首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
An outer membrane (OM) preparation from elementary bodies (EBs) of Chlamydia psittaci (ovine abortion strain) was used to vaccinate pregnant ewes in a single subcutaneous dose and was found to achieve protection after subcutaneous challenge with infectious organisms. Inactivated purified EBs used as a single-dose vaccine also gave protection. The ratio of live to dead lambs was significantly higher in the vaccinated groups (16:1 and 15:1, respectively) than in the placebo group (8:9). Polyacrylamide gel electrophoresis and immunoblotting showed that a 40-kilodalton protein was the main protein constituent of the OM preparation, and this was positively identified as the major outer membrane protein by protein microsequencing. Electron microscopy revealed that fine particulate structures on the outermost surface of the EB were also present in the OM preparation. The findings suggest that the major outer membrane protein is an important immunoprotective determinant in ovine abortion vaccines.  相似文献   

2.
Purified major outer membrane protein, detergent solubilized and reduced with dithiothreitol but not heated, gave an apparent molecular weight in sodium dodecyl sulfate (SDS)-polyacrylamide gels almost three times that observed for the heat-denatured SDS-treated peptide. This is similar to the behavior of porin trimers from gram-negative bacteria. Two protective monoclonal antibodies showed strong binding to the proposed trimer but not to denatured, monomeric major outer membrane protein.  相似文献   

3.
Immunochemical properties of the major outer membrane protein (MOMP) of 16 strains of Chlamydia psittaci isolated from psittacine birds, budgerigars, a pigeon, turkeys, humans, cats, a muskrat, sheep, and cattle and a strain of C. trachomatis, L2/434/Bu, were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by immunoblotting analysis with hyperimmunized rabbit antisera to strains of parrot, turkey, feline, and bovine origin. The MOMPs of the strains showed variation in molecular weights and immunological specificities. Fifteen of the C. psittaci strains were classified into two avian and two mammalian types based on immunological specificity of the MOMP, whereas the other strain was not classified in this study. Immunological classification based on specificity of the MOMP by immunoblotting proved to be a valuable method to classify various strains of C. psittaci.  相似文献   

4.
The gene encoding the major outer membrane protein (MOMP) of the psittacine Chlamydia psittaci strain 6BC was cloned and sequenced. N-terminal protein sequencing of the mature MOMP indicated that it is posttranslationally processed at a site identical to the site previously identified in the MOMP of Chlamydia trachomatis L2. The nucleotide sequence of the C. psittaci 6BC MOMP gene was found to be 67 to 68% identical to those of human C. trachomatis strains, 73% identical to that of Chlamydia pneumoniae IOL-207, 79% identical to that of the C. psittaci guinea pig inclusion conjunctivitis strain, GPIC, and 83% identical to that of the C. psittaci ovine abortion strain S26/3. In contrast, the 6BC sequence was found to be greater than 99% identical to the sequences reported for two strains of C. psittaci, A22/M and Cal-10 meningopneumonitis, believed to be of nonpsittacine avian origin. Monoclonal antibody analysis confirmed the nonpsittacine avian origin of A22/M but identified the Cal-10 strain from which the MOMP gene was previously sequenced as a psittacine strain. These results confirm that psittacine and nonpsittacine avian strains of C. psittaci are closely related and distinct from the mammalian guinea pig inclusion conjunctivitis and ovine abortion strains of C. psittaci.  相似文献   

5.
We cloned and sequenced the gene encoding the major outer membrane protein (MOMP) of two Chlamydia psittaci strains, guinea pig inclusion conjunctivitis (GPIC) strain 1, and meningopneumonitis (Mn) strain Cal-10. Intraspecies alignment of the two C. psittaci MOMP genes revealed 80.6% similarity, and interspecies comparison of C. trachomatis and C. psittaci MOMP genes yielded about 68% similarity. As found previously for C. trachomatis MOMP sequences, stretches of predominantly conserved sequences of GPIC and Mn MOMPs were interrupted by four variable domains whose locations were identical to those of C. trachomatis MOMPs. Seven of eight cysteine residues were found at precisely the same positions in GPIC, Mn, and C. trachomatis MOMPs, emphasizing their importance in structure and function of the protein. Collectively, these results indicate that C. psittaci and C. trachomatis MOMP genes diverged from a common ancestor.  相似文献   

