首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The firing rates of neurons in the central visual pathway vary with stimulus strength, but not necessarily in a linear manner. In the contrast domain, the neural response function for cells in the primary visual cortex is characterized by expansive and compressive nonlinearities at low and high contrasts, respectively. A compressive nonlinearity at high contrast is also found for early visual pathway neurons in the lateral geniculate nucleus (LGN). This mechanism affects processing in the visual cortex. A fundamentally related issue is the possibility of an expansive nonlinearity at low contrast in LGN. To examine this possibility, we have obtained contrast-response data for a population of LGN neurons. We find for most cells that the best-fit function requires an expansive component. Additionally, we have measured the responses of LGN neurons to m-sequence white noise and examined the static relationship between a linear prediction and actual spike rate. We find that this static relationship is well fit by an expansive nonlinear power law with average exponent of 1.58. These results demonstrate that neurons in early visual pathways exhibit expansive nonlinear responses at low contrasts. Although this thalamic expansive nonlinearity has been largely ignored in models of early visual processing, it may have important consequences because it potentially affects the interpretation of a variety of visual functions.  相似文献   

2.
We study a recently proposed "correlation-based," push-pull model of the circuitry of layer 4 of cat visual cortex. This model was previously shown to explain the contrast-invariance of cortical orientation tuning. Here we show that it can simultaneously account for several contrast-dependent (c-d) "nonlinearities" in cortical responses. These include an advance with increasing contrast in the temporal phase of response to a sinusoidally modulated stimulus; a change in shape of the temporal frequency tuning curve, so that higher temporal frequencies may give little or no response at low contrast but reasonable responses at high contrast; and contrast saturation that occurs at lower contrasts in cortex than in the lateral geniculate nucleus (LGN). In the context of the model circuit, these properties arise from a mixture of nonlinear cellular and synaptic mechanisms: short-term synaptic depression, spike-rate adaptation, contrast-induced changes in cellular conductance, and the nonzero spike threshold. The former three mechanisms are sufficient to explain the experimentally observed increase in c-d phase advance in cortex relative to LGN. The c-d changes in temporal frequency tuning arise as a threshold effect: voltage modulations in response to higher-frequency inputs are only slightly above threshold at lower contrast, but become robustly suprathreshold at higher contrast. The other three nonlinear mechanisms also play a crucial role in this result, allowing contrast dependence of temporal frequency tuning to coexist with contrast-invariance of orientation tuning. Contrast saturation, and the observation that responses to stimuli of increasing temporal frequency saturate at increasingly high contrasts, can be induced both by the model's push-pull inhibition and by synaptic depression. Previous proposals explained these nonlinear response properties by assuming contrast-invariant orientation tuning as a starting point, and adding normalization by shunting inhibition derived equally from cells of all preferred orientations. The present proposal simultaneously explains both contrast-invariant orientation tuning and these contrast-dependent nonlinearities and requires only processing that is local in orientation, in agreement with intracellular measurements.  相似文献   

3.
Neurons in primary visual cortex are highly sensitive to the contrast, orientation, and temporal frequency of a visual stimulus. These three stimulus properties can be varied independently of one another, raising the question of how they interact to influence neuronal responses. We recorded from individual neurons in ferret primary visual cortex to determine the influence of stimulus contrast on orientation tuning, temporal-frequency tuning, and latency to visual response. Results show that orientation-tuning bandwidth is not affected by contrast level. Thus neurons in ferret visual cortex display contrast-invariant orientation tuning. Stimulus contrast does, however, influence the structure of orientation-tuning curves as measures of circular variance vary inversely with contrast for both simple and complex cells. This change in circular variance depends, in part, on a contrast-dependent change in the ratio of null to preferred orientation responses. Stimulus contrast also has an influence on the temporal-frequency tuning of cortical neurons. Both simple and complex cells display a contrast-dependent rightward shift in their temporal frequency-tuning curves that results in an increase in the highest temporal frequency needed to produce a half-maximum response (TF(50)). Results show that the degree of the contrast-dependent increase in TF(50) is similar for cortical neurons and neurons in the lateral geniculate nucleus (LGN) and indicate that subcortical mechanisms likely play a major role in establishing the degree of effect displayed by downstream neurons. Finally, results show that LGN and cortical neurons experience a contrast-dependent phase advance in their visual response. This phase advance is most pronounced for cortical neurons indicating a role for both subcortical and cortical mechanisms.  相似文献   

