首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a modality for delivering rotational therapy, helical tomotherapy offers dosimetric advantages by combining a continuously rotating gantry with a binary multileaf collimator. Helical tomotherapy, embodied in the TomoTherapy(?) Hi-Art II(?) system, delivers intensity-modulated fan beams in a helical pattern using binary multileaf collimator leaves while the couch is translated through the gantry. Helical tomotherapy offers the possibility of treating a variety of cases--from simple to complex--with improved target conformality and sensitive structure sparing compared with 3D or conventional static field IMRT plans, thereby allowing biologically effective dose escalation. For precise irradiation and possible treatment adaptation, the fully integrated on-board image-guidance system provides online volumetric images of patient anatomy using 3.5-MV x-ray beams and the xenon computed tomography detector. Several review articles were published before the year 2007 but emphasized the technical aspects of helical tomotherapy. In this article, we review very recent papers and focus on the dosimetric and clinical aspects of helical tomotherapy.  相似文献   

2.
The advent of 3D conformal radiotherapy and intensity modulated radiation therapy (IMRT) make possible the dose optimization to complex target volumes close to sane organs at risk. IMRT's introduction of numerous small radiation fields inherently increases delivery inaccuracies. As a consequence, the use of IMRT without precise localization of the tumor and sensitive structures, at both the planning and delivery stages, and the absence of continuous verification represent the most significant challenges to the implementation of IMRT in routine clinical use. Intensity modulated (or not) conformal radiotherapy delivery requires better precision in the definition of treatment volume, frequently if necessary. Helical tomotherapy has been designed to use CT imaging technology to plan, deliver, and verify that the delivery has been carried out as planned. The image-guided and intensity modulations processes of helical tomotherapy that enable this goal are described.  相似文献   

3.
4.
PURPOSE: To date, most intensity-modulated radiation therapy (IMRT) delivery has occurred using linear accelerators (linacs), although helical tomotherapy has become commercially available. To quantify the dosimetric difference, we compared linac-based and helical tomotherapy-based treatment plans for IMRT of the oropharynx. METHODS AND MATERIALS: We compared the dosimetry findings of 10 patients who had oropharyngeal carcinoma. Five patients each had cancers in the base of the tongue and tonsil. Each plan was independently optimized using either the CORVUS planning system (Nomos Corporation, Sewickly, PA), commissioned for a Varian 2300 CD linear accelerator (Varian Medical Systems, Palo Alto, CA) with 1-cm multileaf collimator leaves, or helical tomotherapy. The resulting treatment plans were evaluated by comparing the dose-volume histograms, equivalent uniform dose (EUD), dose uniformity, and normal tissue complication probabilities. RESULTS: Helical tomotherapy plans showed improvement of critical structure avoidance and target dose uniformity for all patients. The average equivalent uniform dose reduction for organs at risk (OARs) surrounding the base of tongue and the tonsil were 17.4% and 27.14% respectively. An 80% reduction in normal tissue complication probabilities for the parotid glands was observed in the tomotherapy plans relative to the linac-based plans. The standard deviation of the planning target volume dose was reduced by 71%. In our clinic, we use the combined dose-volume histograms for each class of plans as a reference goal for helical tomotherapy treatment planning optimization. CONCLUSIONS: Helical tomotherapy provides improved dose homogeneity and normal structure dose compared with linac-based IMRT in the treatment of oropharyngeal carcinoma resulting in a reduced risk for complications from focal hotspots within the planning target volume and for the adjacent parotid glands.  相似文献   

5.
6.
Tomotherapy   总被引:7,自引:0,他引:7  
Tomotherapy is delivery of intensity-modulated, rotational radiation therapy using a fan-beam delivery. The NOMOS (Sewickley, PA) Peacock system is an example of sequential (or serial) tomotherapy that uses a fast-moving, actuator-driven multileaf collimator attached to a conventional C-arm gantry to modulate the beam intensity. In helical tomotherapy, the patient is continuously translated through a ring gantry as the fan beam rotates. The beam delivery geometry is similar to that of helical computed tomography (CT) and requires the use of slip rings to transmit power and data. A ring gantry provides a stable and accurate platform to perform tomographic verification using an unmodulated megavoltage beam. Moreover, megavoltage tomograms have adequate tissue contrast and resolution to provide setup verification. Assuming only translational and rotational offset errors, it is also possible to determine the offsets directly from tomographic projections, avoiding the time-consuming image reconstruction operation. The offsets can be used to modify the leaf delivery pattern to match the beam to the patient's anatomy on each day of a course of treatment. If tomographic representations of the patient are generated, this information can also be used to perform dose reconstruction. In this way, the actual dose distribution delivered can be superimposed onto the tomographic representation of the patient obtained at the time of treatment. The results can be compared with the planned isodose on the planning CT. This comparison may be used as an accurate basis for adaptive radiotherapy whereby the optimized delivery is modified before subsequent fractions. The verification afforded tomotherapy allows more precise conformal therapy. It also enables conformal avoidance radiotherapy, the complement to conformal therapy, for cases in which the tumor volume is ill-defined, but the locations of sensitive structures are adequately determined. A clinical tomotherapy unit is under construction at the University of Wisconsin.  相似文献   