6.
Monoclonal antibodies (MAbs) were generated against an ovine abortive strain of Chlamydia psittaci. A plaque reduction assay was used to select 19 neutralizing antibodies which appeared to be heterogeneous in isotype, specificity, and recognized proteins. Different neutralizing MAbs were tested for their protective abilities against abortion in a pregnant-mouse model. All of the protective MAbs selected had the same isotype, were serotype 1 specific, and recognized a protein of about 110 kDa by immunoblotting. The recognized epitopes were resistant to sodium dodecyl sulfate and reducing agents, but all of them were heat sensitive. The protein was able to form disulfide-linked polymers. Immunological cross-reaction studies with rabbit sera showed a link between the 110-kDa protein and the major outer membrane protein (MOMP). The 110-kDa protein was purified by immunoaffinity and shown to be dissociated after heating into MOMP by silver staining and immunoblotting. These results show homogeneity among protective MAbs directed to heat-sensitive epitopes located on an oligomer of the MOMP of C. psittaci.  相似文献   

7.
8.
The development of a solid-phase immunoassay for the detection of the 39,500-dalton major outer membrane protein of the Chlamydia trachomatis lymphogranuloma venereum serotype L2 is described. The test uses immunoadsorbent-purified rabbit anti-L2 major outer membrane protein immunoglobulin G (IgG) passively adsorbed to microtiter plates as a capture antibody. This same IgG antibody was either conjugated to horseradish peroxidase or radioiodinated with 125I and used as a probe to detect major outer membrane protein bound to immobilized IgG. At its greatest sensitivity, the test was capable of detecting 0.5 to 1 ng of purified major outer membrane protein, 5 X 10(3) elementary body inclusion-forming units, and approximately 100 C. trachomatis intracytoplasmic inclusions per assay.  相似文献   

9.
The outcome of infection is determined by both the quantity and the quality of an induced immune response. In particular, it has been demonstrated for selected pathogens that induction of TH1 or TH2 type helper T-cell subsets determines whether an immune response gives rise to protective immunity or disease-associated immunopathology. The nature of the antigen and the type of antigen-presenting cells recruited in the induction of a response are critical factors that influence the quality of the immune response. Of particular interest in this respect is the immune response to bacterial particles and the impact of cell wall-associated lipopolysaccharide (LPS) on that response. Nonspecific activation of macrophages and B lymphocytes by LPS could skew the phenotype of activated antigen-presenting cells and selectively alter the immunoglobulin isotypes and helper T-cell subsets that are induced following infection. In an initial attempt to detect immune deviation associated with LPS stimulation, we have compared the immunoglobulin isotypes of antibodies specific for the cysteine-rich outer membrane protein Omp2 induced in normal and LPS-hyporesponsive mice following immunization with Chlamydia psittaci strain guinea pig inclusion conjunctivitis whole elementary bodies. We report that there is a dramatic shift of Omp2-specific antibody from predominantly immunoglobulin G2a (IgG2a) isotype in LPS-hyporesponsive mice to high levels of IgG1 isotype in LPS-responder strains. The dependence of the IgG1 isotype shift on the LPS responder status is linked to the structure of the antigen and its natural processing pathway since LPS-hyporesponsive mice are not, in general, deficient in IgG1 antibody production. In particular, the antibody response to purified recombinant Omp2 is predominantly of the IgG1 isotype even in LPS-hyporesponsive mice.  相似文献   