4.
The response of a cell in the primary visual cortex to an optimally oriented grating is suppressed by a superimposed orthogonal grating. This cross-orientation suppression (COS) is exhibited when the orthogonal and optimal stimuli are presented to the same eye (monoptically) or to different eyes (dichoptically). A recent study suggested that monoptic COS arises from subcortical processes; however, the mechanisms underlying dichoptic COS were not addressed. We have compared the temporal frequency tuning and stimulus adaptation properties of monoptic and dichoptic COS. We found that dichoptic COS is best elicited with lower temporal frequencies and is substantially reduced after prolonged adaptation to a mask grating. In contrast, monoptic COS is more pronounced with mask gratings at much higher temporal frequencies and is less prone to stimulus adaptation. These results suggest that monoptic COS is mediated by subcortical mechanisms, whereas intracortical inhibition is the mechanism for dichoptic COS.  相似文献   

5.
Adaptation to a high-contrast grating stimulus causes reduced sensitivity to subsequent presentation of a visual stimulus with similar spatial characteristics. This behavioral finding has been attributed by neurophysiological studies to processes within the visual cortex. However, some evidence indicates that contrast adaptation phenomena are also found in early visual pathways. Adaptation effects have been reported in retina and lateral geniculation nucleus (LGN). It is possible that these early pathways could be the physiological origin of the cortical adaptation effect. To study this, we recorded from single neurons in the cat's LGN. We find that contrast adaptation in the LGN, unlike that in the visual cortex, is not spatial frequency specific, i.e., adaptation effects apply to a broad range of spatial frequencies. In addition, aside from the amplitude attenuation, the shape of spatial frequency tuning curves of LGN cells is not affected by contrast adaptation. Again, these findings are unlike those found for cells in the visual cortex. Together, these results demonstrate that pattern specific contrast adaptation is a cortical process.  相似文献   

6.
We have studied electroretinograms (ERG) in the cat using phase-reversed sinusoidal gratings as a stimulus. Our purpose was to characterize response properties of this type of ERG. One basic question we addressed was whether the response to a grating stimulus is actually pattern specific. For the purpose of comparison, we used the same stimulus to investigate mass potentials from the lateral geniculate nucleus (LGN) and the visual cortex. The pattern ERG consists mainly of a vitreous negative after potential peaking shortly (120-200 ms) after reversal of the pattern. There is a notable absence in the pattern ERG of a b-wave that, however, can be elicited by a step increase of luminance over a uniform field. Pattern ERG amplitudes decrease monotonicaly with increasing spatial frequency and show no low-frequency attenuation when the pattern is phase reversed in square-wave fashion. This is markedly different than evoked potentials from the LGN and visual cortex that show band-pass characteristics. On the other hand, sinusoidal phase reversal reveals a clear attenuation of the pattern ERG amplitude at low spatial frequencies, whereas this type of stimulation produces very poor responses from LGN and visual cortex. The low spatial-frequency attenuation in the pattern ERG shows that the generating mechanism involves lateral interactions. There is thus a clear pattern-specific component in the pattern ERG. The pattern ERG has a surprisingly high contrast threshold relative to those estimated from cortical and LGN evoked potentials. Above threshold, pattern ERG response amplitude increases rapidly with contrast, but it often shows saturation at high contrast levels. These saturation points are generally high when contrast thresholds are high so that the rising portion of the contrast-response functions have fairly uniform slopes. Contrast-response curves from the LGN and cortical potentials are quite different from those for the retina in that amplitudes increase approximately linearly with log contrast over a 2-log-unit range (1 to 100%).  相似文献   

