首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress has been implicated in the degeneration of dopaminergic neurons in the substantia nigra of Parkinson's disease patients, and several anti-oxidants have been shown to be effective on the treatment of Parkinson's disease. Curcumin has been previously reported to possess radical scavenger, iron chelating, anti-inflammatory properties in different tissues. The aim of present study is to explore the cytoprotection of curcumin against 6-hydroxydopamine (6-OHDA)-induced neuronal death, as well as the underlying mechanisms in MES23.5 cells. Our results showed that 6-OHDA significantly reduced the cell viability of MES23.5 cells. Curcumin protected MES23.5 cells against 6-OHDA neurotoxicity by partially restoring the mitochondrial membrane potential, increasing the level of Cu-Zn superoxide dismutase and suppressing an increase in intracellular reactive oxygen species. Furthermore, curcumin pretreatment significantly inhibited 6-OHDA induced nuclear factor-kappaB translocation. These results suggest that the neuroprotective effects of curcumin are attributed to the antioxidative properties and the modulation of nuclear factor-kappaB translocation.  相似文献   

2.
Parkinson's disease (PD) is a neurodegenerative disease characterized by tremor, rigidity, bradykinesia, and gait impairment. So far, very few pharmacological agents have been isolated or developed that effectively inhibit the progression of PD. However, several studies have demonstrated that inflammatory processes play critical roles in PD. Therefore, anti-inflammatory agents may suppress disease progression in PD. 11-Dehydrosinulariolide was isolated from cultured soft corals. The anti-inflammatory effect of this molecule has been observed through suppression of the expression of two main pro-inflammatory proteins: inducible nitric oxide synthase and cyclooxygenase-2, in lipopolysaccharide-stimulated macrophage cells. We also found that 11-dehydrosinulariolide significantly reduced 6-hydroxydopamine (6-OHDA)-induced cytotoxicity and apoptosis in a human neuroblastoma cell line (SH-SY5Y). The pharmacological activity of this compound has been studied, and it is associated with the inhibition of 6-OHDA-induced activation of caspase-3 and translocation of nuclear factor kappa B. 11-Dehydrosinulariolide increased the activation of survival-signaling phospho-Akt but not phospho-ERK. The neuroprotective effect of 11-dehydrosinulariolide was assessed here using 6-OHDA-treated SH-SY5Y cells, wherein neuroprotection is mediated through regulation of phosphatidylinositol 3-kinase (PI3K). Furthermore, 11-dehydrosinulariolide caused a significant decrease in caspase-3/7 activity in comparison to the 6-OHDA-treated group, indicating that 11-dehydrosinulariolide has neuroprotective properties. We conclude that 11-dehydrosinulariolide is a promising candidate for the treatment of Parkinson's disease through its anti-apoptotic and anti-inflammatory action via PI3K signaling.  相似文献   

3.
Many herbal medicines and dietary supplements sold as aids to improve memory or treat neurodegenerative diseases or have other favorable effects on the CNS contain a catechol or similar 1,2-dihydroxy aromatic moiety in their structure. As an approach to isolate and examine the neuroprotective properties of catechols, a simple catechol 4-t-Butylcatechol (TBC) has been used as a model. In this study, we investigated the effects of TBC on lipopolysaccharide (LPS)-activated microglial-induced neurotoxicity by using the in vitro model of coculture murine microglial-like cell line HAPI with the neuronal-like human neuroblastoma cell line SH-SY5Y. We also examined the effects of TBC on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. TBC at concentrations from 0.1-10 microM had no toxic effect on HAPI cells and SH-SY5Y cells, and it inhibited LPS (100 ng/ml)-induced increases of superoxide, intracellular ROS, gp91(Phox), iNOS and a decrease of HO-1 in HAPI cells. Under coculture condition, TBC significantly reduced LPS-activated microglia-induced dopaminergic SH-SY5Y cells death. Moreover, TBC (0.1-10 microM) inhibited 6-OHDA-induced increases of intracellular ROS, iNOS, nNOS, and a decrease of mitochondria membrane potential, and cell death in SH-SY5Y cells. However, the neurotoxic effects of TBC (100 microM) on SH-SY5Y cells were also observed including the decrease in mitochondria membrane potential and the increase in COX-2 expression and cell death. TBC-induced SH-SY5Y cell death was attenuated by pretreatment with NS-398, a selective COX-2 inhibitor. In conclusion, this study suggests that TBC might possess protective effects on inflammation- and oxidative stress-related neurodegenerative disorders. However, the high concentration of TBC might be toxic, at least in part, for increasing COX-2 expression.  相似文献   