10.
Rabbit immunoglobulin G (IgG) antibodies raised against the major outer membrane protein of the Chlamydia trachomatis lymphogranuloma venereum strain 434 neutralized the infectivity of the parasite for HeLa 229 cells. The mechanism by which anti-major outer membrane protein IgG prevented C. trachomatis from establishing infection was studied by using intrinsically 14C-radiolabeled elementary bodies. Neutralized elementary bodies were filterable through a polycarbonate filter (pore diameter, 600 nm), demonstrating that reduction in infectivity was not due to the aggregation of elementary bodies by cross-linking IgG. Antibody-neutralized elementary bodies attached to and penetrated HeLa cells at rats nearly identical to those for infectious organisms exposed to nonneutralizing control IgG. These results suggest that antibody interferes with the infectious process of the parasite after its internalization. Anti-major outer membrane protein Fab fragments could not be substituted for neutralizing IgG antibodies. The requirement for intact IgG implies that cross-linking of antibodies to the major outer membrane protein on the surfaces of the organisms may be instrumental in neutralization.  相似文献   

11.
The antigenicity of the major outer membrane protein of Chlamydia trachomatis serovar C was assessed by using overlapping hexapeptide homologs of serovar C major outer membrane protein and rabbit antisera in a peptide enzyme-linked immunosorbent assay. Five immunogenic sites were found distributed within variable sequences of the protein: four were immunodominant and three were surface exposed on native elementary bodies of serovar C. None was surface exposed on serovars H, I, and J.  相似文献   

12.
目的 研究沙眼衣原体主要外膜蛋白(MOMP)DNA疫苗和重组蛋白(rMOMP)疫苗联合免疫小鼠诱导出的免疫效应.方法 3~4周BALB/c雌鼠60只,分5组,每组12只,于第0、2、4周通过双侧股四头肌肌注免疫相应的疫苗.通过血清IgG抗体和IFN-γ含量、阴道冲洗液sIgA抗体含量、脾淋巴细胞增殖指数、迟发型超敏反应、阴道脱落细胞种植等指标进行小鼠免疫效应的测定.结果 DNA蛋白联合组小鼠血清IgG抗体水平A405值为0.629±0.052;sIgA,A450值为0.379±0.052;脾淋巴细胞增殖指数为5.682±0.484;淋巴细胞培养上清液中IFN-γ含量为(1265±128)ps/ml.DNA蛋白联合组小鼠的各项指标均好于EB阳性对照组除外的其他组(P<0.01).结论 沙眼衣原体DNA疫苗和蛋白疫苗联合免疫可以增强免疫保护效应.  相似文献   

13.
The major outer membrane protein (MOMP) of Chlamydia trachomatis was determined to be a glycoprotein on the basis of susceptibility to glycosidase digestion and the presence of carbohydrate by staining and radiolabeling. The MOMP of the serovar L2 organisms was isolated by electroelution from the protein band excised from the gel after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The incubation of MOMP with N-glycosidase F, an endoglycosidase that cleaves the N-glycan, and periodate resulted in two new molecular weight species. While MOMP treated with N-glycosidase F showed a lower-molecular-weight mobility, the periodate-treated MOMP increased in molecular weight. Both treatments abolished the ability of the MOMP to bind to HeLa cell components. In the immunoblot, the reactivity to the monoclonal antibody specific against the C. trachomatis species was preserved. The endoglycosidase specific to O-linked glycan, endo-alpha-N-acetylgalactosaminidase, had no visible effect on the isolated MOMP. Carbohydrate was detected in the MOMP by p-phenylenediamine staining of the protein band in the gel following SDS-PAGE. Autoradiograms of proteins of chlamydial organisms metabolically labeled with [3H]galactose or [3H]glucosamine and separated by SDS-PAGE revealed the MOMP band. The isolated MOMP was shown to bind specifically to concanavalin A, wheat germ agglutinin, and Dolichos biflorus agglutinin in the lectin binding assay. No binding was observed with Ulex europaeus agglutinin I, soybean agglutinin, or Ricinus communis agglutinin.  相似文献   

