首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integrin α4β1 (VLA-4) is used by encephalitogenic T cells to enter the central nervous system (CNS). However, both Th1 and Th17 cells are capable of inducing experimental autoimmune encephalomyelitis (EAE), and the molecular cues mediating the infiltration of Th1 versus Th17 cells into the CNS have not yet been defined. We investigated how blocking of α4 integrins affected trafficking of Th1 and Th17 cells into the CNS during EAE. Although antibody-mediated inhibition of α4 integrins prevented EAE when MOG(35-55)-specific Th1 cells were adoptively transferred, Th17 cells entered the brain, but not the spinal cord parenchyma, irrespective of α4 blockade. Accordingly, T cell-conditional α4-deficient mice were not resistant to actively induced EAE but showed an ataxic syndrome with predominantly supraspinal infiltrates of IL-23R(+)CCR6(+)CD4(+) T cells. The entry of α4-deficient Th17 cells into the CNS was abolished by blockade of LFA-1 (αLβ2 integrin). Thus, Th1 cells preferentially infiltrate the spinal cord via an α4 integrin-mediated mechanism, whereas the entry of Th17 cells into the brain parenchyma occurs in the absence of α4 integrins but is dependent on the expression of αLβ2. These observations have implications for the understanding of lesion localization, immunosurveillance, and drug design in multiple sclerosis.  相似文献   

2.
Lymphocyte function-associated antigen 1/intercellular adhesion molecule 1 (LFA-1/ICAM-1)-and very late antigen 4/vascular cell adhesion molecule 1 (VLA-4/VCAM-1)-mediated adhesion of T lymphocytes to endothelial cells (EC) can be regulated by increased expression of ICAM-1 and VCAM-1 upon cytokine treatment of EC, or by activation of the integrin molecules LFA-1 and VLA-4 on T cells. Here, we provide evidence that preferential usage of LFA-1 over VLA-4 is yet another mechanism to control T cell adhesion. We observed that binding of activated T lymphocytes, as opposed to resting T cells, to EC is essentially mediated through LFA-1 and not through VLA-4. VLA-4- mediated adhesion of T cells to EC is only found when LFA-1 is not expressed or not functional, as observed for several T cell leukemia cell lines. These results suggest that LFA-1-mediated adhesion dominates and may downregulate VLA-4-mediated adhesion through an unidentified mechanism.  相似文献   

3.
The integrin very late antigen, (VLA-4) alpha 4 beta 1 and its counter receptor vascular cell adhesion molecule 1 (VCAM-1) are involved in B cell maturation and pre-B cell attachment to bone marrow stroma cells. We have analyzed whether heat-stable antigen (HSA), a marker for immature leukocytes, is involved in such cell adhesion phenomena. HSA is a glycolipid-anchored, highly glycosylated surface protein differentially expressed on cells during the maturation of both the hematopoietic and nervous systems. We found that pre-B cells lacking HSA (due to targeted disruption of both alleles) can still bind via VLA- 4 to tumor necrosis factor alpha-stimulated endothelioma cells. This binding, however, cannot be blocked by an anti-VCAM-1 antibody. Restoration of HSA expression restores the inhibitable VCAM-1 binding. We also found that pre-B cells lacking HSA did not bind to the FN40 fragment of fibronectin but reexpression of HSA restored VLA-4-mediated binding to fibronectin. Thus, expression of HSA on pre-B cells modifies the binding specificity of VLA-4 for two known ligands.  相似文献   

