blotting.Finally,male nude mice inoculated subcutaneously with EC109 cells were used to confirm cell model observations.RESULTS:Our results showed that TM treatment enhanced cell death and reduced the colony survival fraction induced by ionizing radiation(IR),which suggested an obvious radiosensitization effect of TM.Moreover,TM and IR combination treatment led to a significant increase of G2/M phase and apoptotic cells,compared with IR alone.We also observed an increase of AO positive cells,and the protein level of LC3-II and ATG5 was induced by TM treatment,which suggested an autophagic response in EC109 cells.However,inhibition of autophagy by using a chemical inhibitor or Beclin-1 silencing led to increased cell apoptosis and decreased cell viability,which suggested a cytoprotective role of autophagy in stressed EC109 cells.Furthermore,TM treatment also activated mTORC1,and in turn reduced Akt phosphorylation,which sugge  相似文献   

9.
Autophagy is a membrane-trafficking mechanism that delivers cytoplasmic components into the lysosome to form autophagic vacuoles for bulk protein degradation. While previous studies have reported enhanced autophagosome formation in pancreatic β-cells under some pathophysiological conditions, the role of autophagy remains largely unknown. We have reported that low-level constitutive basal autophagy was observed in β-cells of C57BL/6 mice fed standard diet; however, autophagy was markedly up-regulated in mice fed high-fat diet. Free fatty acids (FFAs), which can cause peripheral insulin resistance associated with diabetes, induced autophagy in β-cells. Genetic inactivation of autophagic machinery in β-cells resulted in reduced glucose-stimuated insulin secretion with progressive intracellular accumulation of ubiquitinated proteins and deformed mitochondria. These results suggest that the degradation of cellular components by basal autophagy is essential for the maintenance of normal architecture and function of β-cells. We will also discuss the role of inductive autophagy as a crucial element of stress responses to protect β-cells, which supports compensatory β-cell growth in the presence of insulin resistance.  相似文献   

10.
Autophagy, a ubiquitous catabolic pathway involved in both cell survival and cell death, has been implicated in many age-associated diseases. Recent findings have shown autophagy to be crucial for proper insulin secretion and β-cell viability. Transgenic mice lacking autophagy in their β-cells showed decreased β-cell mass and suppressed glucose-stimulated insulin secretion. Several studies showed that stress can stimulate autophagy in β-cells: the number of autophagosomes is increased in different in vivo models for diabetes, such as db/db mice, mice fed high-fat diet, pdx-1 knockout mice, as well as in in vitro models of glucotoxicity and lipotoxicity. Pharmacological and molecular inhibition of autophagy increases the susceptibility to cell stress, suggesting that autophagy protects against diabetes-relevant stresses. Recent findings, however, question these conclusions. Pancreases of diabetics and β-cells exposed to fatty acids show accumulation of abnormal autophagosome morphology and suppression of lysosomal gene expression suggesting impairment in autophagic turnover. In this review we attempt to give an overview of the data generated by others and by us in view of the possible role of autophagy in diabetes, a role which depending on the conditions, could be beneficial or detrimental in coping with stress.  相似文献   

11.
Protective role of autophagy in palmitate-induced INS-1 beta-cell death   总被引:1,自引:0,他引:1  
Choi SE  Lee SM  Lee YJ  Li LJ  Lee SJ  Lee JH  Kim Y  Jun HS  Lee KW  Kang Y 《Endocrinology》2009,150(1):126-134
Autophagy, a vacuolar degradative pathway, constitutes a stress adaptation that avoids cell death or elicits the alternative cell-death pathway. This study was undertaken to determine whether autophagy is activated in palmitate (PA)-treated beta-cells and, if activated, what the role of autophagy is in the PA-induced beta-cell death. The enhanced formation of autophagosomes and autolysosomes was observed by exposure of INS-1 beta-cells to 400 microm PA in the presence of 25 mm glucose for 12 h. The formation of green fluorescent protein-LC3-labeled structures (green fluorescent protein-LC3 dots), with the conversion from LC3-I to LC3-II, was also distinct in the PA-treated cells. The phospho-mammalian target of rapamycin level, a typical signal pathway that inhibits activation of autophagy, was gradually decreased by PA treatment. Blockage of the mammalian target of rapamycin signaling pathway by treatment with rapamycin augmented the formation of autophagosomes but reduced PA-induced INS-1 cell death. In contrast, reduction of autophagosome formation by knocking down the ATG5, inhibition of fusion between autophagosome and lysosome by treatment with bafilomycin A1, or inhibition of proteolytic degradation by treatment with E64d/pepstatin A, significantly augmented PA-induced INS-1 cell death. These findings showed that the autophagy system could be activated in PA-treated INS-1 beta-cells, and suggested that the induction of autophagy might play an adaptive and protective role in PA-induced cell death.  相似文献   

