首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Activation of the aryl hydrocarbon receptor (AhR) in immune cells, such as dendritic cells (DCs), can lead to suppressed immune responses. Although AhR activation is most recognized for mediating the effects of its prototypical ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), many compounds existing in dietary sources can also bind the AhR. Because the immunomodulatory effects of indole-3-carbinol (I3C) and indirubin-3'-oxime (IO) have yet to be investigated in DCs, we evaluated the potential immunomodulatory effects of these compounds on murine DCs. We hypothesized that I3C and IO suppress immune and inflammatory responses in DCs. We found that both I3C and IO decreased the expression of CD11c, CD40, and CD54 while they increased expression of MHC2 and CD80. Following lipopolysaccharide (LPS)-activation, I3C and IO suppressed the production of pro-inflammatory mediators including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, IL-12, and nitric oxide but increased IL-10 levels. These effects of I3C and IO were partially mediated by the AhR. Additionally, immunoregulatory genes, such as ALDH1A, IDO and TGFB, were upregulated following treatment with I3C or IO. Both I3C and IO decreased basal levels of nuclear factor-kappa B p65, but only I3C suppressed the LPS-induced activity of RelB. Finally, when cultured with na?ve T cells, bone marrow-derived dendritic cells treated with the dietary AhR ligands increased the frequency of Foxp3+ Tregs in an antigen-specific manner. Taken together, these results indicate that I3C and IO exhibit immunosuppressive and anti-inflammatory effects on DCs. Because I3C and IO are significantly less toxic than TCDD, these natural products may ultimately become useful therapeutics for the treatment of autoimmune and inflammatory diseases.  相似文献   

6.
Although immune modulation by AhR ligands has been studied for many years, the impact of AhR activation on host defenses against viral infection has not, until recently, garnered much attention. The development of novel reagents and model systems, new information regarding anti-viral immunity, and a growing appreciation for the global health threat posed by viruses have invigorated interest in understanding how environmental signals affect susceptibility to and pathological consequences of viral infection. Using influenza A virus as a model of respiratory viral infection, recent studies show that AhR activation cues signaling events in both leukocytes and non-immune cells. Functional alterations include suppressed lymphocyte responses and increased inflammation in the infected lung. AhR-mediated events within and extrinsic to hematopoietic cells has been investigated using bone marrow chimeras, which show that AhR alters different elements of the immune response by affecting different tissue targets. In particular, suppressed CD8+ T cell responses are due to deregulated events within leukocytes themselves, whereas increased neutrophil recruitment to and IFN-γ levels in the lung result from AhR-regulated events extrinsic to bone marrow-derived cells. This latter discovery suggests that epithelial and endothelial cells are overlooked targets of AhR-mediated changes in immune function. Further support that AhR influences host cell responses to viral infection are provided by several studies demonstrating that AhR interacts directly with viral proteins and affects viral latency. While AhR clearly modulates host responses to viral infection, we still have much to understand about the complex interactions between immune cells, viruses, and the host environment.  相似文献   

7.
Regulation of genes targeted by the ligand-activated aryl hydrocarbon receptor (AhR) has been shown to be controlled by calcium (Ca(2+)) changes induced by AhR agonists such as the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The present study was designed to characterize this link between Ca(2+) and the AhR pathway. We report that fast elevation of intracellular Ca(2+) in TCDD-exposed mammary MCF-7 cells was associated with transient enhanced activity of the Ca(2+)/calmodulin (CaM)-dependent protein kinase (CaMK) pathway. Chemical inhibition of this pathway using the CaM antagonist W7 or the CaMK inhibitor KN-93 strongly reduced TCDD-mediated induction of the AhR target gene CYP1A1. Small interfering RNA (siRNA)-mediated knockdown expression of CaMKIalpha, one of the CaMK isoforms, similarly prevented CYP1A1 up-regulation. Both KN-93 and siRNA targeting CaMKIalpha were found to abolish TCDD-mediated activation of CYP1A1 promoter and TCDD-triggered nuclear import of AhR, a crucial step of the AhR signaling pathway. TCDD-mediated inductions of various AhR targets, such as the drug metabolizing CYP1B1, the cytokine interleukin-1beta, the chemokines interleukin-8 and CCL1, the adhesion molecule beta7 integrin, and the AhR repressor, were also prevented by KN-93 in human macrophages. Taken together, these data identified the Ca(2+)/CaM/CaMKIalpha pathway as an important contributing factor to AhR-mediated genomic response.  相似文献   