4.
SH-SY5Y human neuroblastoma cells were incubated with 6-hydroxydopamine (6-OHDA) for 4 and 24 h to examine the mechanism of cell death and to determine the time-dependent effects of 6-OHDA on cellular glutathione status. After 4 h, 6-OHDA significantly depleted cellular ATP and GSH concentrations with only slight increases in cell death. GSH:GSSG ratios and mitochondrial membrane potential (Deltapsim) were significantly decreased during 4 h incubations with 6-OHDA. High concentrations of 6-OHDA (100 microM) induced oxidative stress and mitochondrial dysfunction in SH-SY5Y cells within 4 h leading to cell death. In 24 h incubations, 25 and 50 microM 6-OHDA significantly decreased ATP concentrations; however, significant increases in cell death were only observed with 50 microM 6-OHDA. 6-OHDA induced a concentration-dependent increase in GSH and total glutathione concentrations after 24 h. After exposure to 50 microM 6-OHDA, GSH concentrations were increased up to 12-fold after 24 h with no change in the GSH:GSSG ratio. Gene analysis suggests that the increase in GSH concentration was due to increased expression of the GSH synthesis genes glutamate cysteine ligase modifier and catalytic subunits. Our results suggest that 6-OHDA induces oxidative stress in SH-SY5Y cells resulting in an adaptive increase in cellular GSH concentrations.  相似文献   

5.
Baicalein, a flavonoid obtained from the root of Chinese medicinal herb Scutellaria baicalensis, has been shown to exert a protective effect on neurons against several neuronal insults. The aim of this study was to explore the neuroprotective effect of baicalein in 6-hydroxydopamine (6-OHDA)-induced experimental parkinsonism in vitro and in vivo. In in vitro experiments, we found that baicalein (0.5, 5 μg/mL) could significantly ameliorate the 6-OHDA-induced SH-SY5Y cell apoptosis from 31.56% in the 6-OHDA group to 18.90%, 21.61% respectively, and also promote neurite outgrowth of PC12 cell. In in vivo experiments, baicalein had no effect on apomorphine (APO)-induced rotations, but it could significantly attenuate muscle tremor of 6-OHDA-lesioned rats. The burst frequency and amplitude are 13.43%, 35.18% compared to 6-OHDA group. Moreover, baicalein treatment could also increase tyrosine hydroxylase (TH)-positive neurons to 265.52% of the 6-OHDA group. The neuroprotective action of baicalein was coincident with an attenuated astroglial response within the substantia nigra. Neuroprotective effect of baicalein as demonstrated by the increasing the number of dopaminergic neurons may have been, in part, caused by anti-apoptotic, pro-differentiation and anti-inflammatory mechanisms of baicalein. Therefore, baicalein can be a promising candidate for prevention or treatment of Parkinson's disease, owing to its anti-apoptotic, pro-differentiation and anti-inflammatory action.  相似文献   

6.
We previously demonstrated that the dopaminergic agonist pergolide, independently from its DA agonist activity, can exert neuroprotective effects against cell death induced in SH-SY5Y neural cells by H(2)O(2) treatment. Since oxidative stress in SH-SY5Y neural cells is known to activate the NF-kappaB pathway we tested the hypothesis that pergolide may interfere with NF-kappaB activity. Based on Western blot analysis and immunocytochemistry, pergolide was found to prevent H(2)O(2)-induced apoptosis by inhibiting NF-kappaB nuclear translocation and activation of p53 signalling pathway. Similarly, the cell-permeable SN50 peptide, which is known to block NF-kappaB nuclear translocation, prevented both H(2)O(2)-induced p53 expression and apoptosis. The mechanism of action of pergolide responsible for neuroprotection differed from that of antioxidants. In fact, Vitamin E, contrary to pergolide and SN50, rescued neuronal cells from H(2)O(2)-induced apoptosis acting upstream NF-kappaB activation, as demonstrated by the prevention of H(2)O(2)-induced IkappaB degradation. These data suggest a novel site of action of pergolide that may account for additional pharmacological properties of this drug.  相似文献   