4.
Erythroblastic islands are anatomical units consisting of a central macrophage surrounded by erythroblasts. We studied the adhesion molecules involved in the formation of these structures. Central macrophages of erythroblastic islands isolated from the spleens of phlebotomized mice were clearly stained for vascular cell adhesion molecule 1 (VCAM-1). The surrounding erythroblasts of the erythroblastic islands strongly expressed the alpha 4 integrin of very late activation antigen 4 (VLA-4: alpha 4 beta 1 integrin), the counter receptor of VCAM-1, whereas most reticulocytes and erythrocytes did not. Both monoclonal antibodies (mAbs) against alpha 4 integrin and VCAM-1 disrupted the erythroblastic islands cultured in the presence of erythropoietin. Moreover, adhesion of splenic erythroblasts to tumor necrosis factor alpha-stimulated mouse splenic endothelial cells, which showed high expression of VCAM-1 but not intercellular adhesion molecule 1, was inhibited by the anti-VCAM-1 and anti-alpha 4 mAbs. These findings suggest that VLA-4-VCAM-1 interaction plays a crucial role in the formation of erythroblastic islands.  相似文献   

5.
The beta 1 subfamily of integrins is thought to play an important role in both the adhesion/migration and proliferation/differentiation of T cells. beta 1 integrins can provide T cell costimulation through interaction of very late antigen (VLA) 4 (VLA-4) (alpha 4 beta 1) and VLA-5 (alpha 5 beta 1) with the extracellular matrix protein fibronectin (FN), or by VLA-4 binding to its cell surface ligand, vascular cell adhesion molecule (VCAM) 1. The mechanism by which beta 1 integrin members transduce T cell-costimulatory signals is poorly understood. Studies in non-T cells have demonstrated regulation of the tyrosine focal adhesion kinase pp125FAK by beta 1 integrin engagement and, most recently, indicate a role for pp125FAK in linking integrin- mediated signal transduction to the Ras pathway (Schaller, M. D., and J. T. Parsons, 1994, Curr. Opin. Cell. Biol. 6: 705-710; Schlaepfer, D. D., S. K. Hanks, T. Hunter, and P. Van der Geer. 1994. Nature (Lond.), 372:786-790). Although pp125FAK kinase occurs in T cells, there are no reports on its regulation in this cell type. The studies described in this article characterize novel regulation of pp125FAK by the T cell receptor (TCR)-CD3 antigen complex and beta 1 integrins, and provide the first account, in any cell type, of integrin alpha 4 beta 1- mediated pp125FAK tyrosine phosphorylation. We demonstrate a rapid and sustained synergistic increase in tyrosine phosphorylation of human pp125FAK in Jurkat T cells after simultaneous (a) triggering of the TCR- CD3 complex, and (b) alpha 4 beta 1 and alpha 5 beta 1 integrin- mediated binding of these cells to immobilized FN or alpha 4 beta 1 integrin-mediated binding to immobilized VCAM-1. Studies with normal peripheral blood-derived CD4+ human T blasts confirm the synergistic action of a TCR-CD3 complex-mediated costimulus with a FN- or VCAM-1- dependent signal in the induction of T cell pp125FAK tyrosine phosphorylation. In vitro kinase assays performed on pp125FAK immunoprecipitates isolated from Jurkat cells and normal CD4+ T cells identified a coprecipitating 57-kD tyrosine-phosphorylated protein (pp57), distinct from pp59fyn or pp56lck. These results indicate, for the first time, the involvement of a specific kinase, pp125FAK, in alpha 4 beta 1- and alpha 5 beta 1-mediated T cell-costimulatory signaling pathways. In addition, the data demonstrate novel regulation of pp125FAK tyrosine phosphorylation by the TCR-CD3 complex.  相似文献   

