首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The spinal projections from the raphe-associated brainstem areas containing serotonergic neurons were studied with aldehyde-induced fluorescence in combination with the retrograde fluorescent tracer True Blue in the rat. This technique makes it possible to determine simultaneously the projections of individual neurons and to detect whether serotonin is present in the same neurons. After tracer injections into the spinal cord retrogradely labeled serotonergic and non-serotonergic neurons were found in the medullary raphe nuclei and adjacent regions and to a lesser extent in association with the dorsal and median raphe nuclei in the mesencephalon. Large True Blue injections that covered one side of the spinal cord at mid-cervical level labeled about 60% of the ipsilaterally situated serotonergic neurons in the medullary raphe regions while the corresponding figure contralaterally was about 25%. On both sides a larger number of labeled non-serotonergic neurons were found; these were sometimes located dorsal to, but often intermingled with, the serotonergic cells. While the serotonergic projection from the mesencephalon could not be labeled from injections below cervical levels, the labeling in more caudal brainstem regions exhibited only minor variations depending on the rostrocaudal level of the spinal segment injected. Furthermore, quantitative data from injections at different levels indicate that the majority of the spinal-projecting neurons traverse most of the length of the cord. Summarizing the results obtained from small injections restricted to subregions of the cord we feel that it is possible to distinguish three fairly distinct pathways for spinal projections from the medullary raphe and adjacent regions: The dorsal pathway originates mainly from cells in the caudal pons and rostral medulla oblongata (rostral part of nucleus raphe magnus, nucleus raphe magnus proper, nucleus reticularis gigantocellularis pars alpha and nucleus paragigantocellularis). This pathway, which contains a large non-serotonergic component, descends through the dorsal part of the lateral funiculus and terminates mainly in the dorsal horn at all spinal cord levels. The intermediate pathway is largely serotonergic with its cell bodies located within the arcuate cell group (situated just ventral and lateral to the pyramids very close to the ventral surface of the brainstem) and in the nucleus raphe obscurus and pallidus and terminates in the intermediate grey at thoracolumbar and upper sacral levels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The human raphe nuclei and the serotonergic system   总被引:10,自引:0,他引:10  
The raphe nuclei are distributed near the midline of the brainstem along its entire rostro-caudal extension. The serotonergic neurons are their main neuronal components, although a proportion of them lie in subdivisions of the lateral reticular formation. They develop from mesopontine and medullary primordia, and the resulting grouping into rostral and caudal clusters is maintained into adulthood, and is reflected in the connectivity. Thus, the mesencephalon and rostral pons, neurons within the rostral raphe complex (caudal linear, dorsal raphe, and median raphe nuclei) project primarily to the forebrain. By contrast, in the caudal pons and medulla oblongata, neurons within the caudal raphe complex (raphe magnus, raphe obscurus, raphe pallidus nuclei and parts of the adjacent lateral reticular formation) project to the brainstem nuclei and to the spinal cord. The median raphe and dorsal raphe nuclei provide parallel and overlapping projections to many forebrain structures with axon fibers exhibiting distinct structural and functional characteristics. The caudal group of the serotonergic system projects to the brainstem, and, by three parallel projections, to the dorsal, intermediate and ventral columns in the spinal cord. The serotonergic axons arborize over large areas comprising functionally diverse targets. Some projections form classical chemical synapses while many do not, thus contributing to the so-called paracrine or volume transmission. The serotonergic projections participate in the regulation of different functional (motor, somatosensory, limbic) systems; and have been associated with a wide range of neuropsychiatric and neurological disorders. Finally, recent experimental data support the role of serotonin in modulating brain development, such that a dysfunction in serotonergic transmission during early life could lead to long lasting structural and functional alterations.  相似文献   