7.
8.
1-Methyl-4-phenylpyridinium ion (MPP+), a neurotoxin selective to dopaminergic neurons and an inhibitor of mitochondrial complex I, has been widely used as an etiologic model of Parkinson's disease. In this study, we investigated the protective effects of a novel synthetic compound, 8-Phenyl-6a,7,8,9,9a,10-hexahydro-6H-isoindolo[5,6-g]quinoxaline-7,9-dione (PHID), on MPP+-induced cytotoxicity in SH-SY5Y cells. MPP+ induced apoptosis characterized by generation of reactive oxygen species, caspase-3 activation, poly ADP ribose polymerase proteolysis and increase in Bax/Bcl-2 ratio were blocked by PHID in a dose-dependent fashion. Furthermore, MPP+-mediated activation of stress-activated protein kinase/c-Jun N-terminal kinase (JNK) was also inhibited by PHID in a dose-dependent manner. The results indicate that PHID protects against MPP+-induced apoptosis by blocking reactive oxygen species stimulation and JNK signaling pathways in SH-SY5Y cells, implicating the novel compound in the prevention of progressive neurodegenerative diseases such as Parkinson's disease.  相似文献   

9.
In this study, we investigated the neuroprotective effects of Lonicera japonica THUNB. extract (LJ) on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in SH-SY5Y cells. We found that LJ significantly increased cell viability decrease, lactate dehydrogenase release (LDH), morphological changes, nuclear condensation, fragmentation, and reactive oxygen species (ROS) production induced by 6-OHDA in SH-SY5Y cells. The cytoprotection afforded by pretreatment with LJ was associated with increases of the glutathione (GSH) level, superoxide dismutase (SOD) activity, and catalase (CAT) activity in 6-OHDA-induced SH-SY5Y cells. In addition, LJ strikingly inhibited 6-OHDA-induced mitochondrial dysfunctions including reduction of mitochondria membrane potential (MMP) and activation of cleaved poly-ADP-ribose polymerase (PARP), cleaved caspase-3, cleaved caspase-9, increased Bax, as well as decreased Bcl-2 and Bcl-xL. Additionally, LJ dramatically attenuated 6-OHDA-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), and phosphoinositide 3-kinase (PI3K)/Akt. Meanwhile, LJ counteracted nuclear factor-κB (NF-κB) activation by blocking its translocation to the nucleus. These findings suggest that LJ has a potent anti-parkinsonism; this effect was mediated, at least in part, by inhibition of neurotoxicity, apoptotic cascade events, and oxidative stress via activation of MAPKs, PI3K/Akt, and NF-κB.  相似文献   

10.
Antioxidants and iron chelating molecules are known as neuroprotective agents in animal models of neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). In this study, we designed and synthesized a novel bifunctional molecule (M10) with radical scavenging and iron chelating ability on an amino acid carrier likely to be a substrate for system L, thus targeting the compound to the central nervous system (CNS). M10 had a moderate iron affinity in HEPES buffer (pH 7.4) with logK(3)=12.25+/-0.55 but exhibited highly inhibitory action against iron-induced lipid peroxidation, with an IC(50) value (12microM) comparable to that of desferal (DFO). EPR studies indicated that M10 was a highly potent *OH scavenger with an IC(50) of about 0.3 molar ratio of M10 to H(2)O(2). In PC12 cell culture, M10 was at least as potent as the anti-Parkinson drug rasagiline in protecting against cell death induced by serum-deprivation and by 6-hydroxydopamine (6-OHDA). These results suggest that M10 deserves further investigation as a potential agent for the treatment of neurodegenerative disorders such as AD and PD.  相似文献   