6.
Many ligands of adhesion molecules mediate costimulation of T cell activation. The generality of this emerging concept is best determined by using model systems which exploit physiologically relevant ligands. We developed such an "antigen-specific" model system for stimulation of resting CD4+ human T cells using the following purified ligands: (a) major histocompatibility complex class II plus the superantigen Staphylococcus enterotoxin A, to engage the T cell receptor (TCR); (b) adhesion proteins vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and endothelial leukocyte adhesion molecule 1 (ELAM-1), to provide potential cell surface costimulatory signals; and (c) recombinant interleukin 1 beta (rIL-1 beta)/rIL-6 as costimulatory cytokines. In this biochemically defined system, we find that resting CD4+ T cells require costimulation in order to respond to TCR engagement. This costimulation can be provided by VCAM-1 or ICAM-1; however adhesion alone is not sufficient since ELAM-1 mediates adhesion but not costimulation. The cytokines IL-1 beta and IL-6 by themselves cannot mediate costimulation, but augment the adhesion ligand-mediated costimulation. Direct comparison with the model of TCR/CD3 engagement by CD3 monoclonal antibody demonstrated comparable costimulatory requirements in both systems, thereby authenticating the commonly used CD3 model. The costimulation mediated by the activation-dependent interaction of the VLA-4 and LFA-1 integrins with their respective ligands VCAM-1 and ICAM-1 leads to increased IL-2R alpha (CD25) expression and proliferation in both CD45RA+ CD4+ and CD45RO+ CD4+ T cells. The integrins also regulate the secretion of IL-2, IL-4, and granulocyte/macrophage colony-stimulating factor. In contrast the activation-independent adhesion of CD4+ T cell to ELAM-1 molecules does not lead to T cell stimulation as measured by proliferation, IL-2R alpha expression, or cytokine release. These findings imply that adhesion per se is not sufficient for costimulation, but rather that the costimulation conferred by the VLA-4/VCAM-1 and LFA-1/ICAM-1 interactions reflects specialized accessory functions of these integrin pathways. The new finding that VLA-4/VCAM-1 mediates costimulation adds significance to observations that VCAM-1 is expressed on a unique set of potential antigen-presenting cells in vivo.  相似文献   

7.
Adhesion of B cell precursors to accessory cells in the bone marrow microenvironment may be required for normal early B cell development. Human bone marrow B cell precursors adhere more avidly than mature B cells to bone marrow-derived fibroblasts. To determine the mechanism of this adhesion, expression of adhesion proteins on human B precursor cells and cell lines was measured by flow cytometry. The very late antigen (VLA) integrins VLA-4 and VLA-5 were the only adhesion proteins expressed at higher levels in B cell precursors than mature B cells. Antibodies to the alpha and beta chains of VLA-4, but not VLA-5, significantly blocked binding to bone marrow-derived fibroblasts of immature B cells and cell lines. Although fibronectin is a ligand for VLA-4, anti-fibronectin antibody and a soluble fibronectin fragment containing the VLA-4 binding domain did not block adhesion, suggesting that VLA-4 is involved in adhesion of B cell precursors, but not as a fibronectin receptor. Vascular cell adhesion molecule-1 (VCAM-1), the other known counterreceptor for VLA-4, was identified on bone marrow-derived fibroblasts, and anti-VCAM-1 significantly blocked adhesion of normal B cell precursors to bone marrow-derived fibroblasts, indicating that VLA-4/VCAM-1 interactions are important in adhesion of B cell precursors to the bone marrow microenvironment.  相似文献   

8.
The alpha1beta1 integrin, very late antigen-1 (VLA-1), is a collagen receptor expressed in many CD4+ T cells localizing to inflamed tissues. Here we show that the expression of VLA-1 is a stable marker of a distinct subset of CD4+ memory T cells. Thus, in human peripheral blood lymphocytes (PBLs), approximately 1-4% of the CD4+ T cells express VLA-1, and following T cell receptor activation ex vivo, the percentage of VLA-1+ cells increases within the CD45RO+ population. Importantly, the activated VLA-1+ and VLA-1- cells can be isolated and maintained in culture as phenotypically stable subsets. Functionally, CD4+ memory T cells, operationally defined as the cells that divide rapidly following stimulation with a recall antigen, are highly enriched for VLA-1+ cells. Moreover, depletion of the small fraction of VLA-1+ cells present in CD4+ PBLs prior to stimulation significantly abrogated the proliferative response to recall antigens. Notably, the VLA-1+ cells in fresh CD4+ PBLs are composed of resting CD45RO+/RA-, CCR7-, CD62L+, CD25-, and VLA-4hi cells. Interestingly, this VLA-1+ subset is enriched for Th1-type cells, and Th1-polarizing conditions during T cell activation favor the emergence of VLA-1+ cells. Thus, VLA-1 expression is a stable marker of a unique subset of human memory CD4+ T cells that predominantly differentiates into Th1 cells.  相似文献   

