首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reichert VL  Choi M  Petrillo JE  Gehrke L 《Virology》2007,364(1):214-226
Alfalfa mosaic virus (AMV) RNA replication requires the viral coat protein (CP). AMV CP is an integral component of the viral replicase; moreover, it binds to the viral RNA 3'-termini and induces the formation of multiple new base pairs that organize the RNA conformation. The results described here suggest that AMV coat protein binding defines template selection by organizing the 3'-terminal RNA conformation and by positioning the RNA-dependent RNA polymerase (RdRp) at the initiation site for minus strand synthesis. RNA-protein interactions were analyzed by using a modified Northwestern blotting protocol that included both viral coat protein and labeled RNA in the probe solution ("far-Northwestern blotting"). We observed that labeled RNA alone bound the replicase proteins poorly; however, complex formation was enhanced significantly in the presence of AMV CP. The RNA-replicase bridging function of the AMV CP may represent a mechanism for accurate de novo initiation in the absence of canonical 3' transfer RNA signals.  相似文献   

2.
The GB virus-B (GBV-B) nonstructural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase (RdRp) with greater than 50% sequence similarity to the hepatitis C virus (HCV) NS5B. Recombinant GBV-B NS5B was reported to possess RdRp activity (W. Zhong et al., 2000, J. Viral Hepat. 7, 335-342). In this study, the GBV-B RdRp was examined more thoroughly for different RNA synthesis activities, including primer-extension, de novo initiation, template switch, terminal nucleotide addition, and template specificity. The results can be compared with previous characterizations of the HCV RdRp. The two RdRps share similarities in terms of metal ion and template preference, the abilities to add nontemplated nucleotides, perform both de novo initiation and extension from a primer, and switch templates. However, several differences in RNA synthesis between the GBV-B and HCV RdRps were observed, including (i) optimal temperatures for activity, (ii) ranges of Mn(2+) concentration tolerated for activity, and (iii) cation requirements for de novo RNA synthesis and terminal transferase activity. To assess whether the recombinant GBV-B RdRp may represent a relevant surrogate system for testing HCV antiviral agents, two compounds demonstrated to be active at nanomolar concentrations against HCV NS5B were tested on the GBV RdRp. A chain terminating nucleotide analog could prevent RNA synthesis, while a nonnucleoside HCV inhibitor was unable to affect RNA synthesis by the GBV RdRp.  相似文献   

3.
4.
5.
Wang Y  Xiao M  Chen J  Zhang W  Luo J  Bao K  Nie M  Chen J  Li B 《Virus genes》2007,34(1):63-65
To define the function of the GDD motif of the RNA-dependent RNA polymerase (RdRp) of classical swine fever virus (CSFV), single amino acid substitutions were introduced into the CSFV NS5B. All substitutions within the GDD motif were detrimental to the polymerase activity, the binding activity and the terminal nucleotidyl transferase activity of the NS5B protein. It was also found that the wild-type NS5B had higher RdRp activity with Mg(+2) than with Mn(+2) whereas some mutants worked better with Mn(+2) than with Mg(+2), suggesting that substitutions within the GDD motif modified the enzyme cation preferences and the GDD sequence of CSFV NS5B might be involved in polymerase-metal interaction. Therefore, the GDD amino acid sequence is important for the function of CSFV RdRp.  相似文献   