3.
Multiple nuclei and fiber tracts in the adult rat brainstem and spinal cord were found to contain nerve growth factor receptor-related protein, as recognized by the monoclonal antibody 192-IgG. Both cholinergic and non-cholinergic sensory and motor regions demonstrated immunoreactive cell bodies and fibers. Nerve growth factor receptor-immunoreactive cells were seen in the mesencephalic nucleus of trigeminal nerve, superior colliculus, parabrachial, prepositus hypoglossal, raphe, dorsal and ventral cochlear, interstitial nucleus of the vestibular nerve, ambiguus and reticular nuclei, cerebellum and ventral spinal cord. Immunoreactive cells resembling neuroglia were distributed subpially along the superior colliculus. Intracerebroventricular injection of colchicine resulted in significantly increased nerve growth factor receptor immunoreactivity in all previously positive neurons and especially in certain neurons of the cochlear and ambiguus nuclei. It also resulted in the visualization of receptor immunoreactivity in certain neurons which were normally non-immunoreactive including cerebellar Purkinje cells, neurons of the central gray, locus coeruleus, facial, dorsal motor vagal and hypoglossal nuclei. In normal animals, nerve growth factor receptor-immunoreactive fibers and varicosities occurred in the trigeminal nerve nuclei, pontine, vestibular, parabrachial, facial, hypoglossal, dorsal motor vagal, solitary, gracile and cuneate nuclei and spinal cord. Although most fiber-like immunoreactive structures were probably axons and nerve terminals, neuroglial or extracellular localizations could not be excluded in some areas. For example, the medial nucleus of the inferior olive and most cerebellar nuclei contained diffuse non-fibrillar receptor immunoreactivity. The presence of nerve growth factor receptor-like immunoreactivity in cell bodies and fibers of several sensory and motor areas of the adult rat brainstem, cerebellum and spinal cord suggests multifocal actions of nerve growth factor or a nerve growth factor-like substance. Although the degree of overlap between nerve growth factor receptor- and choline acetyltransferase-containing regions in the brainstem is not as great as in the forebrain, our findings suggest a potential influence of nerve growth factor or nerve growth factor-like substances on cholinergic systems outside the forebrain. Furthermore, the disparities which occur imply that non-cholinergic nerve growth factor receptor-containing neurons of the brainstem, cerebellum and spinal cord may be affected by such trophic substances.  相似文献   

4.
Our study investigates the distribution of neurophysins (Nph), proteins that are part of the precursors for vasopressin and oxytocin, and calcitonin gene-related peptide (CGRP) in the human brainstem by immunohistochemistry. Both peptides were found in discrete regions of the human hindbrain. Nph could be demonstrated exclusively in fibers and punctate perineural varicosities that were travelling within the mesencephalic central gray, substantia nigra, as well as locus coeruleus, medial longitudinal fascicle, raphe, nucleus of the solitary tract, lateral reticular nucleus and area postrema. A few varicosities were seen in the substantia gelatinosa of the spinal trigeminal tract and its continuation into the dorsal horn of the cervical spinal cord. In contrast to these observations. CGRP-immunoreactive fibers were found to be densest in the spinal tract of the trigeminal nerve and the dorsal horn of the spinal cord. In addition, fibers and varicosities could be demonstrated in numerous distinct brain regions, such as locus coeruleus and subcoeruleus, solitary tract, cuneate nucleus, raphe and periaqueductal gray. CGRP-immunoreactivity was also present in perikarya in the ventral horn of the spinal cord, as well as motor nuclei of cranial nerves, i.e., hypoglossal nucleus, ambiguous nucleus. Our results suggest that Nph-immunoreactivity in the human brainstem may be present predominantly within long fiber projections from hypothalamic neurosecretory nuclei, in analogy to data obtained from rodents, whereas CGRP may play a role in the branchiomotor system as well as in intrinsic or extrinsic projections involved in autonomic regulation and integration of sensory information.  相似文献   

5.
Serotonin, or 5-hydroxytryptamine (5-HT), is a substance found in many tissues of the body, including as a neurotransmitter in the nervous system, where it can exert different post-synaptic actions. Inside the neuro-axis, 5-HT neurons are almost entirely restricted to the raphe nuclei of the brainstem. As such, 5-HT-immunoreactivity has been considered a marker of the raphe nuclei, which are located in the brainstem, at or near the midline. The present study investigated distribution of serotonergic neurons in the brain of the rock cavy (Kerodon rupestris), a rodent species inhabiting the Brazilian Northeast. The cytoarchitectonic location of serotonergic neurons was established through a series of 5-HT immunostained sections, compared with diagrams obtained from adjacent coronal and sagittal sections stained by the Nissl method. The following nuclei were defined: the rostral group, consisting of rostral linear raphe, caudal linear raphe, median and paramedian raphe, dorsal raphe, and pontine raphe nuclei, and the caudal group composed of raphe magnus, raphe pallidus and raphe obscurus nuclei. Other serotonergic neuronal clusters, such as the supralemniscal group and the rostral and caudal ventrolateral medulla oblongata clusters, were found outside the midline. Rare 5-HT-producing neurons were identified in the lateral parabrachial nucleus and in the pontine reticular formation, mostly along fibers of the lateral lemniscus. Despite exhibiting some specializations, the picture outlined for serotonergic groups in the rock cavy brain is comparable to that described for other mammalian species.  相似文献   