12.
《Islets》2013,5(2):151-153
Autophagy is a membrane-trafficking mechanism that delivers cytoplasmic components into the lysosome to form autophagic vacuoles for bulk protein degradation. While previous studies have reported enhanced autophagosome formation in pancreatic β-cells under some pathophysiological conditions, the role of autophagy remains largely unknown. We have reported that low-level constitutive basal autophagy was observed in β-cells of C57BL/6 mice fed standard diet; however, autophagy was markedly up-regulated in mice fed high-fat diet. Free fatty acids (FFAs), which can cause peripheral insulin resistance associated with diabetes, induced autophagy in β-cells. Genetic inactivation of autophagic machinery in β-cells resulted in reduced glucose-stimuated insulin secretion with progressive intracellular accumulation of ubiquitinated proteins and deformed mitochondria. These results suggest that the degradation of cellular components by basal autophagy is essential for the maintenance of normal architecture and function of β-cells. We will also discuss the role of inductive autophagy as a crucial element of stress responses to protect β-cells, which supports compensatory β-cell growth in the presence of insulin resistance.  相似文献   

13.
BackgroundThe accumulation of iron in the brain is a hallmark of hemorrhagic stroke and several neurodegenerative diseases. Iron overload has been reported to induce brain injury through necrotic and apoptotic mechanisms. This study was taken to examine whether iron in the brain contributes to autophagic cell death.MethodsSprague-Dawley rats received an intracerebral ventricular injection of either ferrous chloride or saline. The expression levels of autophagic markers were measured by Western blot analysis. Immunofluorescent double labeling was used to identify the cell types expressing Beclin 1. Transmission electron microscopy was performed to examine the ultrastructural changes in neural cells 1 day after ferrous iron injection.ResultsWestern blot analysis showed that the ratios of LC3-II to LC3-I and ATG5 levels were significantly upregulated at 6 hours and 1 day after ferrous iron injection. Beclin 1 expression was markedly elevated as early as 6 hours, reaching a peak at 24 hours and remaining elevated at 3 days after the injection. Beclin 1 immunoreactivity was located in both neurons and astrocytes under confocal microscopy. Induction of autophagic cell death was manifested by accumulation of autophagic vacuoles in the contralateral parietal cortex under transmission electron microscopy.ConclusionsOur data showed that increased ferrous iron levels in the brain induced autophagic cell death. These results also suggest that autophagy form of programmed cell death may be a mechanism of brain injury in iron overload disorders.  相似文献   

14.
Autophagy is an evolutionarily preserved degradation process of cytoplasmic cellular constituents and plays important physiological roles in human health and disease. It has been proposed that autophagy plays an important role both in tumor progression and in promotion of cancer cell death, although the molecular mechanisms responsible for this dual action of autophagy in cancer have not been elucidated. Pancreatic ductal adenocarcinoma is one of the most aggressive human malignancies with 2–3% five-year survival rate. Its poor prognosis has been attributed to the lack of specific symptoms and early detection tools, and its relatively refractory to traditional cytotoxic agents and radiotherapy. Experimental evidence pointed at autophagy as a pancreatic cancer cell mechanism to survive under adverse environmental conditions, or as a defective programmed cell death mechanism that favors pancreatic cancer cell resistance to treatment. Here, we consider several phenotypical alterations that have been related to increase or decrease the autophagic process in pancreatic tumor cells. We specially review autophagy as a cell death mechanism in response to chemotherapeutic drugs.  相似文献   