7.
The use of three-dimensional conformal radiation therapy (3DCRT) has now become common practice in radiation oncology departments around the world. Using beam's eye viewing of volumes defined on a treatment planning computed tomography scan, beam directions and beam shapes can be selected to conform to the shape of the projected target and minimize dose to critical normal structures. Intensity-modulated radiation therapy (IMRT) can yield dose distributions that conform closely to the three-dimensional shape of the target volume while still minimizing dose to normal structures by allowing the beam intensity to vary across those shaped fields. Predicted dose distributions for patients with tumors of the prostate, nasopharynx, and paraspinal region are compared between plans made with 3DCRT programs and those with inverse-planned IMRT programs. The IMRT plans are calculated for either static or dynamic beam delivery methods using multileaf collimators. Results of these comparisons indicate that IMRT can yield significantly better dose distributions in some situations at the expense of additional time and resources. New technologies are being developed that should significantly reduce the time needed to plan, implement, and verify these treatments. Current research should help define the future role of IMRT in clinical practice.  相似文献   

8.
PURPOSE: To investigate helical tomotherapy (HT) intensity-modulated radiotherapy (IMRT) as a postoperative treatment for parotid gland tumors. METHODS AND MATERIALS: Helical tomotherapy plans were developed for 4 patients previously treated with segmental multileaf collimator (SMLC) IMRT. A primary planning target volume (PTV64) and two secondary PTVs (PTV60, PTV54) were defined. The clinical goals from the SMLC plans were applied as closely as possible to the HT planning. The SMLC plans included bolus, whereas HT plans did not. RESULTS: In general, the HT plans showed better target coverage and target dose homogeneity. The minimum doses to the desired coverage volume were greater, on average, in the HT plans for all the targets. Minimum PTV doses were larger, on average, in the HT plans by 4.6 Gy (p = 0.03), 4.8 Gy (p = 0.06), and 4.9 Gy (p = 0.06) for PTV64, PTV60, and PTV54, respectively. Maximum PTV doses were smaller, on average, by 2.9 Gy (p = 0.23), 3.2 Gy (p = 0.02), and 3.6 Gy (p = 0.03) for PTV64, PTV60, and PTV54, respectively. Average dose homogeneity index was statistically smaller in the HT plans, and conformity index was larger for PTV64 in 3 patients. Tumor control probabilities were higher for 3 of the 4 patients. Sparing of normal structures was comparable for the two techniques. There were no significant differences between the normal tissue complication probabilities for the HT and SMLC plans. CONCLUSIONS: Helical tomotherapy treatment plans were comparable to or slightly better than SMLC plans. Helical tomotherapy is an effective alternative to SMLC IMRT for treatment of parotid tumors.  相似文献   