6.
Indirect single- and double-staining immunofluorescence techniques were used to study the serotoninergic, peptidergic and GABAergic innervation of the ventrolateral (Onuf's nucleus) and dorsolateral (innervating intrinsic foot sole muscles) nuclei, located in the S1/S2 segments of the cat spinal cord. The relative density of 5-hydroxytryptamine-, thyrotropin-releasing hormone-, substance P- and γ-aminobuytric acid-immunoreactive axonal varicosities was similar in both nuclei. The highest relative density was recorded for varicosities immunoreactive to γ-aminobutyric acid, while those immunoreactive to 5-hydroxytryptamine or thyrotropin-releasing hormone yielded the lowest values. The density of enkephalin-immunoreactive varicosities was higher in the ventrolateral than in the dorsolateral nucleus. Calcitonin gene-related peptide-like immunoreactivity could be seen in neurons of the ventrolateral and dorsolateral nuclei. Occasionally, calcitonin gene-related peptide-immunoreactive axonal fibers were also encountered in these nuclei. Virtually all thyrotropin-releasing hormone-immunoreactive varicosities in the ventrolateral and dorsolateral nuclei also contained 5-hydroxytryptamine-like immunoreactivity, while a somewhat smaller number of them were co-localized with substance P. About 5–10% of the 5-hydroxytryptamine-immunoreactive varicosities were devoid of peptide-like immunoreactivity, and the number of 5-hydroxytryptamine-immunoreactive varicosities lacking thyrotropin-releasing hormone-like immunoreactivity was higher in the dorsolateral than in the ventrolateral nucleus. Finally, the free fraction of substance P-immunoreactive varicosities, i.e., those lacking both 5-hydroxytryptamine and thyrotropin-releasing hormone, was about 39% in the ventrolateral and 26% in the dorsolateral nucleus. Spinal cord transection at the lower thoracic level induced a depletion of 5-hydroxytryptamine and thyrotropin-releasing hormone-immunoreactive fibers from the ventrolateral and dorsolateral nuclei, indicating an exclusive supraspinal origin for these fibers. A reduction in substance P-like immunoreactivity following spinal cord transection alone or spinal cord transection combined with unilateral dorsal rhizotomy was also detected in both nuclei, suggesting a dual origin for substance P-immunoreactive fibers, i.e., both supra- and intraspinal. The decrease in number of substance P-immunoreactive fibers was however smaller than expected from the analysis of the fraction of substance P-immunoreactive fibers co-localized with 5-hydroxytryptamine, indicating thus that the experimental lesions may have triggered a sprouting of substance P-immunoreactive axons originating from spinal cord sources. The distribution of γ-aminobutyric acid in the ventrolateral and dorsolateral nuclei was not affected by the different lesion paradigms. It is therefore assumed that these inputs are intrinsic to the spinal cord. Finally, both in the ventrolateral and the dorsolateral nucleus a small but statistically significant increase of axonal fibers immunoreactive to enkephalin was seen in response to the experimental lesions.  相似文献   

7.
The use of fluorescent markers in double-labeling experiments reveals the presence of reticular and raphe neurons in the opossum's brainstem which innervate both the cervical and lumbar enlargements of the spinal cord by way of axonal collaterals. Such neurons were mixed with those innervating either the cervical or lumber enlargement alone and were found within the nuclei reticularis medullae oblongatae dorsalis and ventralis, the nucleus reticularis gigantocellularis, the nucleus reticularis gigantocellularis pars ventralis, the nucleus reticularis pontis and the nuclei obscurus and magnus raphae. In some nuclei over 50% of the neurons projecting to the cervical enlargement also innervate lumbar levels.  相似文献   