9.
Recent studies demonstrate that alternative splicing of mRNA from a single gene can produce two forms of vascular cell adhesion molecule 1 (VCAM-1): a six-immunoglobulin (Ig) domain form (VCAM-6D) and a seven-Ig domain form (VCAM-7D). Using a COS cell transient expression assay, we investigated whether VCAM-6D and VCAM-7D differ functionally in adhesion to the integrin VLA-4 (CD49d/CD29) on lymphoid cells. Binding of lymphoid cell lines and peripheral blood lymphocytes was completely blocked by VLA-4 monoclonal antibody (mAb) and one VCAM-1 mAb (4B9) to both VCAM-6D and VCAM-7D, whereas one VCAM-1 mAb (E1/6) completely blocked binding to VCAM-6D but only partially inhibited binding to VCAM-7D. We conclude that there is one VLA-4 binding site in the six Ig domains shared between VCAM-6D and VCAM-7D, and that the alternatively spliced domain 4 present in VCAM-7D provides a second VLA-4 binding site that is blocked by 4B9 but not the E1/6 mAb. We compared the inhibitory effects of anti-VCAM-1 and anti-VLA-4 mAbs on lymphoid cell adhesion to cultured human umbilical vein endothelial cells (HUVEC). The anti-VCAM-1 mAb 4B9 blocked the binding of PBL and lymphoid tumor cells to stimulated HUVEC better than the anti-VCAM-1 mAb E1/6. Because VCAM-7D is the predominant form of VCAM-1 expressed by stimulated endothelial cells, this difference in VCAM-1 mAb inhibition is attributed to lymphoid cell binding to VCAM-7D on stimulated HUVEC. Although the anti-VLA-4 mAb and anti-VCAM-1 mAb 4B9 equally inhibited PBL binding to stimulated HUVEC, mAb 4B9 inhibited the binding of two lymphoid cell lines significantly less than anti-VLA-4 mAb. Combination of 4B9 mAb with function-blocking antiserum to human fibronectin, a second known ligand for VLA-4, also failed to inhibit as much as anti-VLA-4 mAb. These findings suggest that adhesion of lymphoid cell lines through VLA-4 or other alpha 4 integrins may involve inducible counter-receptor(s) on endothelium distinct from either VCAM-1 or fibronectin. Time course experiments indicate that the fraction of alpha 4 integrin-dependent binding that can be blocked by anti-VCAM-1 mAb E1/6 rises and peaks within 2 h of tumor necrosis factor (TNF) stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Integrins can exist in a range of functional states, depending on the cell type and its state of activation. Although the mechanism that controls activity is unknown, it has been suggested that for some integrins, alpha chain cytoplasmic domains may exert either a negative effect or no effect on adhesion function. To address this issue for VLA- 4 (an alpha 4 beta 1 heterodimer), we constructed an alpha 4 cytoplasmic deletion mutant and chimeric alpha chains composed of the extracellular domains of alpha 4 and the cytoplasmic domains of alpha 2, alpha 4, or alpha 5. Upon stable transfection of wild-type alpha 4, VLA-4 heterodimer was obtained that mediated (a) poor adhesion to CS1 peptide, fibronectin, or vascular cell adhesion molecule 1 (VCAM-1) (in K562 cells); (b) poor adhesion to CS1 peptide but moderate adhesion to VCAM-1 (in MIP101 cells); and (c) moderate adhesion to both CS1 peptide and VCAM-1 (in PMWK cells). Chimeric alpha 4 constructs and wild-type alpha 4 yielded similar results in these cell lines. In contrast, truncation of the alpha 4 cytoplasmic domain (after the conserved GFFKR motif) caused an almost complete loss of adhesive activity in all three cell lines. Thus, several interchangeable alpha chain cytoplasmic domains play a fundamentally positive role in determining the state of constitutive activity for VLA-4. The alpha chain cytoplasmic domain is also required for agonist-stimulated adhesion, since phorbol ester stimulated the cell adhesion mediated by wild-type and chimeric alpha chains, but not by the cytoplasmic deletion mutant. The inactivity of both wild-type VLA-4 (in K562 cells), and truncated VLA-4 (in all three cell lines) was overcome by the addition of a stimulatory anti-beta 1 monoclonal antibody. Thus, the alpha cytoplasmic domain-dependent cellular mechanism controlling both constitutive and agonist-stimulated VLA-4 activity could be bypassed by external manipulation of the integrin.  相似文献   