9.
10.
11.
PURPOSE: The present study explored the impact of intensity-modulated radiotherapy (IMRT) on stereotactic body RT (SBRT) of liver and lung lesions. Additionally, because target dose conformity can be affected by the leaf width of a multileaf collimator (MLC), especially for small targets and stereotactic applications, the use of a micro-MLC on "uniform intensity" conformal and intensity-modulated SBRT was evaluated. METHODS AND MATERIALS: The present study included 10 patients treated previously with SBRT in our institution (seven lung and three liver lesions). All patients were treated with 3 x 12 Gy prescribed to the 65% isodose level. The actual MLC-based conformal treatment plan served as the standard for additional comparison. In total, seven alternative treatment plans were made for each patient: a standard (actual) plan and an IMRT plan, both calculated with Helax TMS (Nucletron) using a pencil beam model; and a recalculated standard and a recalculated IMRT plan on Helax TMS using a point dose kernel approach. These four treatment plans were based on a standard MLC with 1-cm leaf width. Additionally, the following micro-MLC (central leaf width 3 mm)-based treatment plans were calculated with the BrainSCAN (BrainLAB) system: standard, IMRT, and dynamic arc treatments. For each treatment plan, various target parameters (conformity, coverage, mean, maximal, and minimal target dose, equivalent uniform doses, and dose-volume histogram), as well as organs at risk parameters (3 Gy and 6 Gy volume, mean dose, dose-volume histogram) were evaluated. Finally, treatment efficiency was estimated from monitor units and the number of segments for IMRT solutions. RESULTS: For both treatment planning systems, no significant difference could be observed in terms of target conformity between the standard and IMRT dose distributions. All dose distributions obtained with the micro-MLC showed significantly better conformity values compared with the standard and IMRT plans using a regular MLC. Dynamic arc plans were characterized by the steepest dose gradient and thus the smallest V(6 Gy) values, which were on average 7% smaller than the standard plans and 20% lower than the IMRT plans. Although the Helax TMS IMRT plans show about 18% more monitor units than the standard plan, BrainSCAN IMRT plans require approximately twice the number of monitor units relative to the standard plan. All treatment plans optimized with a pencil beam model but recalculated with a superposition method showed significant qualitative, as well as quantitative, differences, especially with respect to conformity and the dose to organs at risk. CONCLUSION: Standard conformal treatment techniques for SBRT could not be improved with inversely planned IMRT approaches. Dose calculation algorithms applied in optimization modules for IMRT applications in the thoracic region need to be based on the most accurate dose calculation algorithms, especially when using higher energy photon beams.  相似文献   

12.
BACKGROUND AND PURPOSE: Helical tomotherapy (HT) and intensity-modulated arc therapy (IMAT) are two arc-based approaches to the delivery of intensity-modulated radiotherapy (IMRT). Through plan comparisons we have investigated the potential of IMAT, both with constant (conventional or IMAT-C) and variable (non-conventional or IMAT-NC, a theoretical exercise) dose-rate, to serve as an alternative to helical tomotherapy. MATERIALS AND METHODS: Six patients with prostate tumours treated by HT with a moderately hypo-fractionated protocol, involving a simultaneous integrated boost, were re-planned as IMAT treatments. A method for IMAT inverse-planning using a commercial module for static IMRT combined with a multi-leaf collimator (MLC) arc-sequencing was developed. IMAT plans were compared to HT plans in terms of dose statistics and radiobiological indices. RESULTS: Concerning the planning target volume (PTV), the mean doses for all PTVs were similar for HT and IMAT-C plans with minimum dose, target coverage, equivalent uniform dose (EUD) and tumour control probability (TCP) values being generally higher for HT; maximum dose and degree of heterogeneity were instead higher for IMAT-C. In relation to organs at risk, mean doses and normal tissue complication probability (NTCP) values were similar between the two modalities, except for the penile bulb where IMAT was significantly better. Re-normalizing all plans to the same rectal toxicity (NTCP=5%), the HT modality yielded higher TCP than IMAT-C but there was no significant difference between HT and IMAT-NC. The integral dose with HT was higher than that for IMAT. CONCLUSIONS: with regards to the plan analysis, the HT is superior to IMAT-C in terms of target coverage and dose homogeneity within the PTV. Introducing dose-rate variation during arc-rotation, not deliverable with current linac technology, the simulations result in comparable plan indices between (IMAT-NC) and HT.  相似文献   

13.
BACKGROUND AND PURPOSE: This paper describes the development of customised compensation by intensity modulated radiation therapy (IMRT), delivered by dynamic application of a multileaf collimator (MLC), in order to improve dose homogeneity in treatments of the pelvic region. The introduction of this simple IMRT procedure will help facilitate the clinical implementation of more complex 3D conformal therapy techniques. MATERIALS AND METHOD: Computer software is used to generate profiles of the intensity modulated beams which are required to deliver a uniform dose in a plane, passing through the isocentre and normal to the beam axis, under an irregular surface contour. These profiles are then operated on by interpreter software which determines the leaf trajectories that are necessary to deliver these beam profiles using a single, unidirectional sweep of the MLC leaves. A full dose calculation based on the calculated leaf positions is subsequently performed, allowing further fine adjustments to the modulation where required. RESULTS AND CONCLUSION: The compensation procedure has been successfully tested using films placed under a test phantom. The effect of the compensation procedure on dose distributions in the transverse plane has been investigated using an anthropomorphic phantom. Overall dose homogeneity has been improved through the use of customised compensation delivered by dynamic multileaf collimation.  相似文献   