8.
R.P. Vertes 《Neuroscience》1984,11(3):651-668
The origins of projections within the medial forebrain bundle from the lower brainstem were examined with the horseradish peroxidase technique. Labeled cells were found in at least 15 lower brainstem nuclei following injections of a conjugate or horseradish peroxidase and wheat germ agglutinin at various levels of the medial forebrain bundle. Dense labeling was observed in the following cell groups (from caudal to rostral): A1 (above the lateral reticular nucleus); A2 (mainly within the nucleus of the solitary tract); a distinct group of cell trailing ventrolaterally from the medial longitudinal fasciculus at the level of the rostral pole of the inferior olive; raphe magnus; nucleus incertus; dorsolateral tegmental nucleus (of Castaldi); locus coeruleus; nucleus subcoeruleus; caudal part of the dorsal (lateral) parabrachial nucleus; and raphe pontis. Distinct but light labeling was seen in raphe pallidus and obscurus, nucleus prepositus hypoglossi, nucleus gigantocellularis pars ventralis, and the ventral (medial) parabrachial nucleus. Sparse labeling was observed throughout the medullary and caudal pontine reticular formation. Several lower brainstem nuclei were found to send strong projections along the medial forebrain bundle to very anterior levels of the forebrain. They were: A1, A2, raphe magnus (rostral part), nucleus incertus, dorsolateral tegmental nucleus, raphe pontis and locus coeruleus. With the exception of the locus coeruleus, attention has only recently been directed to the ascending projections of most of the nuclei mentioned above. Evidence was reviewed indicating that fibers from lower brainstem nuclei with ascending medial forebrain bundle projections distribute to widespread regions of the forebrain.It is concluded from the present findings that several medullary cell groups are capable of exerting a direct effect on the forebrain and that the medial forebrain bundle is the major ascending link between the lower brainstem and the forebrain.  相似文献   

9.
The present study investigates the anatomical basis for interactions between serotonin immunoreactive neurons in nuclei raphe magnus and pallidus, and either noradrenaline, substance P (SP) or enkephalin immunoreactive axonal varicosities. Using a double-label immunocytochemical method, we found that each of these neurochemicals could be localized to axons which contacted serotonin immunoreactive neurons. The frequency and location of these inputs differed in nuclei raphe magnus and pallidus. SP immunoreactive varicosities formed the greatest number of contacts. These findings suggest that serotonin-containing neurons in the caudal raphe nuclei receive input from multiple putative neurotransmitters.  相似文献   

10.
Corticotropin-releasing factor (CRF) has been described within varicosities that have a uniform distribution throughout the cerebellar nuclei of the cat. To date, however, no data are available as to the source of these nuclear afferents. Thus, a double-label technique was used to identify brainstem neurons which give rise to the CRF-containing afferents in the nucleus interpositus anterior (NIA) of the cat's cerebellum. Injections of fluorescent-tagged microspheres, which are retrogradely transported by cells with axons in the injection site, were made into lateral and medial aspects of the nucleus. The same sections were also processed for CRF immunohistochemistry. The primary source of CRF afferents to the NIA are the medial and dorsal accessory olivary nuclei. In addition to the inferior olive, several other brainstem nuclei also provide CRF afferents to the cerebellar nuclei. The medial aspect of the NIA receives afferents from the lateral reticular nucleus, external cuneate nucleus, perihypoglossal nucleus, medial vestibular nucleus and inferior central raphe nucleus. Additional afferents to more lateral aspects of the NIA are derived from the lateral reticular nucleus, external cuneate nucleus, and the magnocellular, lateral and gigantocellular tegmental areas. The brainstem nuclei that give rise to the CRF projection to the NIA receive input primarily from the spinal cord and likely relay information related to the status of an ongoing movement. A previous physiological study by Bishop has shown that CRF enhances the excitatory activity of nuclear neurons. CRF released from these afferents likely would enhance nuclear cell activity and thus provide a stronger or more prolonged effect on their respective target neurons in the brainstem.  相似文献   