14.
Compared with the major outer membrane proteins (MOMPs) of the other chlamydial species, the Chlamydia pneumoniae MOMP appears to be less antigenically complex, and as determined by immunoblot analysis, it does not appear to be the immunodominant antigen recognized during infection. Nucleotide sequence analysis of the C. pneumoniae MOMP gene (ompA) revealed that it consisted of a 1,167-base open reading frame with an inferred 39,344-dalton mature protein of 366 amino acids plus a 23-amino-acid leader sequence. A ribosomal-binding site was located in the 5' upstream region, and two stop codons followed by an 11-base dyad forming a stable stem-loop structure were identified. This sequence shares 68 and 71% DNA sequence homology to the Chlamydia trachomatis serovar L2 and Chlamydia psittaci ovine abortion agent MOMP genes, respectively. Interspecies alignment identified regions, corresponding to the variable domains, which share little sequence similarity with the other chlamydial MOMPs. All seven cysteines conserved in the C. trachomatis and C. psittaci MOMPs, which are involved in the formation of disulfide cross-linkages, are found in the C. pneumoniae MOMP.  相似文献   

15.
16.
Elementary bodies (EB) of Chlamydia trachomatis serotypes C, E, and L2 were extrinsically radioiodinated, and whole-cell lysates of these serotypes were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Autoradiography of the polypeptide profiles identified a major surface protein with an apparent subunit molecular weight of 39,500 that was common to each C. trachomatis serotype. The abilities of nonionic (Triton X-100), dipolar ionic (Zwittergent TM-314), mild (sodium deoxycholate and sodium N-lauroyl sarcosine), and strongly anionic (SDS) detergents to extract this protein from intact EB of the L2 serotype were investigated by SDS-PAGE analysis of the soluble and insoluble fractions obtained after each detergent treatment. Only SDS readily extracted this protein from intact EB. Sarkosyl treatment selectively solubilized the majority of other EB proteins, leaving the 39,500-dalton protein associated with the Sarkosyl-insoluble fraction. Ultrastructural studies of the Sarkosyl-insoluble EB pellet showed it to consist of empty EB particles possessing an apparently intact outer membrane. No structural evidence for a peptidoglycan-like cell wall was found. Morphologically these chlamydial outer membrane complexes (COMC) resembled intact chlamydial EB outer membranes. The 39,500-dalton outer membrane protein was quantitatively extracted from COMC by treating them with 2% SDS at 60 degrees C. This protein accounted for 61% of the total COMC-associated protein, and its extraction resulted in a concomitant loss of the COMC membrane structure and morphology. The soluble extract obtained from SDS-treated COMC was adsorbed to a hydroxylapatite column and eluted with a linear sodium phosphate gradient. The 39,500-dalton protein was eluted from the column as a single peak at a phosphate concentration of approximately 0.3 M. The eluted protein was nearly homogeneous by SDS-PAGE and appeared free of contaminating carbohydrate, glycolipid, and nucleic acid. Hyperimmune mouse antiserum prepared against the 39,500-dalton protein from serotype L2 reacted with C. trachomatis serotypes Ba, E, D, K, L1, L2, and L3 by indirect immunofluorescence with EB but failed to react with serotypes A, B, C, F, G, H, I, and J, with the C. trachomatis mouse pneumonitis strain, or with the C. psittaci feline pneumonitis, guinea pig inclusion conjunctivitis, or 6BC strains. Thus, the 39,500-dalton major outer membrane protein is a serogroup antigen of C. trachomatis organisms.  相似文献   