7.
Functional imaging of the human lateral geniculate nucleus and pulvinar   总被引:6,自引:0,他引:6  
In the human brain, little is known about the functional anatomy and response properties of subcortical nuclei containing visual maps such as the lateral geniculate nucleus (LGN) and the pulvinar. Using functional magnetic resonance imaging (fMRI) at 3 tesla (T), collective responses of neural populations in the LGN were measured as a function of stimulus contrast and flicker reversal rate and compared with those obtained in visual cortex. Flickering checkerboard stimuli presented in alternation to the right and left hemifields reliably activated the LGN. The peak of the LGN activation was found to be on average within +/-2 mm of the anatomical location of the LGN, as identified on high-resolution structural images. In all visual areas except the middle temporal (MT), fMRI responses increased monotonically with stimulus contrast. In the LGN, the dynamic response range of the contrast function was larger and contrast gain was lower than in the cortex. Contrast sensitivity was lowest in the LGN and V1 and increased gradually in extrastriate cortex. In area MT, responses were saturated at 4% contrast. Response modulation by changes in flicker rate was similar in the LGN and V1 and occurred mainly in the frequency range between 0.5 and 7.5 Hz; in contrast, in extrastriate areas V4, V3A, and MT, responses were modulated mainly in the frequency range between 7.5 and 20 Hz. In the human pulvinar, no activations were obtained with the experimental designs used to probe response properties of the LGN. However, regions in the mediodorsal right and left pulvinar were found to be consistently activated by bilaterally presented flickering checkerboard stimuli, when subjects attended to the stimuli. Taken together, our results demonstrate that fMRI at 3 T can be used effectively to study thalamocortical circuits in the human brain.  相似文献   

8.
X. Ye  G. Li  Y. Yang  Y. Zhou   《Neuroscience》2009,164(2):760-769
Adaptation to stimulus orientation is assumed to have a cortical basis, but few studies have addressed whether it affects the activity of subcortical neurons. Using single-unit recording, we studied the effects of orientation adaptation on the responses of lateral geniculate nucleus (LGN) neurons with high orientation bias (OB) in anesthetized and paralyzed cats. Following adaptation to one stimulus orientation, the response at the adapting orientation was decreased, and the preferred orientation was shifted away from the adapting orientation. This phenomenon was similar to the effects observed for orientation adaptation in the primary visual cortex (V1), and was obvious when the adapting orientation was at an appropriate location relative to the original preferred orientation. Moreover, when the V1 was inactivated, the response at the adapting orientation was also decreased but the preferred orientation did not show a systematic shift after orientation adaptation in LGN. This result indicates that cortical feedback contributes to the effect of orientation adaptation on LGN neurons, which have a high OB. These data provide an example of how the corticothalamic loop modulates the processing of visual information, and suggest that the LGN is not only a simply passive relay but also a modulator of visual information.  相似文献   

9.
We develop a new analysis of the lateral geniculate nucleus (LGN) input to a cortical simple cell, demonstrating that this input is the sum of two terms, a linear term and a nonlinear term. In response to a drifting grating, the linear term represents the temporal modulation of input, and the nonlinear term represents the mean input. The nonlinear term, which grows with stimulus contrast, has been neglected in many previous models of simple cell response. We then analyze two scenarios by which contrast-invariance of orientation tuning may arise. In the first scenario, at larger contrasts, the nonlinear part of the LGN input, in combination with strong push-pull inhibition, counteracts the nonlinear effects of cortical spike threshold, giving the result that orientation tuning scales with contrast. In the second scenario, at low contrasts, the nonlinear component of LGN input is negligible, and noise smooths the nonlinearity of spike threshold so that the input-output function approximates a power-law function. These scenarios can be combined to yield contrast-invariant tuning over the full range of stimulus contrast. The model clarifies the contribution of LGN nonlinearities to the orientation tuning of simple cells and demonstrates how these nonlinearities may impact different models of contrast-invariant tuning.  相似文献   

10.
It is generally thought that orientation selectivity first appears in the primary visual cortex (V1), whereas neurons in the lateral geniculate nucleus (LGN), an input source for V1, are thought to be insensitive to stimulus orientation. Here we show that increasing both the spatial frequency and size of the grating stimuli beyond their respective optimal values strongly enhance the orientation tuning of LGN neurons. The resulting orientation tuning was clearly contrast-invariant. Furthermore, blocking intrathalamic inhibition by iontophoretically administering γ-aminobutyric acid (GABA)A receptor antagonists, such as bicuculline and GABAzine, slightly but significantly weakened the contrast invariance. Our results suggest that orientation tuning in the LGN is caused by an elliptical classical receptive field and orientation-tuned surround suppression, and that its contrast invariance is ensured by local GABAA inhibition. This contrast-invariant orientation tuning in LGN neurons may contribute to the contrast-invariant orientation tuning seen in V1 neurons.  相似文献   