11.
Synaptic glomeruli that involve tachykinin-containing primary afferent central terminals are numerous in lamina II of the chicken spinal cord. Therefore, a certain amount of noxious information is likely to be modulated in these structures in chickens. In this study, we used immunohistochemistry with confocal and electron microscopy to investigate whether neurokinin-1 receptor (NK-1R)-expressing neuronal elements are in contact with the central primary afferent terminals in synaptic glomeruli of the chicken spinal cord. We also investigated which neuronal elements (axon terminals, dendrites, cell bodies) and which neurons in the spinal cord possess NK-1R, and are possibly influenced by tachykinin in the glomeruli. By confocal microscopy, NK-1R immunoreactivities were seen in a variety of neuronal cell bodies, their dendrites and smaller fibers of unknown origin. Some of the NK-1R immunoreactive profiles also expressed GABA immunoreactivities. A close association was observed between the NK-1R-immunoreactive neurons and tachykinin-immunoreactive axonal varicosities. By electron microscopy, NK-1R immunoreactivity was seen in cell bodies, conventional dendrites and vesicle-containing dendrites in laminae I and II. Among these elements, dendrites and vesicle-containing dendrites made contact with tachykinin-containing central terminals in the synaptic glomeruli. These results indicate that tachykinin-containing central terminals in the chicken spinal cord can modulate second-order neuronal elements in the synaptic glomeruli.  相似文献   

12.
R Magoul  A Oblin  A Calas  S Araneda 《Neuroscience》1988,26(3):959-969
Co-localization of substance P with serotonin in raphe projection neurons was studied by combining substance P immunocytochemistry and autoradiography following uptake and retrograde axonal transport of [3H]serotonin and/or its products from target areas. In this study, two central pathways in the rat were investigated: the serotonergic projections of the midbrain raphe to the olfactory bulb and those of the medullary raphe that innervate the thoracic spinal cord. Two hours after pargyline pretreatment, injections of 10(-4) M [3H]serotonin were made either into the olfactory bulb or into the spinal cord and respectively 24 or 60 h thereafter, rats were administered with colchicine. After a 24 h survival time, the paraformaldehyde fixed brains were investigated for substance P immunocytochemistry and then treated for light and electron microscopy autoradiography. Combining both methods, we can define on the same tissue sections at least three labeled neuronal populations: substance P immunolabeled neurons, radiolabeled neurons and doubly immuno-radiolabeled neurons. In the midbrain raphe cells as well as in the olfactory bulb nerve terminals, two kinds of labeled profiles were detected: substance P immunoreactive profiles and radiolabeled ones. The radiolabeled cell bodies of the midbrain raphe (403 counted cells) were never reactive to substance P antibodies. Moreover, they were distributed caudally to substance P stained perikarya. In contrast, in the medullary raphe, of the 336 radiolabeled cell bodies 162 were stained after substance P antibody treatment. They represent about 48% of the serotonin radiolabeled neurons projecting to the thoracic spinal cord, where a great number of varicosities were observed immunolabeled, radiolabeled and doubly immuno-radiolabeled in the dorsal horn. At the ultrastructural level, cell bodies and dendritic processes were also doubly labeled. Both labelings were observed over the cytoplasm and some organelles or perikarya. These observations provide a morphological basis to support the hypothesis that substance P can occur within some but not all serotonergic neurons and raise questions about the expression of this peptide in these systems as well as the modes of interaction of these transmitter molecules.  相似文献   

13.
The distribution and fine structure of 5-hydroxytryptamine-, thyrotropin-releasing hormone- and substance P-immunoreactive synaptic boutons and varicosities were studied in the motor nucleus of the spinal cord segments L7-S1 in the cat, using the peroxidase-antiperoxidase immunohistochemical technique and analysis of ultrathin serial sections. The 5-hydroxytryptamine-, thyrotropin-releasing hormone- and substance P-immunoreactive boutons had a similar ultrastructural appearance as judged from serial section analysis. The boutons could be classified into two types on the basis of their vesicular content, with one type containing a large number of small agranular vesicles together with only a few, if any large granular vesicles, while the other type contained a large number of large granular vesicles in addition to small agranular vesicles. The vesicles were spherical or spherical-to-pleomorphic. Postsynaptic dense bodies (Taxi bodies) were occasionally observed in relation to all three types of immunoreactive boutons, which almost invariably formed synaptic junctions with dendrites. Judged by the calibre of the postsynaptic dendrites, the boutons were preferentially distributed to the proximal dendritic domains of motoneurons. In one case, a substance P-immunoreactive bouton formed an axosomatic synaptic contact. In addition to synaptic boutons, 5-hydroxytryptamine-, thyrotropin-releasing hormone- and substance P-immunoreactive axonal varicosities containing a large number of large granular and small agranular vesicles but lacking any form of conventional synaptic contact were observed. Such varicosities were either directly apposing surrounding neuronal elements or separated from the neurons by thin glial processes. The origin of the immunoreactive boutons was not traced, but it was thought likely that the main source of the boutons was neurons with their cell bodies located in the medullary raphe nuclei.  相似文献   