11.
To determine the role of vascular cell adhesion molecule 1 (VCAM- 1)/very late activation antigen 4 (VLA-4) and intercellular adhesion molecule 1 (ICAM-1)/lymphocyte function-associated antigen 1 (LFA-1) interactions in causing antigen-induced eosinophil and T cell recruitment into the tissue, we studied the effect of the in vivo blocking of VCAM-1, ICAM-1, VLA-4, and LFA-1 by pretreatment with monoclonal antibodies (mAb) to these four adhesion molecules on the eosinophil and T cell infiltration of the trachea induced by antigen inhalation in mice. The in vivo blocking of VCAM-1 and VLA-4, but not of ICAM-1 and LFA-1, prevented antigen-induced eosinophil infiltration into the mouse trachea. On the contrary, the in vivo blocking of VCAM-1 and VLA-4, but not of ICAM-1 and LFA-1, increased blood eosinophil counts after antigen challenge, but did not affect blood eosinophil counts without antigen challenge in sensitized mice. Furthermore, the expression of VCAM-1 but not ICAM-1 was strongly induced on the endothelium of the trachea after antigen challenge. In addition, pretreatment with anti-IL-4 mAb decreased the antigen-induced VCAM-1 expression only by 27% and had no significant effect on antigen-induced eosinophil infiltration into the trachea. The in vivo blocking of VCAM- 1 and VLA-4 inhibited antigen-induced CD4+ and CD8+ T cell infiltration into the trachea more potently than that of ICAM-1 and LFA-1. In contrast, regardless of antigen challenge, the in vivo blocking of LFA- 1, but not of ICAM-1, increased blood lymphocyte counts more than that of VCAM-1 and VLA-4. These results indicate that VCAM-1/VLA-4 interaction plays a predominant role in controlling antigen-induced eosinophil and T cell recruitment into the tissue and that the induction of VCAM-1 expression on the endothelium at the site of allergic inflammation regulates this eosinophil and T cell recruitment.  相似文献   

12.
Leukocyte recruitment to target tissue is initiated by weak rolling attachments to vessel wall ligands followed by firm integrin-dependent arrest triggered by endothelial chemokines. We show here that immobilized chemokines can augment not only arrest but also earlier integrin-mediated capture (tethering) of lymphocytes on inflamed endothelium. Furthermore, when presented in juxtaposition to vascular cell adhesion molecule 1 (VCAM-1), the endothelial ligand for the integrin very late antigen 4 (VLA-4, alpha4beta1), chemokines rapidly augment reversible lymphocyte tethering and rolling adhesions on VCAM-1. Chemokines potentiate VLA-4 tethering within <0.1 s of contact through Gi protein signaling, the fastest inside-out integrin signaling events reported to date. Although VLA-4 affinity is not altered upon chemokine signaling, subsecond VLA-4 clustering at the leukocyte-substrate contact zone results in enhanced leukocyte avidity to VCAM-1. Endothelial chemokines thus regulate all steps in adhesive cascades that control leukocyte recruitment at specific vascular beds.  相似文献   

