首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
2.
3.
4.
Stat3 plays an essential role in IL-10 signaling pathways. A myeloid cell-specific deletion of Stat3 resulted in inflammatory cytokine production and development of chronic enterocolitis with enhanced Th1 responses in mice. In this study, we analyzed the mechanism by which a Stat3 deficiency in myeloid cells led to the induction of chronic enterocolitis in vivo. Even in the absence of Stat1, which is essential for IFN-gamma signaling pathways, Stat3 mutant mice developed chronic enterocolitis. TNF-alpha/Stat3 double-mutant mice developed severe chronic enterocolitis with enhanced Th1 cell development. IL-12p40/Stat3 double-mutant mice, however, showed normal Th1 responses and no inflammatory change in the colon. RAG2/Stat3 double-mutant mice did not develop enterocolitis, either. These findings indicate that overproduction of IL-12p40, which induces potent Th1 responses, is essential for the development of chronic enterocolitis in Stat3 mutant mice. Furthermore, enterocolitis was significantly improved and IFN-gamma production by T cells was reduced in TLR4/Stat3 double-mutant mice, indicating that TLR4-mediated recognition of microbial components triggers aberrant IL-12p40 production by myeloid cells, leading to the development of enterocolitis. Thus, this study clearly established a sequential innate and acquired immune mechanism for the development of Th1-dependent enterocolitis.  相似文献   

5.
6.
7.
CD2 subserves both adhesion and signal transduction functions in T cells, thymocytes, and natural killer (NK) cells. In mature T lymphocytes, CD2-mediated signaling function apparently requires surface expression of T cell receptors (TCRs). In contrast, in CD2+ CD3- NK cells and thymocytes, signal transduction through CD2 is TCR independent. To resolve this paradox and characterize TCR-independent triggering mechanisms, we transfected a human CD2 cDNA into a murine mast cell line, C1.MC/57 (Fc epsilon RI+, Fc gamma RII+, Fc gamma RIII+), which is known to produce interleukin 6 (IL-6) as well as release histamine in response to crosslinking of Fc epsilon RI. In the CD2 transfectant, a combination of anti-T11(2) + anti-T11(3) monoclonal antibodies (mAbs) induced a rise in intracellular free calcium [( Ca2+]i), IL-6 production, and histamine release. As expected, no activation was mediated by the same mAbs in C1.MC/57. F(ab)'s fragments of the activatory combination of anti-T11(2) + anti-T11(3) mAbs induced IL-6 in the CD2-transfected mast cells, demonstrating an Fc gamma receptor ectodomain-independent triggering mechanism. In addition, either intact anti-T11(2) or anti-T11(3) IgG alone, which failed to induce [Ca2+]i mobilization in the transfectant, was able to induce IL-6 production. A mAb directed against both Fc gamma RII (previously denoted as Fc gamma RIIb) and Fc gamma RIII (previously denoted as Fc gamma RIIa) inhibits this induction. These results indicate that: (a) Ca2+ mobilization is not essential for IL-6 production; and (b) crosslinking of CD2 and Fc gamma receptors via intact anti-CD2 IgG stimulates IL-6 production. Thus, CD2-mediated IL-6 production occurs by both Fc receptor ectodomain-independent as well as Fc receptor ectodomain-dependent mechanisms in these nonlymphoid cells. Northern blot analysis demonstrates that although the mast cells do not express CD3 zeta or CD3 eta mRNA, they express Fc epsilon RI gamma mRNA. The latter is a known component of Fc gamma RIII as well as Fc epsilon RI, has significant homology to CD3 zeta/eta, and is thought to have a signal transduction function. In these mast cells, CD2 signaling machinery does not require CD3 zeta/eta and may be linked to the Fc epsilon RI gamma subunit. We predict that this subunit or a related structure may confer a TCR-independent signal transduction pathway upon CD2 in CD3- NK cells, thymocytes, and certain B lymphocytes.  相似文献   

8.
9.
Although much is known about the activation, proliferation, and function of CD4+ T cells, little is known about how they survive as resting T cells in animals. Resting T cells have a half-life in animals of more than a week; however, when they are removed from animals and placed in tissue culture their half-life falls to ~24 h. In this paper, we show that the survival of resting T cells in vitro is promoted by two cytokines, interleukins 4 and 7 (IL-4, IL-7). They may do this in part by maintaining levels of survival-promoting proteins such as Bcl-2 in the cells, because the levels of Bcl-2 and Bcl-Xl in resting T cells fall rapidly after the cells are isolated from animals, and are maintained by culture in IL-4. Because the IL-4 receptor is known to signal through the JAK1 and JAK3/Stat6 pathway, we tested whether Stat6 was required for IL-4– dependent T cell survival. Surprisingly, we found that IL-4 rescued T cells from apoptosis in what appeared to be a Stat6-independent manner. These results demonstrate that the survival of resting T cells is an active process that can be affected by signals delivered by cytokines and also suggest that the IL-4 receptor on resting T cells may use a novel signaling pathway to facilitate T cell viability.  相似文献   