11.
A fundamental feature of neural circuitry in the primary visual cortex (V1) is the existence of recurrent excitatory connections between spiny neurons, recurrent inhibitory connections between smooth neurons, and local connections between excitatory and inhibitory neurons. We modeled the dynamic behavior of intermixed excitatory and inhibitory populations of cells in V1 that receive input from the classical receptive field (the receptive field center) through feedforward thalamocortical afferents, as well as input from outside the classical receptive field (the receptive field surround) via long-range intracortical connections. A counterintuitive result is that the response of oriented cells can be facilitated beyond optimal levels when the surround stimulus is cross-oriented with respect to the center and suppressed when the surround stimulus is iso-oriented. This effect is primarily due to changes in recurrent inhibition within a local circuit. Cross-oriented surround stimulation leads to a reduction of presynaptic inhibition and a supraoptimal response, whereas iso-oriented surround stimulation has the opposite effect. This mechanism is used to explain the orientation and contrast dependence of contextual interactions in primary visual cortex: responses to a center stimulus can be both strongly suppressed and supraoptimally facilitated as a function of surround orientation, and these effects diminish as stimulus contrast decreases.  相似文献   

12.
We have compared the spatial summation characteristics of cells in the primary visual cortex with those of cells in the dorsal lateral geniculate nucleus (LGN) that provide the input to the cortex. We explored the influence of varying the diameter of a patch of grating centred over the receptive field and quantitatively determined the optimal summation diameter and the degree of surround suppression for cells at both levels of the visual system using the same stimulus parameters. The mean optimal summation size for LGN cells (0.90 degrees) was much smaller than that of cortical cells (3.58 degrees). Virtually all LGN cells exhibited strong surround suppression with a mean value of 74%+/-1.61% SEM for the population as a whole. This potent surround suppression in the cells providing the input to the cortex suggests that cortical cells must integrate their much larger summation fields from the low firing rates associated with the suppression plateau of the LGN cell responses. Our data suggest that the strongest input to cortical cells will arise from geniculate cells representing areas of visual space located at the borders of a visual stimulus. We suggest that analysis of response properties by patterns centred over the receptive fields of cells may give a misleading impression of the process of the representation. Analysis of pattern terminations or salient borders over the receptive field may provide much more insight into the processing algorithms involved in stimulus representation.  相似文献   

13.
The responses of lateral geniculate nucleus (LGN) cells in the common marmoset (Callithrix jacchus) to drifting luminance or cone isolating gratings of different spatial frequencies and contrasts were measured. The response noise, defined as the variability of the responses to single sweeps in the complex plane, was independent of stimulus contrast and spatial frequency but increased with increasing overall responsiveness of the cell. The signal-to-noise ratio of parvocellular (PC) cells was smaller than of magnocellular (MC) cells. At each contrast, the response amplitude as a function of spatial frequency could be described with a difference of Gaussians model. With this model, the sizes and the peak sensitivities of the receptive field centers and surrounds were estimated. It was found that receptive field center and surround sizes of LGN cells decrease slightly with increasing contrast. Further, the peak sensitivity decreases with increasing contrast. The two factors are involved in a decrease in responsivity (the response per unit contrast) with increasing contrast which is compatible to response saturation for low spatial frequency stimuli. PC cells did not saturate as much to luminance stimuli although some saturation was found with cone isolating gratings. We found that the response phase lag of both PC and MC cells decreased with increasing contrast, which cannot be explained on the basis of linear response behavior. Apparently the phase of LGN cell responses to drifting gratings is altered in comparison with the retinal inputs by additional nonlinearities.  相似文献   