13.
Bacteria and viruses often use the normal biological properties of host adhesion molecules to infect relevant host cells. The outer membrane bacterial protein invasin mediates the attachment of Yersinia pseudotuberculosis to human cells. In vitro studies have shown that four members of the very late antigen (VLA) integrin family of adhesion molecules, VLA-3, VLA-4, VLA-5, and VLA-6, can bind to invasin. Since CD4+ T cells express and use these integrins, we have investigated the interaction of CD4+ T cells with purified invasin. Although VLA integrin-mediated adhesion of T cells to other ligands such as fibronectin does not occur at high levels unless the T cells are activated, resting T cells bind strongly to purified invasin. The binding of resting T cells to invasin requires metabolic activity and an intact cytoskeleton. Although CD4+ T cells express VLA-3, VLA-4, VLA- 5, and VLA-6, monoclonal antibody (mAb) blocking studies implicate only VLA-4 as a T cell invasin receptor. Like other integrin ligands, invasin can facilitate T cell proliferative responses induced by a CD3- specific mAb. These results suggest that the nature of the integrin ligand is a critical additional factor that regulates T cell integrin activity, and that direct interactions of T cells with bacterial pathogens such as Yersinia may be relevant to host immune responses to bacterial infection.  相似文献   

14.
Hematopoietic stem cell interaction with elements of the underlying stroma is essential for sustained normal hematopoiesis. Here we have determined that adhesion receptors in the integrin family play a role in promoting adhesion of human hematopoietic stem cells to cultured human marrow stromal cells. Enriched CD34hi progenitor cells expressed VLA-4, VLA-5, and at least one or more beta 2 integrins. Homogeneous marrow stromal cell monolayers capable of supporting proliferation of cocultivated CD34hi cells expressed VCAM-1 and fibronectin (ligands for VLA-4 and VLA-5) as well as ICAM-1 (ligand for LFA-1 and Mac-1). Adhesion-blocking experiments indicated that VLA-4/VCAM-1, VLA-5/fibronectin, and beta 2-integrin/ICAM-1 pathways all are important for CD34hi cell attachment to stromal cells. Consistent with this suggestion, IL-1 stimulation of stromal cells caused both increased VCAM-1 and ICAM-1 expression and increased attachment by CD34hi bone marrow cells. In addition, CD34hi cells utilized VLA-4 to adhere to purified VCAM-1 and employed VLA-5 (and to a lesser extent VLA-4) to adhere to purified fibronectin. Together these results suggest that CD34hi stem cells may utilize multiple integrin-mediated adhesion pathways to localize within specialized microenvironmental niches created by marrow stromal cells.  相似文献   

15.
Neovascularization depends on vascular cell proliferation and on the stabilization of vessels by association of vascular smooth muscle-like pericytes with ECs. Here we show that integrin alpha4beta1 (VLA-4) and VCAM-1 promote close intercellular adhesion between ECs and pericytes and that this interaction is required for blood vessel formation. Integrin alpha4beta1 is expressed by proliferating but not quiescent ECs, while its ligand VCAM-1 is expressed by proliferating but not quiescent mural cells. Antagonists of this integrin-ligand pair block the adhesion of mural cells to proliferating endothelia in vitro and in vivo, thereby inducing apoptosis of ECs and pericytes and inhibiting neovascularization. These studies indicate that integrin alpha4beta1 and VCAM-1 facilitate a critical cell-cell adhesion event required for survival of endothelial and mural cells during vascularization.  相似文献   