8.
The aversive and immunosuppressive effects of cyclophosphamide (CY, 250 mg/kg IP), an unconditioned stimulus (UCS), were paired with the presentation of a novel saccharine flavored drinking solution (SAC), a conditioned stimulus (CS), in female Balb/c mice. The objective was to determine the temporal relationship between presentation of the CS (SAC) and immunization with sheep red blood cell (SRBCs), a T-cell dependent antigen, and type III pneumococcal polysaccharide (S3), a T-cell independent antigen, on subsequent antibody responses. Reexposure to the CS or UCS occurred on days −4, −2, 0, +2, or +4 relative to immunization. Primary antibody responses in each group were measured six days following immunization. A strong association between the CS and the UCS developed, producing flavor aversions as evidenced by decreased SAC consumption. CY administration by itself consistently suppressed both types of antibody responses. CS presentation (i.e., SAC) had no significant effect on anti-S3 antibody response. However, the anti-SRBC response was significantly depressed following CS exposure. Exposure to the CS only on days −4 or +2 relative to immunization resulted in statistically significant suppression of antibody response to SRBC's while exposure on days −2, 0, and +4 resulted in anti-SRBC antibody suppression that did not reach significance. These results support the hypothesis that conditioning of antibody responses is relatively specific for T-cell dependent antigens, and that the timing of CS presentation relative to immunization is important in conditioning a suppression of antibody responses.  相似文献   

9.
The aim of this study was to use pharmacological inhibition of protein kinase A and mutation of potential protein kinase A phosphorylation sites to determine the role of protein kinase A-catalyzed phosphorylation of the dopamine D(1) receptor in agonist-stimulated desensitization and internalization of the receptor. To facilitate purification and imaging of the D(1) receptor, we attached a polyhistidine tag to the amino terminus and enhanced green fluorescent protein to the carboxyl terminus of the receptor (D(1)-EGFP). D(1)-EGFP was similar to the untagged D(1) receptor in terms of affinity for agonist and antagonist ligands, coupling to G proteins, and stimulation of cyclic AMP accumulation. D(1)-EGFP and two mutants in which either Thr268 or Ser380 was replaced with Ala were stably expressed in NS20Y neuroblastoma cells. Pretreatment with the protein kinase A inhibitor H-89 (N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide) or substitution of Ala for Thr268 reduced agonist-stimulated phosphorylation of the receptor and resulted in diminished trafficking of the receptor to the perinuclear region of the cell. Substitution of Ala for Thr268 had no effect, however, on agonist-induced receptor sequestration or desensitization of cyclic AMP accumulation. Substitution of Ala for Ser380 had no effect on D(1) receptor phosphorylation, sequestration, desensitization, or trafficking to the perinuclear region. We conclude that protein kinase A-dependent phosphorylation of the D(1) receptor on Thr268 regulates a late step in the sorting of the receptor to the perinuclear region of the cell, but that phosphorylation of Thr268 is not required for receptor sequestration or maximal desensitization of cyclic AMP accumulation.  相似文献   

10.
11.
12.
Petroleum-derived compounds, including polycyclic aromatic hydrocarbons (PAHs), commonly occur as complex mixtures in the environment. Recent studies using the zebrafish experimental model have shown that PAHs are toxic to the embryonic cardiovascular system, and that the severity and nature of this developmental cardiotoxicity varies by individual PAH. In the present study we characterize the toxicity of the relatively higher molecular weight 5-ring PAHs benzo[a]pyrene (BaP), benzo[e]pyrene (BeP), and benzo[k]fluoranthene (BkF). While all three compounds target the cardiovascular system, the underlying role of the ligand-activated aryl hydrocarbon receptor (AHR2) and the tissue-specific induction of the cytochrome p450 metabolic pathway (CYP1A) were distinct for each. BaP exposure (40 μM) produced AHR2-dependent bradycardia, pericardial edema, and myocardial CYP1A immunofluorescence. By contrast, BkF exposure (4-40 μM) caused more severe pericardial edema, looping defects, and erythrocyte regurgitation through the atrioventricular valve that were AHR2-independent (i.e., absent myocardial or endocardial CYP1A induction). Lastly, exposure to BeP (40 μM) yielded a low level of CYP1A+ signal in the vascular endothelium of the head and trunk, without evident toxic effects on cardiac function or morphogenesis. Combined with earlier work on 3- and 4-ring PAHs, our findings provide a more complete picture of how individual PAHs may drive the cardiotoxicity of mixtures in which they predominate. This will improve toxic injury assessments and risk assessments for wild fish populations that spawn in habitats altered by overlapping petroleum-related human impacts such as oil spills, urban stormwater runoff, or sediments contaminated by legacy industrial activities.  相似文献   