6.
The Sindbis virus RNA-dependent RNA polymerase (nsP4) is responsible for the replication of the viral RNA genome. In infected cells, nsP4 is localized in a replication complex along with the other viral non-structural proteins. nsP4 has been difficult to homogenously purify from infected cells due to its interactions with the other replication proteins and the fact that its N-terminal residue, a tyrosine, causes the protein to be rapidly turned over in cells. We report the successful expression and purification of Sindbis nsP4 in a bacterial system, in which nsP4 is expressed as an N-terminal SUMO fusion protein. After purification the SUMO tag is removed, resulting in the isolation of full-length nsP4 possessing the authentic N-terminal tyrosine. This purified enzyme is able to produce minus-strand RNA de novo from plus-strand templates, as well as terminally add adenosine residues to the 3′ end of an RNA substrate. In the presence of the partially processed viral replicase polyprotein, P123, purified nsP4 is able to synthesize discrete template length minus-strand RNA products. Mutations in the 3′ CSE or poly(A) tail of viral template RNA prevent RNA synthesis by the replicase complex containing purified nsP4, consistent with previously reported template requirements for minus-strand RNA synthesis. Optimal reaction conditions were determined by investigating the effects of time, pH, and the concentrations of nsP4, P123 and magnesium on the synthesis of RNA.  相似文献   

7.
8.
Chisholm J  Zhang G  Wang A  Sanfaçon H 《Virology》2007,368(1):133-144
Replication of Tomato ringspot virus (ToRSV) occurs in association with endoplasmic reticulum (ER)-derived membranes. We have previously shown that the putative nucleotide triphosphate-binding protein (NTB) of ToRSV is an ER-targeted protein and that an intermediate polyprotein containing the domains for NTB and for the genome-linked viral protein (VPg) is associated with the replication complex. We now report the detection of a 95-kDa polyprotein that contains the domains for the RNA-dependent RNA polymerase (Pol), the proteinase (Pro) and the VPg. This polyprotein appears to be a truncated version of the full-length 111-kDa VPg-Pro-Pol polyprotein and was termed VPg-Pro-Pol'. A subpopulation of VPg-Pro-Pol' was peripherally associated with ER-derived membranes active in viral replication. However, the VPg, Pro and Pol domains did not target to membranes in the absence of viral infection. We propose a model in which VPg-Pro-Pol' is brought to the site of replication through interaction with a viral membrane protein.  相似文献   

9.
An outbreak of coronavirus disease 2019 (COVID-19) occurred in Wuhan and it has rapidly spread to almost all parts of the world. For coronaviruses, RNA-dependent RNA polymerase (RdRp) is an important polymerase that catalyzes the replication of RNA from RNA template and is an attractive therapeutic target. In this study, we screened these chemical structures from traditional Chinese medicinal compounds proven to show antiviral activity in severe acute respiratory syndrome coronavirus (SARS-CoV) and the similar chemical structures through a molecular docking study to target RdRp of SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV). We found that theaflavin has a lower idock score in the catalytic pocket of RdRp in SARS-CoV-2 (−9.11 kcal/mol), SARS-CoV (−8.03 kcal/mol), and MERS-CoV (−8.26 kcal/mol) from idock. To confirm the result, we discovered that theaflavin has lower binding energy of −8.8 kcal/mol when it docks in the catalytic pocket of SARS-CoV-2 RdRp by using the Blind Docking server. Regarding contact modes, hydrophobic interactions contribute significantly in binding and additional hydrogen bonds were found between theaflavin and RdRp. Moreover, one π-cation interaction was formed between theaflavin and Arg553 from the Blind Docking server. Our results suggest that theaflavin could be a potential SARS-CoV-2 RdRp inhibitor for further study.  相似文献   

10.
11.
Nodaviruses encode an RNA-dependent RNA polymerase called Protein A that is responsible for replication of the viral RNA segments. The intracellular localization of Protein A from a betanodavirus isolated from Atlantic halibut (AHNV) was studied in infected fish cells and in transfected mammalian cells expressing Myc-tagged wild type Protein A and mutants. In infected cells Protein A localized to cytoplasmic structures resembling mitochondria and in transfected mammalian cells the AHNV Protein A was found to co-localize with mitochondrial proteins. Two independent mitochondrial targeting signals, one N-terminal comprising residues 1–40 and one internal consisting of residues 225–246 were sufficient to target both Protein A deletion mutants and enhanced green fluorescent protein (EGFP) to the mitochondria. The N-terminal signal corresponds to the mitochondrial targeting sequence of the Flock House Virus (FHV) Protein A while the internal signal is similar to the single targeting signal previously found in Greasy Grouper Nervous Necrosis Virus (GGNNV) Protein A.  相似文献   