16.
Initial migration of encephalitogenic T cells to the central nervous system (CNS) in relapsing experimental autoimmune encephalomyelitis (R-EAE), an animal model of multiple sclerosis (MS), depends on the interaction of the alpha4 integrin (VLA-4) expressed on activated T cells with VCAM-1 expressed on activated cerebrovascular endothelial cells. Alternate homing mechanisms may be employed by infiltrating inflammatory cells after disease onset. We thus compared the ability of anti-VLA-4 to regulate proteolipid protein (PLP) 139-151-induced R-EAE when administered either before or after disease onset. Preclinical administration of anti-VLA-4 either to naive recipients of primed encephalitogenic T cells or to mice 1 week after peptide priming, i.e., before clinical disease onset, inhibited the onset and severity of clinical disease. In contrast, Ab treatment either at the peak of acute disease or during remission exacerbated disease relapses and increased the accumulation of CD4(+) T cells in the CNS. Most significantly, anti-VLA-4 treatment either before or during ongoing R-EAE enhanced Th1 responses to both the priming peptide and endogenous myelin epitopes released secondary to acute tissue damage. Collectively, these results suggest that treatment with anti-VLA-4 Ab has multiple effects on the immune system and may be problematic in treating established autoimmune diseases such as MS.  相似文献   

17.
The heterodimeric alpha 4 integrins alpha 4 beta 7 lymphocyte Peyer's patch adhesion molecule ([LPAM]-1) and alpha 4 beta 1 (very late antigen-4) are cell surface adhesion molecules involved in lymphocyte trafficking and lymphocyte-cell and matrix interactions. Known cellular ligands include vascular cell adhesion molecule (VCAM)-1, which binds to alpha 4 beta 1 and alpha 4 beta 7, and the mucosal addressin cell adhesion molecule (MAdCAM)-1, which binds to alpha 4 beta 7. Here we show that the alpha 4 chain of these integrins can itself serve as a ligand. The alpha 4 chain, immunoaffinity purified and immobilized on glass slides, binds thymocytes and T lymphocytes. Binding exhibits divalent cation requirements and temperature sensitivity which are characteristic of integrin-mediated interactions, and is specifically inhibited by anti-alpha 4 integrin antibodies, which exert their effect at the cell surface. Cells expressing exclusively alpha 4 beta 7 (TK-1) or alpha 4 beta 1 (L1-2) both bound avidly, whereas alpha 4-negative cells did not. A soluble 34-kD alpha 4 chain fragment retained binding activity, and it inhibited lymphocyte adhesion to alpha 4 ligands. It has been shown that alpha 4 integrin binding to fibronectin involves an leucine-aspartic acid-valine (LDV) motif in the HepII/IIICS region of fibronectin (CS-1 peptide), and homologous sequences are important in binding to VCAM-1 and MAdCAM-1. Three conserved LDV motifs occur in the extracellular sequence of alpha 4. A synthetic LDV-containing alpha 4- derived oligopeptide supports alpha 4-integrin-dependent lymphocyte adhesion and blocks binding to the 34-kD alpha 4 chain fragment. Our results suggest that alpha 4 beta 7 and alpha 4 beta 1 integrins may be able to bind to the alpha 4 subunit on adjacent cells, providing a novel mechanism for alpha 4 integrin-mediated and activation-regulated lymphocyte interactions during immune responses.  相似文献   

18.
为了了解淋巴细胞功能相关抗原1(lymphocyte function—associated antigen1,LFA-1)和极迟反应抗原4(very lateantigen 4,VLA-4)在高增殖潜能内皮祖细胞(high proliferative potential endothelial progenitor cells,HPP—EPCs)归巢过程中与血管内皮的黏附和跨内皮迁移中的作用,利用流式细胞术检测HPP—EPC中整合蛋白B1和B2的表达以及小鼠骨髓内皮细胞相应的受体的表达。利用体外黏附和迁移实验研究经过功能级别的中和抗体阻断VLA-4和LFA-1后HPP—EPC黏附和迁移细胞数目的变化。结果表明,HPP—EPC表达整合蛋白B1和B2,活化后小鼠骨髓内皮细胞表达细胞间黏附分子1(intercellular adhesion molecule1,ICAM-1)和血管细胞黏附分子1(vascular cell adhesion molecule1,VCAM-1);加CDlla抗体组黏附细胞或CD49d抗体组黏附和迁移细胞均较同型对照抗体组少,而且加CDlla和CD49d两种抗体联用组黏附和迁移细胞明显减少,其细胞数较任何单一抗体组少。结论:LFA-1和VLA-4在HPP—EPC与血管内皮的黏附和跨内皮迁移中发挥了重要的作用。  相似文献   