17.
We prepared monoclonal antibodies against prototype strains of the 15 serovars of Chlamydia trachomatis and identified a subset of reagents that reacted with the major outer membrane protein(s) (MOMPs) of one or more serovars. We then determined the specificities of these anti-MOMP monoclonal antibodies by radioimmunoassay and immunoblot assays against the 15 serovars of C. trachomatis and a C. psittaci strain. We identified 14 different anti-MOMP antibody specificities, including serovar-, several orders of subspecies-, and species-specific determinants. In addition, one antibody reacted with all C. trachomatis serovars and a C. psittaci strain, indicating the presence of a genus-specific epitope on MOMP. Many of the cross-reactions of the subspecies-specific antibodies were similar to those previously reported by use of the microimmunofluorescence technique. We also observed a number of cross-reactions that were unexpected but consistent with data derived by the microimmunofluorescence test. All antibodies, except the genus-specific antibodies, reacted with whole elementary bodies in a radioimmunoassay, suggesting surface exposure of the epitopes. These data confirm and extend previous observations that MOMPs among C. trachomatis serovars are antigenically complex and diverse. In addition, these data indicate that the cross-reaction patterns of some monoclonal antibodies directed against MOMP are similar to those detected by the microimmunofluorescence test and are consistent with the hypothesis that such determinants are contained within MOMPs.  相似文献   

18.
The major outer membrane protein (MOMP) of Chlamydia trachomatis was expressed in Escherichia coli. To assess whether it assembled into a conformationally correct structure at the cell surface, we characterized the recombinant MOMP (rMOMP) by Western immunoblot analysis, indirect immunofluorescence, and immunoprecipitation with monoclonal antibodies (MAbs) that recognize contiguous and conformational MOMP epitopes. Western blot analysis showed that most of the rMOMP comigrated with authentic monomer MOMP, indicating that its signal peptide was recognized and cleaved by E. coli. The rMOMP could not be detected on the cell surface of viable or formalin-killed E. coli organisms by indirect immunofluorescence staining with a MAb specific for a MOMP contiguous epitope. In contrast, the same MAb readily stained rMOMP-expressing E. coli cells that had been permeabilized by methanol fixation. A MAb that recognizes a conformational MOMP epitope and reacted strongly with formalin- or methanol-fixed elementary bodies failed to stain formalin- or methanol-fixed E. coli expressing rMOMP. Moreover, this MAb did not immunoprecipitate rMOMP from expressing E. coli cells even though it precipitated the authentic protein from lysates of C. trachomatis elementary bodies. Therefore we concluded that rMOMP was not localized to the E. coli cell surface and was not recognizable by a conformation-dependent antibody. These results indicate that rMOMP expressed by E. coli is unlikely to serve as an accurate model of MOMP structure and function. They also question the utility of rMOMP as a source of immunogen for eliciting neutralizing antibodies against conformational antigenic sites of the protein.  相似文献   

19.
The antigenicity of the major outer membrane protein (MOMP) of Chlamydia trachomatis was comprehensively evaluated by using overlapping hexapeptide homologs of serovar B MOMP and polyclonal rabbit antisera in a peptide enzyme-linked immunosorbent assay. Of 367 hexapeptides, 152 showed reactivities with at least one antiserum. Seven hexapeptides located within variable domain (VD) IV (residues 288 to 316) were found to be most reactive in terms of their binding titer and frequency, suggesting that VD IV is the immunodominant region within the MOMP as detected by this assay. Peptide-reactive antibodies could also recognize corresponding epitopes on either viable or acetone-permeabilized organisms. The antigenic specificity and immunoaccessibility of epitopes located in VD IV were resolved by absorbing antisera with chlamydial elementary bodies. Six antigenic sites were found in this region and included a B-type-specific site (S1), four subserogroup-specific sites (S2 and S4 to 6), and one species-specific site (S3), each displaying varying degrees of surface exposures on elementary bodies from different C. trachomatis serovars.  相似文献   

20.
Two commercially available monoclonal antibodies for cell culture confirmation of Chlamydia trachomatis were compared in two prospective studies and one large retrospective study. In total, more than 33,000 genital specimens were cultured in parallel and stained with both antibodies, one of which was directed against the major outer membrane protein (MOMP) and one of which was directed against the lipopolysaccharide (LPS). We found the anti-LPS-based assay to be more sensitive and as specific as the anti-MOMP-based assay for C. trachomatis cell culture confirmation of genital specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号