15.
AIM To investigate whether autophagic cell death is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells, and to explore the underlying mechanism.METHODS Human hepatocellular carcinoma cells were treated with hyperthermia and ionizing radiation. MTT and clonogenic assays were performed to determine cell survival. Cell autophagy was detected using acridine orange staining and flow cytometric analysis, and the expression of autophagy-associated proteins, LC3 and p62, was determined by Western blot analysis. Intracellular reactive oxygen species(ROS) were quantified using the fluorescent probe DCFH-DA.RESULTS Treatment with hyperthermia and ionizing radiation significantly decreased cell viability and surviving fraction as compared with hyperthermia or ionizing radiation alone. Cell autophagy was significantly increased after ionizing radiation combined with hyperthermia treatment, as evidenced by increased formation of acidic vesicular organelles, increased expression of LC3 II and decreased expression of p62. Intracellular ROS were also increased after combined treatment with hyperthermia and ionizing radiation. Pretreatment with N-acetylcysteine, an ROS scavenger, markedly inhibited the cytotoxicity and cell autophagy induced by hyperthermia and ionizing radiation.CONCLUSION Autophagic cell death is involved in hyperthermic sensitization of cancer cells to ionizing radiation, and its induction may be due to the increased intracellular ROS.  相似文献   

16.
Autophagy is a lysosome-dependent cellular catabolic mechanism mediating the turnover of intracellular organelles and long-lived proteins. Reduction of autophagy activity has been shown to lead to the accumulation of misfolded proteins in neurons and may be involved in chronic neurodegenerative diseases such as Huntington's disease and Alzheimer's disease. To explore the mechanism of autophagy and identify small molecules that can activate it, we developed a series of high-throughput image-based screens for small-molecule regulators of autophagy. This series of screens allowed us to distinguish compounds that can truly induce autophagic degradation from those that induce the accumulation of autophagosomes as a result of causing cellular damage or blocking downstream lysosomal functions. Our analyses led to the identification of eight compounds that can induce autophagy and promote long-lived protein degradation. Interestingly, seven of eight compounds are FDA-approved drugs for treatment of human diseases. Furthermore, we show that these compounds can reduce the levels of expanded polyglutamine repeats in cultured cells. Our studies suggest the possibility that some of these drugs may be useful for the treatment of Huntington's and other human diseases associated with the accumulation of misfolded proteins.  相似文献   

17.
Despite efforts to curb the incidence of obesity and its comorbidities, this condition remains the fifth leading cause of death worldwide. To identify ways to reduce this global effect, we investigated the actions of daily melatonin administration on oxidative stress parameters and autophagic processes as a possible treatment of obesity in ob/ob mice. The involvement of melatonin in many physiological functions, such as the regulation of seasonal body weight variation, glucose uptake, or adiposity, and the role of this indoleamine as an essential antioxidant, has become the focus of numerous anti‐obesity studies. Here, we examined the oxidative status in the livers of obese melatonin‐treated and untreated mice, observing a decrease in the oxidative stress levels through elevated catalase activity. ROS‐mediated autophagy was downregulated in the liver of melatonin‐treated animals and was accompanied by significant accumulation of p62. Autophagy is closely associated with adipogenesis; in this study, we report that melatonin‐treated obese mice also showed reduced adiposity, as demonstrated by diminished body weight and reduced peroxisome proliferator‐activated receptor gamma expression. Based on these factors, it is reasonable to assume that oxidative stress and autophagy play important roles in obesity, and therefore, melatonin could be an interesting target molecule for the development of a potential therapeutic agent to curb body weight.  相似文献   

18.
Background and objectives: We have recently described a mechanistic action of autophagy on hematopoiesis in which autophagy sustains hematopoietic stem cell multilineage differentiation by direct targeting of intracellular Notch. However, the upstream signal that triggers autophagy to degrade Notch during hematopoiesis remains elusive.