11.
Naturally occurring plant substances have the potential to prevent oxidative damage in various pathophysiological conditions including neurodegenerative disorders. Recent findings indicate that impaired energy metabolism plays a prominent role in neurodegeneration. The present study investigated whether quebrachitol (2-O-methyl-L-inositol) (QCT), a sugar like natural compound that was suggested to have both antioxidant and membrane stabilization activity prevents the cytotoxic effect of 6-hydroxydopamine (6-OHDA, 200 microM) on cultured rat fetal mesencephalic cells. While QCT (0.1-100 microg/ml) produced no effect per se on cell viability as measured in the 3[4,5-dimethylthiazole-2il]-2,5-diphenyltetrazolium bromide (MTT) test, it offered concentration-related protection against cell death induced by 6-OHDA. In addition, QCT demonstrated an antioxidant activity against 6-OHDA-induced oxidative stress as evidenced by reduced formation of nitrite-nitrate and thiobarbituric acid-related substances. Fluorescence microscopy using acridine orange/ethidium bromide double staining further affirmed the absence of 6-OHDA (200 microM)-induced morphological changes characteristic of apoptosis/necrosis in cultures pretreated with QCT (100 microg/ml). Also, results of tyrosine hydroxylase immunoreactivity indicated that 6-OHDA induces cell death in mesencephalic cultures affecting both TH+ positive and TH- negative (TH+ and TH-, respectively) and QCT pretreatment protects them from cell death, in a non-specific manner. Our data indicate that QCT has a cytoprotective role due, at least in part, to an antioxidant and free radical scavenging mechanism. Furthermore, the study suggests that inositol compounds might serve as leads in developing drugs for the treatment of various neurodegenerative disorders.  相似文献   

12.
13.
6-Hydroxydopamine (6-OHDA) is widely used to produce an animal model of Parkinson's disease by selectively destroying the catecholaminergic nerve system of the substantia nigra. In our previous studies we noted that dopaminergic neuroblastoma cells (SH-SY5Y) die mostly via apoptosis after exposure to 6-OHDA (< or = 100 microM) but African green monkey fibroblast (CV1-P) cells do not succumb, although in both cell lines there were increased intracellular p53 levels. This study was designed to further investigate the mechanisms underlying the p53 elevation. To test how 6-OHDA penetrates into fibroblast cells and affects p53 levels, we investigated the presence of the dopamine transporter (DAT) in CV1-P cells. We showed by western hybridization that CV1-P cells contain the DAT. The apparent entry of 6-OHDA into fibroblasts was decreased by the DAT inhibitor, 1-(2-bis-(4-fluorophenyl)methoxy)ethyl)-4-(3-phenyl-propyl)piperazine (GBR 12909). Pre-treatment with GBR 12909 decreased the elevation of intracellular ROS to the control level and thus prevented the increase of p53 levels in 6-OHDA-treated CV1-P cells. Moreover, an increase of Bcl-2, an antiapoptotic protein, was detected after 6-OHDA treatment, supporting our previous results where no increase in caspase-3 activity was detected. We suggest that Bcl-2 may block the activation of the caspase cascade and protect CV1-P cells from apoptosis.  相似文献   

14.
We studied the ability of prolyl oligopeptidase (POP) inhibitors, Z-Pro-Prolinal and JTP-4819, to prevent translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and formation of reactive oxygen species (ROS), in 6-hydroxydopamine (6-OHDA) and cytosine arabinoside (Ara-C) treated monkey fibroblast (CV1-P) and human neuroblastoma (SH-SY5Y) cells. The cells were pretreated with POP inhibitors (30 min) before addition of toxicants. GAPDH was analyzed by Western hybridization, ROS by fluorescent 2′7′-dichlorodihydro-fluorescein diacetate, and viability by the MTT method. Both toxicants induced GAPDH translocation to the particulate fraction (mitochondria and nuclei). Z-Pro-Prolinal was able to inhibit the translocation in 6-OHDA-exposed CV1-P cells. In SH-SY5Y cells and in JTP-4819 pretreated cells, no prevention of translocation was seen. However, the intensity of GAPDH in cytosolic fraction increased. Both inhibitors blocked 6-OHDA-induced ROS-production to the control level in CV1-P but, not in SH-SY5Y cells, without affecting their viability. In conclusion, POP inhibitors are able to prevent certain cell stress related factors such as ROS production or GAPDH translocation.  相似文献   