13.
14.
15.
The toxicities of polychlorinated biphenyls (PCBs) are thought to be mediated mainly by the aryl hydrocarbon receptor (AhR). However, little is known about changes to AhR-mediated effects caused by metabolic conversion of PCBs. To investigate whether hydroxylation affects the affinity of PCBs for the AhR, we measured the AhR agonistic activity of mono-hydroxylated PCBs (mono-OH-PCBs) and their non-hydroxylated analogs (PCBs) using yeast cells transduced with the human AhR and its response pathway. Fifty-two of 84 tested OH-PCBs and 12 of 24 PCBs exhibited AhR agonistic effects. Of 49 OH-PCBs that had the same chlorination patterns as the tested PCBs, 26 had activities that were more than twice those of their analogous PCBs, or became activated if their non-hydroxylated analogs were inactive. In particular, 3′,4,5′-trichlorobiphenyl-2-ol and 3′,4,4′-trichlorobiphenyl-3-ol were 37- and 22-fold more potent than their non-hydroxylated analogs and were 1.42 times and 1.08 times, respectively, as active as a standard, β-naphthoflavone. The activities of only 5 OH-PCBs were reduced to less than half those of their non-hydroxylated counterparts. No tested PCBs were inactivated by the presence of a hydroxyl group. These findings underscore the need to rethink the toxicological evaluation of hydroxylated metabolites of PCBs and their abundance in the environment.  相似文献   

16.
17.
  1. Cytochrome P450 1B1 (CYP1B1) is highly expressed in testis, but there is conflicting information regarding the inducibility of testicular CYP1B1 by aryl hydrocarbon receptor (AhR) agonists.

  2. To assess AhR-mediated regulation, testicular CYP1B1 expression was measured following treatment of adult rats with 3-methylcholanthrene and various dosages of benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The effect of TCDD on CYP1B1 expression in R2C rat Leydig and MA-10 mouse Leydig cells in culture was also determined.

  3. Immunoblot analysis showed that treatment with benzo[a]pyrene at dosages up to 200?mg/kg/day and 3-methylcholanthrene at 25?mg/kg/day did not induce testicular CYP1B1 expression. Treatment with TCDD at dosages of 1, 5 or 100 μg/kg had no effect, but testicular CYP1B1 protein levels were increased by approximately 50% at dosages of 10 and 50 μg/kg.

  4. CYP1B1 mRNA levels in MA-10 and CYP1B1 protein levels in R2C cells were not induced by exposure to TCDD (10–1000?nM).

  5. Overall, the results indicate that rodent testicular CYP1B1 is not inducible by AhR agonists.

  相似文献   

18.
19.
The aryl hydrocarbon receptor (AHR) mediates the toxicity of a variety of environmental chemicals. Although little is known about the physiological role of the AHR, studies suggest that it plays an important role in regulating ovulation because Ahr deficient (AhRKO) mice have a reduced number of ovulations compared to wild-type (WT) mice. The reasons for the reduced ability of AhRKO mice to ovulate are unknown. Normal ovulation, however, requires estrous cyclicity, appropriate luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels, and LH and FSH responsiveness. Thus, the purpose of this study was to test the hypothesis that Ahr deletion regulates ovulation by altering cyclicity, FSH and LH levels, follicle-stimulating hormone receptor (Fshr) and luteinizing hormone receptor (Lhcgr) levels and/or gonadotropin responsiveness. The data indicate that AhRKO and WT mice have similar levels of FSH and LH, but AhRKO mice have reduced Fshr and Lhcgr mRNA levels compared to WT mice. Furthermore, AhRKO ovaries contain fewer corpora lutea compared to WT ovaries after 5 IU equine chorionic gonadotropin (eCG) treatment. Lastly, both AhRKO and WT mice ovulate a similar number of eggs in response to 5 IU human chorionic gonadotropin (hCG), but AhRKO mice ovulate fewer eggs than WT mice in response to 2.5 IU and 1.25 IU hCG. Collectively, these data indicate that AhRKO follicles have a reduced capacity to ovulate compared to WT follicles and that this is due to reduced responsiveness to gonadotropins. Thus, in addition to mediating toxicity of environmental chemicals, the Ahr is required for normal ovulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号