14.
PURPOSE: The traditional assumptions used in room-shielding calculations are reassessed for intensity-modulated radiation therapy (IMRT). IMRT makes relatively inefficient use of monitor units (MUs) when compared to conventional radiation therapy, affecting the assumptions used in room-shielding calculations. For the same single-fraction tumor dose delivered, the total number of MUs for IMRT is much greater than for a conventional treatment. Therefore, the exposure contribution from the linear accelerator head leakage will be significantly greater than with conventional treatments. METHODS AND MATERIALS: We propose a shielding calculation model that decouples the concepts of workload, MUs, and target dose when determining primary and secondary barrier thicknesses. The workload for primary barrier calculations for conventional multileaf collimator (MLC) IMRT treatments is determined according to patient tumor doses. The same calculation for accelerator-based serial tomotherapy IMRT requires scaling by the average number of treatment slices. However, rotational therapy yields a small use factor that compensates for this increase. We further define a series of efficiency factors to account for the small field sizes employed in IMRT. For secondary barrier calculations, the patient-scattered radiation is assumed to be the same for all IMRT modalities as for conventional therapy. The accelerator head leakage contribution is proportional to the number of MUs. Knowledge of the average number of MUs per patient is required to estimate the head leakage contribution. We used a 6-MV linear accelerator photon beam to guide the development of this technique and to evaluate the adequacy of conventional barriers for IMRT. Average weekly IMRT workload estimates were made based on our experience with 180 serial tomotherapy patients and published data for both "step and shoot" and dynamic MLC delivered treatments. RESULTS: We found that conventional primary barriers are adequate for both dynamic MLC and serial tomotherapy IMRT. However, the excessive head leakage produced by these modalities requires an increase in secondary barrier shielding.Conclusion: When designing shielding for an IMRT facility, increases in accelerator head leakage must be taken into account for secondary shielding. Adequacy of secondary shielding will depend on the IMRT patient load. For conventional facilities that are being assessed for IMRT therapy, existing primary barriers will typically prove adequate.  相似文献   

15.
Purpose: Conformal and intensity-modulated radiotherapy (IMRT) plans for 9 patients were compared based on characterization of plan quality and effects on the oncology department.

Methods and Materials: These clinical cases, treated originally with conformal radiotherapy (CRT), required extraordinary effort to produce conformal treatment plans using nonmodulated, shaped noncoplanar fields with multileaf collimators (MLCs). IMRT plans created for comparison included rotational treatments with slit collimator, and fixed-field MLC treatments using equispaced coplanar, and noncoplanar fields. Plans were compared based upon target coverage, target conformality, dose homogeneity, monitor units (MU), user-interactive planning time, and treatment delivery time. The results were subjected to a statistical analysis.

Results: IMRT increased target coverage an average of 36% and conformality by 10%. Where dose escalation was a goal, IMRT increased mean dose by 4–6 Gy and target coverage by 19% with the same degree of conformality. Rotational IMRT was slightly superior to fixed-field IMRT. All IMRT techniques increased integral dose and target dose heterogeneity. IMRT planning times were significantly less, whereas MU increased significantly; estimated delivery times were similar.

Conclusion: IMRT techniques increase dose and target coverage while continuing to spare organs-at-risk, and can be delivered in a time frame comparable to other sophisticated techniques.  相似文献   


16.
Nasopharyngeal carcinoma is an endemic disease within specific regions in the world. Radiotherapy is themain treatment. In recent decades, intensity-modulated radiation therapy has undergone a rapid evolution.Compared with two-dimensional radiotherapy and/or three-dimensional conformal radiotherapy, evidence hasshown it may improve quality of life and prognosis for patients with nasopharyngeal carcinoma. In addition,helical tomotherapy is an emerging technology of intensity-modulated radiation therapy. Its superiority indosimetric and clinical outcomes has been demonstrated when compared to traditional intensity-modulatedradiation therapy. However, many challenges need to be overcome for intensity-modulated radiation therapyof nasopharyngeal carcinoma in the future. Issues such as the status of concurrent chemotherapy, updatingof target delineation, the role of replanning during IMRT, the causes of the main local failure pattern requiresettlement. The present study reviews traditional intensity-modulated radiation therapy, helical tomotherapy,and new challenges in the management of nasopharyngeal carcinoma.  相似文献   