19.
BACKGROUND: Low-density lipoproteins (LDL) can induce the adhesion of monocytes to endothelial cells. Monocytes of patients with familial hypercholesterolemia (FH) are exposed to high concentrations of LDL, and it has been reported that adhesiveness of these cells in hypercholesterolemic patients is enhanced. We investigated whether LFA-1 or VLA-4 mediated adhesion is altered in FH patients and whether HMG-CoA reductase inhibitors influence this adhesion. PATIENTS AND METHODS: LFA-1 and VLA-4 mediated adhesion to ICAM-1 and VCAM-1 coated beads was investigated using freshly isolated monocytes and T-lymphocytes from patients with homozygous FH, heterozygous FH (before and after cholesterol lowering treatment), and from controls. In addition, the expression of beta1- and beta2-integrins on these cells was determined. RESULTS: Both LFA-1 and VLA-4 mediated adhesion and integrin expression of monocytes and CD3+ cells from patients with homozygous FH and heterozygous FH was similar to that of monocytes from a control population. Treatment with HMG-CoA reductase inhibitors did not affect the adherence to ICAM-1 or VCAM-1, and did not influence the expression of integrins. CONCLUSIONS: In contrast to studies by others, we demonstrated in the present study that the actual LFA-1 and VLA-4 mediated adhesion of T-lymphocytes and monocytes is not altered in patients with FH.  相似文献   

20.
Molecular mechanisms leading to mobilization of hematopoietic cells from bone marrow (BM) to peripheral blood (PB) involve modulation of adhesion molecule expression on these cells that probably result in changes in adhesion capacity to the microenvironment. However, it is not clear whether these changes involve different stages or lineages of progenitor cells. In this study, we compared the capacity of mature and immature clonogenic progenitor cells from granulocyte colony-stimulating factor (G-CSF)-mobilized PB and normal BM CD34+ cells to adhere to complete marrow stroma. This functional capacity was assessed concurrently with molecular expression on CD34+ cells of integrins VLA-4 (alpha 4/beta 1), VLA-5 (alpha 5/beta 1), and LFA-1 (alpha L/beta 2) by interindividual (between mobilized PB and normal BM) and intraindividual (between mobilized PB and steady-state BM and PB in the same patient) analysis. The proportion of adherent clonogenic progenitor cells was significantly lower in PB than in BM, not only for total progenitor cells but also for mature and immature progenitor cells, and the difference was found for granulocytic and particularly for erythroid lineages. The lower adhesion capacity of PB CD34+ cells to stroma was associated with decreased expression (signal/noise MFI ratio) of integrin alpha 4, beta 1, alpha L, and beta 2 chains whereas that of alpha 5 chain did not differ from BM cells with the lowest expression level. Similar differences in integrin expression levels were also found between mobilized PB and steady-state BM CD34+ cells in the same patient except for the alpha L chain. Moreover, we demonstrated for the first time a strong positive correlation between mobilizing capacity and expression levels on mobilized CD34+ cells for the LFA-1 alpha L chain but not for VLA-4 or VLA-5. In conclusion, the decreased adhesion capacity of mobilized PB progenitor cells to stroma involves different maturation stages and different lineages. This is associated with down-regulation of integrins VLA-4 and LFA-1, but mobilizing capacity appears positively correlated with LFA-1 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号