14.
Chiba A  Oka S 《Neuroscience letters》1999,261(1-2):73-76
Serotonin-immunoreactive (5HT-IR) neurons were investigated in the brain and rostral (cervical) spinal cord of the garfish, a non-teleost actinopterygian. The diencephalon contained a prominent 5HT-IR cell group consisting mainly of liquor-contacting neurons in the hypothalamic periventricular wall. Their ependymofugal processes formed thick bundles or patches within the hypothalamus and then arborized profusely. Other groups of 5HT-IR cells were found in the dorsal thalamus and in the caudal cortex of the hypothalamic inferior lobe. In the caudal brainstem, 5HT-IR cells were predominant in the raphe region. The spinal 5HT-IR cells were scattered rostrocaudally in the ventromedial zone. The structure corresponding to the submeningeal serotonergic system in the ventral spinal cord of the lamprey and stingray was demonstrated also in the garfish.  相似文献   

15.
In this study, we utilized a double retrograde axonal tracing technique to investigate the possible existence of collateralized axonal projections from raphe nuclei 'pontis' and 'magnus' to both medial preoptic area (MPA) and cervical spinal cord (C1-C2). Following microinjections of fluorescent tracers Fast blue (FB) and Diamidino yellow (DY) within MPA and C1-C2, substantial numbers of FB and DY single-labeled neurons, as well as FB-DY double-labeled neurons have been found within raphe nuclei 'pontis' and 'magnus'.  相似文献   

16.
Stereotaxic injections of 5% Fast Blue or 1% horseradish peroxidase-wheat germ agglutinin conjugate (HRP-WGA) were made into various cytoarchitectonic or functional regions of the cerebral cortex of anesthetized adult albino or hooded rats. Sections through the brainstems of these animals were then scrutinized for the presence of retrogradely labeled neurons. The data generated by this study indicate that at least 33 distinct nuclei or subnuclei within the brainstem reticular formation of the rat project directly to the cerebral cortex. More than half of these ascending reticulocortical systems are probably aminergic. The strongest reticulocortical projections emanate from presumed aminergic reticular-cell groups located at isthmic levels: specifically, the rostral serotonin-containing cell groups, as well as the noradrenergic locus coeruleus. However, relatively strong direct reticulocortical projections also originate from lower medullary cell groups which are probably catecholaminergic. Moderately strong reticulocortical projections emanate from cholinergic cell groups located at isthmic levels (the pars compacta of the pedunculopontine nucleus and the X area of Sakai). The most surprising finding in this study was that the classic isodendritic, nonaminergic central core of the brainstem gives rise to direct reticulocortical projections. The ventromedial areas of the medullary brainstem reticular formation give rise to the strongest nonaminergic ascending reticular projections, but all levels of the classic isodendritic reticular core give rise to direct reticulocortical projections. As a whole, cortically projecting reticular neurons are mostly small (10–25 μm in greatest diameter) or medium sized (26–35 μm in greatest diameter) neurons. Previous studies have shown that many of the cortically projecting reticular nuclei also project to the spinal cord, and, within these nuclei, reticulocortical neurons often strongly resemble their reticulospinal counterparts with respect to details of neuronal morphology. This in turn suggests that some reticulocortical neurons may also project to spinal levels.  相似文献   