14.
Naito T  Sadakane O  Okamoto M  Sato H 《Neuroscience》2007,149(4):962-975
We previously suggested that orientation-tuned surround suppression of responses of cells in the primary visual cortex (V1) is primarily caused by a decrease in geniculocortical input for the cell [Ozeki H, Sadakane O, Akasaki T, Naito T, Shimegi S, Sato H (2004) Relationship between excitation and inhibition underlying size tuning and contextual response modulation in the cat primary visual cortex. J Neurosci 24:1428-1438]. To further test this hypothesis, we compared the strength of orientation and spatial phase selectivity of surround suppression, and the spatial extent of the extraclassical receptive field (ECRF) between the lateral geniculate nucleus (LGN) and V1 neurons of anesthetized cats. Extraclassical surround suppression in the LGN was well tuned to orientation-contrast and relative spatial phase between the classical receptive field (CRF) and ECRF stimuli. Significant orientation-tuned surround suppression was observed in 72.6% of the LGN neurons and the 66.7% of the V1 neurons tested. The degree of orientation selectivity of ECRF in LGN was comparable to that in V1; however, the strength of the relative spatial phase selectivity of ECRF in LGN was higher than that previously reported for V1 [Akasaki T, Sato H, Yoshimura Y, Ozeki H, Shimegi S (2002) Suppressive effects of receptive field surround on neuronal activity in the cat primary visual cortex. Neurosci Res 43:207-220; DeAngelis GC, Freeman RD, Ohzawa I (1994) Length and width tuning of neurons in the cat's primary visual cortex. J Neurophysiol 71:347-374]. In 70% of the LGN neurons that exhibited significant orientation-tuned extraclassical surround suppression, the effective orientation of the suppression varied according to a change in the orientation of CRF stimulus, while the remaining 30% exhibited a fixed preferred orientation of the suppression regardless of the orientation of the CRF grating. These results suggest that the basic properties of surround suppression, such as orientation and spatial phase tuning, already exist in cat LGN and that a decrease of surround suppression in excitatory inputs from LGN by surround suppression is the primary cause of surround suppression in V1. Corticogeniculate feedback may further elaborate the properties of surround suppression in LGN.  相似文献   

15.
An understanding of the neural code in a given visual area is often confounded by the immense complexity of visual stimuli combined with the number of possible meaningful patterns that comprise the response spike train. In the lateral geniculate nucleus (LGN), visual stimulation generates spike trains comprised of short spiking episodes ("events") separated by relatively long intervals of silence, which establishes a basis for in-depth analysis of the neural code. By studying this event structure in both artificial and natural visual stimulus contexts and at different contrasts, we are able to describe the dependence of event structure on stimulus class and discern which aspects generalize. We find that the event structure on coarse time scales is robust across stimulus and contrast and can be explained by receptive field processing. However, the relationship between the stimulus and fine-time-scale features of events is less straightforward, partially due to a significant amount of trial-to-trial variability. A new measure called "label information" identifies structural elements of events that can contain ≤30% more information in the context of natural movies compared with what is available from the overall event timing. The first interspike interval of an event most robustly conveys additional information about the stimulus and is somewhat more informative than the event spike count and much more informative than the presence of bursts. Nearly every event is preserved across contrast despite changes in their fine-time-scale features, suggesting that--at least on a coarse level--the stimulus selectivity of LGN neurons is contrast invariant. Event-based analysis thus casts previously studied elements of LGN coding such as contrast adaptation and receptive field processing in a new light and leads to broad conclusions about the composition of the LGN neuronal code.  相似文献   

16.
Summary The effect of unilateral enucleation, ablation of the visual cortex or coagulation of the lateral geniculate nucleus (LGN) upon the activity of choline acetyltransferase (ChAc) and acetylcholinesterase (AChE) in different structures of the visual system of albino rats was studied. The localization and extent of the degeneration pattern were followed up by histological silver degeneration methods. Afferents from the retina project mainly contralaterally to the dorsal and ventral LGN, the pretectal region and the superior colliculus. Afferent fibres from the dorsal LGN enter the visual cortex in area 17 only. Neurons of this area project back ipsilaterally to the LGN and the superior colliculus (SC).No significant decrease in the activity of the cholinergic marker enzyme choline acetyltransferase could be observed under any of the experimental conditions; there was rather a tendency to increased activity in the subcortical centres. AChE as a less specific marker also exhibited no gross changes in activity in the lesioned animals. The results add more direct proof to pharmacological and physiological evidence that ACh is not involved in the synaptic transmission of the direct optic projections in rats, either at the subcortical or at the cortical level.Sponsored by a grant of the Ministry of Science and Technology of the GDRThe able technical collaboration of Mrs. Ursula Köhler, Mrs. Brigitte Sawatzke and Mrs. Hildegard Gruschka is greatly acknowledged.  相似文献   