15.
In the present study, the activation of autophagy and its interaction with the mitochondrial fission machinery was investigated in an experimental model of Parkinson's disease. The addition of 50μM 6-hydroxydopamine (6-OHDA) to the dopaminergic cell line SH-SY5Y profoundly stimulated formation of autophagosomes within 12h. Under these conditions, mitochondrial fission was also activated in a sustained manner, but this occurred at earlier time points (after 3h). Upon 6-OHDA treatment, dynamin-related protein 1 (Drp1) transiently translocated to mitochondria, with increased levels of mitochondrial Drp1 being observed after 3 and 9h. Pharmacological inhibition of Drp1, through treatment with the mitochondrial-division inhibitor-1 (mdivi-1), resulted in the abrogation of mitochondrial fission and in a decrease of the number of autophagic cells. In addition, 6-OHDA failed to induce the expression of the proapoptotic protein Bax in total cellular extracts although it did induce its migration to mitochondria. In our model, Bax migrated later than Drp1. However, Drp1 inhibition did not block Bax migration. These results show that reactive oxygen species but not quinone derivates act as mediators of autophagy at an early stage of the process. 6-OHDA induces hydrogen peroxide production, which was placed upstream of mitochondrial fission, given that mdivi-1 did not abrogate this increase. Furthermore, the 6-OHDA-induced activation of autophagy was also suppressed by addition of the free radical scavengers TEMPOL and MnTBAP. This effect could be reproduced by the addition of hydrogen peroxide, but not with aged 6-OHDA. To our knowledge, this is the first detailed study highlighting the various mediators that are implicated in mitochondrial alterations and autophagy of cells in response to 6-OHDA.  相似文献   

16.
Degradation of inhibitor kappa-B (Ikappa-B) followed by translocation of nuclear factor-kappaB (NF-kappaB) into the nucleus and activation of gene expression is essential in tumor necrosis factor-alpha (TNF-alpha)-signaling. In order to analyze the role of Rho proteins in TNF-alpha-induced NF-kappaB-activation in human umbilical cord vein endothelial cells (HUVEC) we used Clostridium difficile toxin B-10463 (TcdB-10463) which inactivates RhoA/Rac1/Cdc42 by glucosylation and Clostridium botulinum C3-toxin which inhibits RhoA/B/C by ADP-ribosylation. Exposure of HUVEC to 10 ng/mL TcdB-10463 or 2.5 microg/mL C3-toxin inhibited TNF-alpha (100 ng/mL)-induced expression of a NF-kappaB-dependent reporter gene. Moreover, preincubation of HUVEC with 10 ng/mL TcdB-10463 reduced TNF-alpha-related expression of interleukin-8 (IL-8), TNF-receptor associated factor-2 (TRAF2), and human inhibitor of apoptosis protein 1 (hIAP1)-mRNA. Blocking of Rho reduced NF-kappaB DNA-binding as shown by electrophoretic mobility shift assays. TcdB-10463 and C3-toxin blocked TNF-alpha-related nuclear translocation of NF-kappaB although Ikappa-Balpha/beta was still degraded. In contrast, TcdB-10463 had no effect on IL-1beta-related NF-kappaB-translocation and activation in HUVEC. Neither 1 microM Rho kinase inhibitor Y-27632 nor microfilament depolymerization by 50 ng/mL C. botulinum C2-toxin blocked TNF-alpha-induced degradation of Ikappa-B, nuclear NF-kappaB translocation or expression of a NF-kappaB-dependent reporter gene. Therefore, TNF-alpha-related Ikappa-B-degradation is Rho-independent in HUVEC, whereas a Rho protein-dependent signal is necessary to induce nuclear transport of NF-kappaB in these cells pointing to a novel and unique role of Rho in NF-kappaB-translocation.  相似文献   

17.
Compound FLZ (cFLZ) is a synthetic novel derivative of natural squamosamide. Previous pharmacological study found that cFLZ improved the abnormal behavior and the decrease of dopamine content in striatum in 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) model mice. 1-Methyl 4-phenylpyridinium (MPP+) is the active metabolite of MPTP to cause Parkinsonism in experimental animals. The purpose of this paper was to further study the protective action of cFLZ against MPP+-induced apoptosis and alternations of related signaling transduction. The results indicated that cFLZ at concentrations of 0.1 microM and 1 microM prevented 100 microM MPP+-induced apoptosis of SH-SY5Y cells, and inhibited the release of cytochrome C and apoptosis-inducing factor (AIF), and the activation of caspase 3 and NF-kappaB as well as alpha-synuclein gene and protein expressions. The results suggest that cFLZ possesses potent neuroprotective activity and may be a potential anti-Parkinson's disease drug worthy for further study.  相似文献   