Methods: Conditional autophagy-essential gene Atg7 knockout mouse model is used for identifying signals regulating autophagy in the promotion of hematopoiesis.

Results: We find here that generation of reactive oxygen species (ROS) is progressively increased during hematopoietic stem cell differentiation, and inhibition of ROS production was found to attenuate the differentiation of hematopoietic stem cells. In hematopoietic stem and progenitor cells (HSPCs) of wild-type mice, inhibition of ROS production downregulated autophagy activity but upregulated intracellular Notch and its downstream effectors. In contrast, in the HSPCs of autophagy fully defective mice, ROS inhibition did not alter myeloid differentiation, and hematopoietic stem cell differentiation to multi-lineages no longer responded to ROS inhibition.

Discussion: The ROS-regulating hematopoiesis is mitochondrial origin, and this action depends on intact autophagy machinery capable of degrading intracellular Notch.

Conclusion: ROS functions as an upstream signal in the autophagic promotion of hematopoietic stem cell differentiation.  相似文献   

19.
Fritz T  Niederreiter L  Adolph T  Blumberg RS  Kaser A 《Gut》2011,60(11):1580-1588
Polymorphisms in NOD2, encoding an intracellular pattern recognition receptor, contribute the largest fraction of genetic risk for Crohn's disease among the >40 risk loci identified so far. Autophagy plays a prominent role in the innate immune response towards intracellular bacteria. The discovery of the autophagy genes ATG16L1 and IRGM as risk factors for Crohn's disease turned autophagy into the spotlight in inflammatory bowel disease (IBD). Remarkably, NOD2 has recently been identified as a potent autophagy inducer. A physical interaction of NOD2 and ATG16L1 appears to be required for autophagic clearance of intracellular pathogens. Moreover, Crohn's disease-associated NOD2 and ATG16L1 variants exhibit a defect in the induction of an autophagic response and hence predict autophagy as a key converging mechanism that leads to Crohn's disease. Another pathway that is closely intertwined with autophagy and mutually cross-regulated is the unfolded protein response (UPR), which is induced by endoplasmic reticulum (ER) stress. Genes involved in the UPR (XBP1, ORMDL3) have also been genetically associated with Crohn's disease and ulcerative colitis. Moreover, the intestinal epithelium at the interface between host and microbe appears particularly affected by IBD-associated hypomorphic function of autophagy and the UPR. The functional convergence of main genetic risk factors for IBD on these innate immune pathways has hence important implications for the host's interaction with the microbiota. Moreover, the genetic convergence on these molecular mechanisms may open novel therapeutic options for IBD that deserve further exploration.  相似文献   

20.
This study shows the effect of pterostilbene on intracellular neutral lipid accumulation in MCF-7 breast cancer cells leading to growth arrest and autophagy. On exposing the breast cancer cells with 30 μM pterostilbene for 72 h there was almost 2-folds increase in neutral lipids and triglycerides. Also the phytochemical caused a 4-folds increase in the expression of adipogenic differentiation marker c/EBPα. Further, pterostilbene inhibited 3β-hydroxylsterol-Δ(7)-reductase, the enzyme which catalyzes the last step conversion of 7-dehydrocholesterol to cholesterol, and thereby causes the intracellular accumulation of the former sterol. These results were associated with over-expression of oxysterol binding protein homologue and liver X receptor (LXR) by ~7-folds. Pterostilbene also caused a simultaneous increase in the expression autophagic marker proteins Beclin 1 and LC3 II (microtubule-associated protein 1 light chain 3) by approximately 6-folds, which leads to an alternative pathway of autophagy. These effects were observed in association with the loss of mitotic and metastatic potential of MCF-7 cells which was abolished in the presence of catalase (ROS scavenger) or 3MA (autophagic inhibitor). Thus the present data shows that the long term exposure to pterostilbene causes growth arrest in MCF-7 cells which may be due to differentiation of the mammary carcinoma cells into normal epithelial cell like morphology and activation of autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号