12.
Replication of picornavirus genomes is accomplished by the virally encoded RNA-dependent RNA polymerase (RdRP). Although the primary structure of this enzyme exhibits a high level of conservation, there are several significant differences among different picornavirus genera. In particular, a comparative alignment indicates that the C-terminal sequences of cardiovirus RdRP (known also as 3D(pol)), are 1-amino-acid residue (arginine or tryptophan) longer than that of the enterovirus or rhinovirus enzymes. Here, it is shown that alterations of the last codon of the RdRP-encoding sequence of mengovirus RNA leading to deletion of the C-terminal Trp460 or its replacement by Ala or Phe dramatically impaired viral RNA replication and, in the former case, resulted in a quasi-infectious phenotype (i.e., the mutant RNA might generate a low yield of pseudorevertants acquiring a Tyr residue in place of the deleted Trp460). The replacement of Trp460 by His or Tyr did not appreciably alter the viral growth potential. Homology modeling of three-dimensional structure of mengovirus RdRP suggested that Trp460 may be involved in interaction between the thumb and palm domains of the enzyme. Specifically, Trp460 of the thumb may form a hydrogen bond with Thr219 and hydrophobically interact with Val216 of the palm. The proposed interactions were consistent with the results of in vivo SELEX experiment, which demonstrated that infectious virus could contain Ser or Thr at position 219 and hydrophobic Val, Leu, Ile, as well as Arg (whose side chain has a nonpolar part) at position 216. A similar thumb-palm domain interaction may be a general feature of several RdRPs and its possible functional significance is discussed.  相似文献   

13.
Yang H  Gottlieb P  Wei H  Bamford DH  Makeyev EV 《Virology》2003,314(2):706-715
To continue the molecular characterization of RNA-dependent RNA polymerases of dsRNA bacteriophages (Cystoviridae), we purified and biochemically characterized the wild-type (wt) and a temperature-sensitive (ts) point mutant of the polymerase subunit (Pol) from bacteriophage phi12. Interestingly, initiation by both wt and the ts phi12 Pol was notably more sensitive to increased temperatures than the elongation step, the absolute value of the nonpermissive temperature being lower for the ts enzyme. Experiments with the Pol subunit of related cystovirus phi6 revealed a similar differential sensitivity of the initiation and elongation steps. This is consistent with the previous result showing that de novo initiation by RdRp from dengue virus is inhibited at elevated temperatures, whereas the elongation phase is relatively thermostable. Overall, these data suggest that de novo RNA-dependent RNA synthesis in many viral systems includes a specialized thermolabile state of the RdRp initiation complex.  相似文献   

14.
15.
Lu A  Zhang H  Zhang X  Wang H  Hu Q  Shen L  Schaffhausen BS  Hou W  Li L 《Virology》2004,324(1):84-89
Severe acute respiratory syndrome (SARS) is a highly contagious and sometimes a lethal disease, which spread over five continents in 2002-2003. Laboratory analysis showed that the etiologic agent for SARS is a new type of coronavirus. Currently, there is no specific treatment for this disease. RNA interference (RNAi) is a recently discovered antiviral mechanism in plant and animal cells that induces a specific degradation of double-stranded RNA. Here, we provide evidences that RNAi targeting at coronavirus RNA-dependent RNA polymerase (RDRP) using short hairpin RNA (shRNA) expression plasmids can specifically inhibit expression of extraneous coronavirus RDRP in 293 and HeLa cells. Moreover, this construct significantly reduced the plaque formation of SARS coronaviruses in Vero-E6 cells. The data may suggest a new approach for treatment of SARS patients.  相似文献   