17.
Previous research has shown that corticospinal as well as rubrospinal neurons express the high-affinity trkB and trkC receptors but not the high-affinity trkA receptor. To determine if bulbospinal neurons in other brainstem areas show the same pattern of trk receptor expression, bulbospinal cells were labelled via the injection of the retrograde tracer FluoroGold into the spinal cord. Brainstem sections were then processed for in situ hybridization using oligonucleotide probes to the trkA, trkB, and trkC receptors. The results indicated that, although trkA expression occurred in brainstem areas that contain bulbospinal neurons (e.g., the vestibular nuclei, and the pontine reticular formation), very few FluoroGold-labelled cells expressed the trkA receptor. In contrast, at least 90% of bulbospinal cells in each brainstem area examined expressed the trkB receptor. Quantitative analysis indicated differences in the level of trkB labelling between bulbospinal cells in different brainstem areas, with the highest levels seen in the locus coeruleus and magnocellular portion of the red nucleus, and the lowest levels seen in the medial and superior vestibular nuclei and the raphe obscurus. With the exception of the accessory trigeminal nucleus, over 84% of bulbospinal cells in each brainstem area also expressed the trkC receptor. TrkC receptor expression was greatest in the locus coeruleus and subcoeruleus and lowest in the accessory trigeminal nucleus, the raphe magnus, and the vestibular nuclei. Results indicate that, as with other descending pathways, virtually all bulbospinal pathways should be amenable to treatment with brain-derived neurotrophic factor, neurotrophin-4/5 or neurotrophin-3, but not nerve growth factor, following spinal cord damage.  相似文献   

18.
Following spinal cord injury, axons fail to regenerate without exogenous intervention. In this study we report that aligned microfiber-based grafts foster robust regeneration of vascularized CNS tissue. Film, random, and aligned microfiber-based conduits were grafted into a 3 mm thoracic rat spinal cord gap created by complete transection. Over the course of 4 weeks, microtopography presented by aligned or random poly-L-lactic acid microfibers facilitated infiltration of host tissue, and the initial 3 mm gap was closed by endogenous cell populations. This bulk tissue response was composed of regenerating axons accompanied by morphologically aligned astrocytes. Aligned fibers promoted long distance (2055 ± 150 μm), rostrocaudal axonal regeneration, significantly greater than random fiber (1162 ± 87 μm) and film (413 ± 199 μm) controls. Retrograde tracing indicated that regenerating axons originated from propriospinal neurons of the rostral spinal cord, and supraspinal neurons of the reticular formation, red nucleus, raphe and vestibular nuclei. Our findings outline a form of regeneration within the central nervous system that holds important implications for regeneration biology.  相似文献   

19.
The present study was aimed at the anatomical identification in the rat of neurons of the lower brainstem reticular formation which give off axonal branches ascending bilaterally to more rostral structures and descending unilaterally to the spinal cord. Three fluorescent tracers were injected in one and the same animal. Fast Blue was injected in the midbrain tegmentum, in the termination areas and fiber bundles of the ascending reticular efferents; Evans blue was injected in the midbrain tegmentum on the other side; either Nuclear Yellow or Diamidino Yellow was injected in the white and gray matter of the upper cervical cord. All three populations of single-labeled cells, as well as double labeled either from the midbrain injections or from the ipsilateral injections in the mesencephalon and spinal cord, were intermingled in the medial reticular formation. Very few cells double labeled from the contralateral mesencephalon and ipsilateral spinal cord were also seen. However, the main finding of the present study was the visualization of triple-labeled cells. The latter were mainly located ipsilaterally to the injections in the spinal cord. The present results indicate that reticular cells give off divergent multiple branches descending to the ipsilateral spinal cord and ascending bilaterally to rostral centers.  相似文献   

20.
Horseradish peroxidase injections, or solid HRP placements, were made into the dorsolateral quadrant of the spinal cord in ten adult rats, processed according to the blue-reaction (benzidine dihydrochloride) protocol [6]. When the interventions involved the dorsal lateral funiculus (DLF) HRP-labelled somata were observed primarily in the ipsilateral nucleus raphe magnus (NRM), with an occasional cell in nucleus raphe obscurus (NRO) and pallidus (NRP). Other brainstem raphe nuclei consistently lacked labelled neurons. The red nucleus and paralemniscal reticular formation of the rostal pons also contained appreciable numbers of HRP back-filled perikarya. The direct NRM-spinal projection in the rat, involved in the modulation of pain transmission in the spinal cord dorsal horn, originates primarily from the expanded region of the nucleus in the rostralmost medulla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号