17.
1. Using behaving monkeys, we studied the visual responses of single neurons in the parvocellular layers of the lateral geniculate nucleus (LGN) to a set of two-dimensional black and white patterns. We found that monkeys could be trained to make sufficiently reliable and stable fixations to enable us to plot and characterize the receptive fields of individual neurons. A qualitative examination of rasters and a statistical analysis of the data revealed that the responses of neurons were related to the stimuli. 2. The data from 5 of the 13 "X-like" neurons in our sample indicated the presence of antagonistic center and surround mechanisms and linear summation of luminance within center and surround mechanisms. We attribute the lack of evidence for surround antagonism in the eight neurons that failed to exhibit center-surround antagonism either to a mismatch between the size of the pixels in the stimuli and the size of the receptive field or to the lack of a surround mechanism (i.e., the type II neurons of Wiesel and Hubel). 3. The data from five other neurons confirm and extend previous reports indicating that the surround regions of X-like neurons can have nonlinearities. The responses of these neurons were not modulated when a contrast-reversing, bipartite stimulus was centered on the receptive field, which suggests a linear summation within the center and surround mechanisms. However, it was frequently the case for these neurons that stimuli of identical pattern but opposite contrast elicited responses of similar polarity, which indicates nonlinear behavior. 4. We found a wide variety of temporal patterns in the responses of individual LGN neurons, which included differences in the magnitude, width, and number of peaks of the initial on-transient and in the magnitude of the later sustained component. These different temporal patterns were repeatable and clearly different for different visual patterns. These results suggest that visual information may be carried in the shape as well as in the amplitude of the response waveform.  相似文献   

18.
Many maturational processes in the brain are at high levels prenatally as well as neonatally before eye-opening, when extrinsic sensory stimulation is limited. During these periods of rapid brain development, a large percentage of time is spent in rapid eye movement (REM) sleep, a state characterized by high levels of endogenously produced brain activity. The abundance of REM sleep in early life and its ensuing decline to lower levels in adulthood strongly suggest that REM sleep constitutes an integral part of the activity-dependent processes that enable normal physiological and structural brain development. We examined the effect of REM sleep deprivation during the critical period for visual development on the development of two calcium-binding proteins that are associated with developmental synaptic plasticity and are found in the lateral geniculate nucleus (LGN) and visual cortex. In this study, REM sleep deprivation was carried out utilizing a computer-controlled, cage-shaking apparatus that successfully suppressed REM sleep. Body weight data suggested that this method of REM sleep deprivation produced less stress than the classical multiple-platform-over-water method. In REM sleep-deprived animals with normal binocular vision, the number of parvalbumin-immunoreactive (PV) neurons in LGN was found to be lower compared with control animals but was not affected in visual cortex. The pattern of calbindin-immunoreactivity (CaB) was unchanged at either site after REM sleep deprivation. Parvalbumin-immunoreactivity develops later than calbindin-immunoreactivity in the LGN, and the REM sleep deprivation that we applied from postnatal day 42-49 delayed this essential step in the development of the kitten's visual system. These data suggest that in early postnatal brain development, REM sleep facilitates the usual time course of the expression of PV-immunoreactivity in LGN neurons.  相似文献   

19.
This study examines the temporal properties of geniculocortical and corticogeniculate (CG) pathways that link the lateral geniculate nucleus (LGN) and primary visual cortex in the ferret. Using electrical stimulation in the LGN to evoke action potentials in geniculocortical and CG axons, results show that conduction latencies are significantly faster in geniculocortical neurons than in CG neurons. Within each pathway, axonal latency and visual physiology support the view of sub-classes of neurons. By examining the timing of visual responses and the latency of CG feedback, estimates indicate that visual information can reach the cortex and return to the LGN as early as 60 msec following the onset of a visual stimulus. These findings place constraints on the functional role of corticogeniculate feedback for visual processing.  相似文献   

20.
Various properties of external scenes are integrated during the transmission of information along central visual pathways. One basic property concerns the sensitivity to direction of a moving stimulus. This direction selectivity (DS) is a fundamental response characteristic of neurons in the visual cortex. We have conducted a neurophysiological study of cells in the visual cortex to determine how DS is affected by changes in stimulus contrast. Previous work shows that a neuron integration time is increased at low contrasts, causing temporal changes of response properties. This leads to the prediction that DS should change with stimulus contrast. However, the change could be in a counterintuitive direction, i.e., DS could increase with reduced contrast. This possibility is of intrinsic interest but it is also of potential relevance to recent behavioral work in which human subjects exhibit increased DS as contrast is reduced. Our neurophysiological results are consistent with this finding, i.e., the degree of DS of cortical neurons is inversely related to stimulus contrast. Temporal phase differences of inputs to cortical cells may account for this result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号