18.
Understanding the neuroprotective effects of the rosemary phenolic diterpene carnosic acid (CA) has attracted increasing attention. We explored the mechanism by which CA modulates the neurotoxic effects of 6-hydroxydopamine (6-OHDA) in SH-SY5Y cells. Cells were pretreated with CA for 12 h followed by treatment with 100 μM 6-OHDA for 12 or 24 h. Cell viability determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolim bromide (MTT) assay indicated that 0.1 to 1 μM CA dose-dependently attenuated the cell death induced by 6-OHDA, whereas the effect of 3-5 μM CA was weaker. CA at 1 μM suppressed the 6-OHDA-induced nuclear condensation, reactive oxygen species generation, and cleavage of caspase 3 and PARP. Immunoblots showed that the phosphorylation of c-Jun NH(2)-terminal kinase (JNK) and p38 by 6-OHDA was reduced in the presence of CA. Incubation of cells with CA resulted in significant increases in the total glutathione (GSH) level and the protein expression of the γ-glutamylcysteine ligase catalytic subunit and modifier subunit. l-Buthionine-sulfoximine, an inhibitor of GSH synthesis, attenuated the effect of CA on cell death and apoptosis. Treatment with CA also led to an increase in nuclear factor erythroid-2 related factor 2 (Nrf2) activation, antioxidant response element (ARE)-luciferase reporter activity, and DNA binding to the ARE. Silencing of Nrf2 expression alleviated the reversal of p38 and JNK1/2 activation by CA. These results suggest that the attenuation of 6-OHDA-induced apoptosis by CA is associated with the Nrf2-driven synthesis of GSH, which in turn down-regulates the JNK and p38 signaling pathways. The CA compound may be a promising candidate for neuroprotection in Parkinson's disease.  相似文献   

19.
Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), is a popular traditional herbal medicine. Ginsenoside Rb1 (Rb1), an active component commonly found in ginseng root, is a phytoestrogen that exerts estrogen-like activity. In this study, we demonstrate that the phytoestrogen Rb1 inhibits 6-hydroxydopamine (6-OHDA)-induced oxidative injury via an ER-dependent Gβ1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of SH-SY5Y cells with Rb1 significantly reduced 6-OHDA-induced caspase-3 activation and subsequent cell death. Rb1 also up-regulated HO-1 expression, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, Rb1 induced both Nrf2 nuclear translocation, which is upstream of HO-1 expression and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Also, Rb1-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that Rb1 augments the cellular antioxidant defenses through ER-dependent HO-1 induction via the Gβ1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress. Thus our study indicates that Rb1 has a partial cytoprotective role in dopaminergic cell culture systems.  相似文献   

20.
2',4',6'-Tris(methoxymethoxy) chalcone (TMMC), a synthesized chalcone derivative, displays potent antiproliferative and anti-inflammatory effects in rat hepatic stellate cells and murine macrophages, respectively. Here we tested the hypothesis that TMMC could ameliorate diseases characterized by mucosal inflammation. Treatment of mice with TMMC significantly protected against trinitrobenzene sulfonic acid (TNBS)-induced colitis, as assessed by reductions in the weight loss, colonic damage and mucosal ulceration that together characterize this symptom. Moreover, TMMC suppressed the expression of intercellular adhesion molecule-1, interleukin 1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) in the mice treated with TNBS. Pretreatment of human intestinal epithelial HT-29 cells with TMMC also significantly inhibited the IL-8 and extracellular matrix metalloproteinase-7 levels induced by TNF-alpha. TMMC induced the expression of heme oxygenase 1 (HO-1) in HT-29 cells. TMMC increased extracellular signal-regulated kinase1/2 and p38 kinase phosphorylation levels, which led to the nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and consequently to HO-1 expression. TMMC inhibited TNF-alpha-induced nuclear factor kappaB (NF-kappaB) activation directly and indirectly. Interestingly, the latter is mediated by HO-1, which presumably blocks the TNF-alpha-induced nuclear translocation of NF-kappaB p65 without affecting I-kappaBalpha degradation. Moreover, we found that the different products of HO-1, carbon monoxide and bilirubin, exerted anti-inflammatory effects that were additive or synergistic in HT-29 cells stimulated with TNF-alpha. Thus, TMMC might serve to protect against intestinal inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号