16.
Several host translation elongation factors have been suggested to play essential roles in the replication and translation of viral RNAs in plants, animals and bacteria. Here, we show the interaction between eukaryotic translation elongation factor 1A (eEF1A) and Tobacco mosaic virus (TMV) RNA-dependent RNA polymerase (RdRp) in vivo by immunoprecipitation. The tobacco eEF1A interacted not only with 3'-untranslated region (3'-UTR) of TMV RNA but also directly with RdRp without mediation by the 3'-UTR. The methyltransferase domain of TMV RdRp was indicated to be responsible for the interaction with eEF1A in vitro and in yeast. These results suggest that eEF1A is a component of the virus replication complex of TMV.  相似文献   

17.
Xiao M  Wang Y  Chen J  Li B 《Virus genes》2003,27(1):67-74
The full-length NS5B protein, and the truncated NS5B proteins of classical swine fever virus (CSFV) resulted from deletion of 24, 36, 65 or 82, amino acid residues at the C terminal were expressed in Escherichia coli cells and purified with a C-terminal hexahistidine tag. In addition to the full-length NS5B protein, those truncated NS5B proteins with deletion of 24, 36, or 65 amino acid residues were demonstrated to have RNA-dependent RNA polymerase (RdRp) activity, which was not found in the truncated NS5B proteins with deletion of 82 amino acid residues. Analysis of the template specificity of CSFV RdRp was done containing the different NS5B proteins with RdRp activity. It was shown that the template specificity of the enzyme was not strict with NS5B proteins truncated, suggesting that the C terminal of CSFV NS5B protein was involved in the template specificity of the enzyme. Site-directed mutagenesis of and prediction of the secondary structure of 3 terminal sequence of the template indicated that the cytidines at 3 terminus and the correct secondary structure of the template were essential to initiation of RNA synthesis by RdRp. Oxidation of the hydroxyl groups of the RNA template revealed that both the de novo initiation mechanism and the template-priming mechanism preference might be employed by the CSFV RdRp.  相似文献   

18.
19.
Brefeldin A is a macrolide compound that interferes with the secretory pathway and also affects protein synthesis in mammalian cells. As a result, this antibiotic impedes the maturation of viral glycoproteins of enveloped viruses and viral genome replication in several virus species. In the present work, we show that translation of subgenomic mRNA from Sindbis virus, which in contrast to cellular translation is resistant to brefeldin A after prolonged treatment. The phosphorylation of eIF2alpha as a result of brefeldin A treatment correlates with the inhibition of cellular translation, while late viral protein synthesis is resistant to this phosphorylation. The effect of brefeldin A on Sindbis virus replication was also examined using a Sindbis virus replicon. Although brefeldin A delayed viral RNA synthesis, translation by non-replicative viral RNAs was not affected, reinforcing the idea that brefeldin A delays viral RNA replication, but does not directly affect Sindbis virus protein synthesis.  相似文献   

20.
Mini-genomes expressing two reporter genes and a variable gene junction were used to study Sendai virus RNA polymerase (RdRp) scanning for the mRNA start signal of the downstream gene (gs2). We found that RdRp could scan the template efficiently as long as the initiating uridylate of gs2 (3' UCCCnnUUUC) was preceded by the conserved intergenic region (3' GAA) and the last 3 uridylates of the upstream gene end signal (ge1; 3' AUUCUUUUU). The end of the leader sequence (3' CUAAAA, which precedes gs1) could also be used for gene2 expression, but this sequence was considerably less efficient. Increasing the distance between ge1 and gs2 (up to 200 nt) led to the progressive loss of gene2 expression, in which half of gene2 expression was lost for each 70 nucleotides of intervening sequence. Beyond 200 nt, gene2 expression was lost more slowly. Our results suggest that there may be two populations of RdRp that scan at gene junctions, which can be distinguished by the efficiency with which they can scan the genome template for gs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号