10.
11.
12.
13.
Interleukin (IL)-4 is known to be the most potent cytokine that can initiate Th2 cell differentiation. Paradoxically, IL-4 instructs dendritic cells (DCs) to promote Th1 cell differentiation. We investigated the mechanisms by which IL-4 directs CD4 T cells toward the Th1 cell lineage. Our study demonstrates that the IL-4-mediated induction of Th1 cell differentiation requires IL-10 production by DCs. IL-4 treatment of DCs in the presence of lipopolysaccharide or CpG resulted in decreased production of IL-10, which was accompanied by enhanced IL-12 production. In IL-10-deficient DCs, the level of IL-12 was greatly elevated and, more importantly, the ability of IL-4 to up-regulate IL-12 was abrogated. Interestingly, IL-4 inhibited IL-10 production by DCs but not by B cells. The down-regulation of IL-10 gene expression by IL-4 depended on Stat6 and was at least partly caused by decreased histone acetylation of the IL-10 promoter. These data indicate that IL-4 plays a key role in inducing Th1 cell differentiation by instructing DCs to produce less IL-10.  相似文献   

14.
15.
16.
Mast cells have been implicated in a number of diseases involving chronic inflammation including asthma, rheumatoid arthritis, and inflammatory bowel diseases. They are a potent source of several cytokines, including IL-6 and TNF-alpha. Freshly isolated rat peritoneal mast cells will produce IL-6 in response to anti-IgE, LPS, PGE1, or PGE2; however, the mechanisms by which such cytokine production is regulated are poorly understood. IL-10 is recognized as an important immunoregulatory cytokine with effects on T cell development and the production of inflammatory cytokines. IL-10 has previously been described to enhance mast cell development in the context of IL-3 and IL-4. In the current study, we have examined the ability of IL-10 to modulate rat peritoneal mast cell IL-6 and TNF-alpha production in response to a variety of stimuli. We have observed that recombinant murine IL-10 can inhibit the production of both IL-6 and TNF-alpha by mast cells without altering the degree of histamine release in response to anti-IgE. Concentrations of IL-10 as low as 0.2 ng/ml were sufficient to inhibit IL-6 production by LPS- or anti-IgE-activated cells significantly. IL-10 also inhibited PGE1- and PGE2-induced IL-6 production. The relative potency of IL-10 as an inhibitor of mast cell IL-6 production was highly dependent upon the stimulus used, with a 10-fold difference in the IC50 for LPS- or anti-IgE-activated cells (0.21 ng/ml) and cells activated with a combination of LPS and PGE2 (2.29 ng/ml). This suggests that prostanoids may limit the ability of IL-10 to modulate mast cell IL-6 production in the context of inflammation. These data have important implications for the regulation of mast cell IL-6 in inflammatory diseases involving prostanoid production and the effects of treatment with cyclooxygenase inhibitors. Our results also demonstrate a dual role for IL-10 on mast cells as a growth factor and inhibitor of cytokine production.  相似文献   

17.
18.
Impaired Interleukin 4 Signaling in T Helper Type 1 Cells   总被引:5,自引:2,他引:5       下载免费PDF全文
Cluster of differentation (CD)4+ T helper cells (Th)1s fail to produce interleukin (IL)-4. Even if restimulated in the presence of IL-4, a condition that induces IL-4–producing capacity in naive CD4+ T cells, Th1s fail to become IL-4 producers. We report that Th1 cells have a major impairment in IL-4 signaling. When compared to both Th2s and naive T cells, they display a striking diminution in phosphorylation of Stat6. They also show reduced phosphorylation of Janus kinase (JAK)-3 and insulin receptor substrate (IRS)-2 when compared to Th2s. Stat6 and JAK-3 are present in equivalent amounts in Th1s and Th2s, but IRS-2 protein levels are much lower in Th1s than in Th2s. Altered sensitivity to IL-4, the major inducer of the Th2 phenotype, may explain the stability of the Th1 state.  相似文献   

19.
20.
The recently described ligand-receptor pair, B7h-inducible costimulator (ICOS), is critical for germinal center formation and antibody responses. In contrast to the induced expression of the related costimulatory ligands B7.1 and B7.2, B7h is constitutively expressed on naive B cells and is surprisingly extinguished after antigen engagement and interleukin (IL)-4 cytokine signaling. Although signaling through both B cell receptor (BCR) and IL-4 receptor (R) converge on the extinction of B7h mRNA levels, BCR down-regulation occurs through Ca2+ mobilization, whereas IL-4R down-regulation occurs through a distinct Stat6-dependent pathway. During antigen-specific B cell activation, costimulation through CD40 signaling can reverse both BCR- and IL-4R-mediated B7h down-regulation. These data suggest that the CD40-CD40 ligand signaling pathway regulates B7h expression on activated B cells and may control whether antigen-activated B cells can express B7h and costimulate cognate antigen-activated T cells through ICOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号