17.
PURPOSE AND BACKGROUND: Conventional early breast cancer treatment consists of a lumpectomy followed by whole breast radiation therapy. Accelerated partial breast irradiation (APBI) is an investigational approach to post-lumpectomy radiation for early breast cancer. The purpose of this study is to compare four external beam APBI techniques, including tomotherapy, with conventional whole breast irradiation for their radiation conformity index, dose homogeneity index, and dose to organs at risk. METHODS AND MATERIALS: Small-field tangents, three-dimensional conformal radiation therapy, intensity-modulated radiation therapy and helical tomotherapy were compared for each of 15 patients (7 right, 8 left). One radiation conformity and two dose homogeneity indices were used to evaluate the dose to the target. The mean dose to organs at risk was also evaluated. RESULTS: All proposed APBI techniques improved the conformity index significantly over whole breast tangents while maintaining dose homogeneity and without a significant increase in dose to organs at risk. CONCLUSION: The four-field IMRT plan produced the best dosimetric results; however this technique would require appropriate respiratory motion management. An alternative would be to use a four-field conformal technique that is less sensitive to the effects of respiratory motion.  相似文献   

18.
Intensity-modulated radiation therapy (IMRT) is a term applied to a new technology that uses nonuniform radiation beams to achieve conformal dose distributions. This article reviews the use of a commercial system, the Peacock system, which uses a special multileaf collimator (MIMiC) to deliver the dose distribution using arc therapy and segmented fields, similar to a moving strip. Although initially designed for stereotactic radiosurgery, this system has been employed to treat various body sites. More than 300 patients have been treated at our institution in the past 4 years, mainly for cranial, head-and-neck, and prostate tumors. Presently, we treat 40 to 45 patients per day with this technology using two linear accelerators operating with 10 MV and 15 MV x-rays, as Peacock has become a standard therapy procedure. Cases are presented that show the unique ability of IMRT to deliver conformal dose distributions. Why this type of technology can become a standard procedure and why it is cost-effective therapy for both the institution and the patient are discussed.  相似文献   

19.
PURPOSE: To investigate potential dose calculation errors in the low-dose regions and identify causes of such errors for intensity-modulated radiotherapy (IMRT). METHODS AND MATERIALS: The IMRT treatment plans of 23 patients with lung cancer and mesothelioma were reviewed. Of these patients, 15 had severe pulmonary complications after radiotherapy. Two commercial treatment-planning systems (TPSs) and a Monte Carlo system were used to calculate and compare dose distributions and dose-volume parameters of the target volumes and critical structures. The effect of tissue heterogeneity, multileaf collimator (MLC) modeling, beam modeling, and other factors that could contribute to the differences in IMRT dose calculations were analyzed. RESULTS: In the commercial TPS-generated IMRT plans, dose calculation errors primarily occurred in the low-dose regions of IMRT plans (<50% of the radiation dose prescribed for the tumor). Although errors in the dose-volume histograms of the normal lung were small (<5%) above 10 Gy, underestimation of dose <10 Gy was found to be up to 25% in patients with mesothelioma or large target volumes. These errors were found to be caused by inadequate modeling of MLC transmission and leaf scatter in commercial TPSs. The degree of low-dose errors depends on the target volumes and the degree of intensity modulation. CONCLUSIONS: Secondary radiation from MLCs contributes a significant portion of low dose in IMRT plans. Dose underestimation could occur in conventional IMRT dose calculations if such low-dose radiation is not properly accounted for.  相似文献   

20.
PURPOSE: This study describes a new intensity-modulated radiation therapy (IMRT) delivery method that utilizes a single modulator to deliver multiple fields ("multifield modulator"). This technique reduces the treatment time and manufacturing costs typically associated with modulator-IMRT. Technical feasibility was evaluated for treating paranasal sinus cancers. METHODS AND MATERIALS: Technical feasibility was measured by three criteria: The dose distributions of the multifield modulator-IMRT plans should offer improvements over those produced by 3D conformal plans and be equivalent to those of step-and-shoot multileaf collimator (MLC) IMRT plans, the manufactured modulators should meet quality assurance specifications, and the effort required to use this technology should not substantially exceed the effort required for current IMRT practice. Seven paranasal cancer cases were examined. The Wilcoxon signed rank test was used for statistical analysis. RESULTS: Multifield modulator-IMRT plans can improve target coverage while reducing critical structure doses compared to 3D conformal plans. Multifield modulator-IMRT plans are at least equivalent to the corresponding step-and-shoot MLC-IMRT plans. Multifield modulators can be constructed to meet design specifications in quality assurance tests. The time required for manufacturing, quality assurance, and treatment delivery using multifield modulators was measured and found to be only slightly greater than that for current IMRT treatment methods. CONCLUSIONS: IMRT treatments using multifield modulators for paranasal sinus tumors are feasible. Clinics may find it worthwhile to commit the minimal extra time for quality assurance and treatment to benefit from the improved dose distribution and lack of interplay between MLC leaf motion and internal target motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号